7
Frederick T. Wallenberger Paul A. Bingham Editors Fiberglass and Glass Technology Energy-Friendly Compositions and Applications Springer

Fiberglass and Glass Technology - GBV

  • Upload
    others

  • View
    10

  • Download
    0

Embed Size (px)

Citation preview

Frederick T. Wallenberger • Paul A. Bingham Editors

Fiberglass and Glass Technology

Energy-Friendly Compositions and Applications

Springer

Contents

Part I Continuous Glass Fibers

1 Commercial and Experimental Glass Fibers 3 Frederick T. Wallenberger 1.1 Overview: Glass Melt and Fiber Formation 3

1.1.1 Principles of Glass Melt Formation 3 1.1.2 Principles of Glass Fiber Formation 9 1.1.3 Structure of Melts and Fibers 11 1.1.4 Summary and Conclusions 15

1.2 Silica Fibers, Sliver, and Fabrics (95-100% Si02) 15 1.2.1 Ultrapure Silica Fibers (99.99-99.999% Si02) . . . . 15 1.2.2 Pure Silica Sliver and Fabrics (95.5-99.5% Si02) . . 19 1.2.3 Summary and Conclusions 22

1.3 Silicate Glass Fibers (50-70% Si02, 1-25% AI2O3) 23 1.3.1 Forming Glass Fibers from Strong Viscous Melts . . . 23 1.3.2 General-Purpose Silicate Glass Fibers 28 1.3.3 Special-Purpose Silicate Glass Fibers 34 1.3.4 Non-round, Bicomponent and Hollow Silicate Fibers . 54 1.3.5 Summary and Conclusions 60

1.4 Aluminate Glass Fibers (<81% AI2O3, <50% Si02) 60 1.4.1 Glass Fibers from Fragile Melts (25-50%

A1203, 10-4% Si02) 60 1.4.2 Glass Fibers from Inviscid Melts

(55-81% AI2O3,4-0% Si02) 66 1.5 Appendix: Single-Crystal Alumina Fibers 77

1.5.1 Single-Crystal Fibers from Inviscid Melts 77 1.5.2 The Future of Alumina and Aluminate Fibers 82

References 84

2 Design of Energy-Friendly Glass Fibers 91 Frederick T. Wallenberger 2.1 Principles of Designing New Compositions 91

2.1.1 Compositional, Energy, and Environmental Issues . . 91

ix

x Contents

2.1.2 Trend Line Design of New Fiberglass Compositions . 94 2.2 Energy-Friendly Aluminosilicate Glass Fibers 99

2.2.1 New Energy-Friendly E-Glass Variants with < 2 % B 2 0 3 99

2.2.2 New Energy-Friendly E-Glass Variants with 2-10% B 20 3 I l l

2.2.3 New Energy- and Environmentally Friendly ECR-Glass Variants 114

2.3 Energy-Friendly Soda-Lime-Silica Glass Fibers 116 2.3.1 New Energy-Friendly A-and C-Glass Compositions . 117

2.4 Summary, Conclusions, and Path Forward 119 References 121

3 Composite Design and Engineering 125 J.H.A. van der Woude and E.L. Lawton 3.1 Introduction 125

3.1.1 Continuous Fibers for Reinforcement 125 3.1.2 E-Glass Fibers 127 3.1.3 Fiberglass Manufacturing 128 3.1.4 Fiberglass Size 129 3.1.5 Composite Mechanical Properties 130 3.1.6 Products 138

3.2 Thermoset Composite Material 141 3.2.1 Liquid Resin Processing Techniques 142 3.2.2 Thermosetting Matrix Resins 148 3.2.3 Fillers 154 3.2.4 Release Agents 155

3.3 Reinforced Thermoplastic Materials 156 3.3.1 Introduction 156 3.3.2 Semifinished Materials Based on Thermoplastics . . . 158

3.4 Composites for Wind Turbines 168 3.4.1 Introduction 168 3.4.2 Raw Materials 169 3.4.3 Blade-Manufacturing Techniques 169 3.4.4 Blade Design Methodologies 170

References 172

4 Glass Fibers for Printed Circuit Boards 175 Anthony V. Longobardo 4.1 Introduction 175

4.1.1 Printed Circuit Board Requirements and Their Implications for Fiberglass 176

4.1.2 Fiberglass'Role in PCB Construction 177 4.1.3 Electrical Aspects 179 4.1.4 Structural Aspects 181

Contents xi

4.2 Glass Compositional Families 184 4.2.1 Improvements Initially Based on E-Glass 184 4.2.2 D-Glass and Its Compositional Improvements . . . . 188

4.3 Future Needs of the PCB Market 191 4.3.1 The Electronics Manufacturer's Roadmap 191 4.3.2 What This Means for the Board and Yarn Makers . . 192

References 195

5 High-Strength Glass Fibers and Markets 197 Robert L. Hausrath and Anthony V. Longobardo 5.1 Attributes of High-Strength Glass 197

5.1.1 Strength 198 5.1.2 Elastic Modulus 203 5.1.3 Thermal Stability 205

5.2 Glass Compositional Families 206 5.2.1 S-Glass 207 5.2.2 R-Glass 208 5.2.3 Other High-Strength Glasses 209

5.3 High-Strength Glass Fibers in Perspective 210 5.3.1 The Competitive Material Landscape 210 5.3.2 Inherent Advantages of Continuous Glass Fibers . . . 215

5.4 Markets and Applications 215 5.4.1 Defense - Hard Composite Armor 216 5.4.2 Aerospace - Rotors and Interiors 218 5.4.3 Automotive - Belts, Hoses, and Mufflers 220 5.4.4 Industrial Reinforcements - Pressure Vessels 221

5.5 Concluding Remarks 222 References 223

Part II Soda-Lime-Silica Glasses

6 Compositions of Industrial Glasses 229 Antonin Smrcek 6.1 Guidelines for Industrial Glass Composition Selection 229

6.1.1 Economics 230 6.1.2 Demands on the Glass Melt 230 6.1.3 Meltability 232 6.1.4 Workability 233 6.1.5 Choice of Raw Materials 235 6.1.6 Cullet Effect - Glass Melt Production Heat 236 6.1.7 Glass Refining 237

6.2 Industrial Glass Compositions 240 6.2.1 Historical Development 240 6.2.2 Flat Glass 242 6.2.3 Container Glass 245 6.2.4 Lead-Free Utility Glass 250

xii Contents

6.2.5 Technical Glass 253 6.2.6 Lead Crystal 259 6.2.7 Colored Glasses 261

6.3 Example Glass Compositions 261 6.3.1 Perspectives 261 6.3.2 Practical Examples of Container Glass Batch Charge . 262

References 266

7 Design of New Energy-Friendly Compositions 267 Paul A. Bingham 7.1 Introduction 267 7.2 Design Requirements 268

7.2.1 Commercial Glass Compositions 269 7.3 Environmental Issues 269

7.3.1 Specific Energy Consumption 269 7.3.2 Atmospheric Emission Limits 271 7.3.3 Pollution Prevention and Control 271

7.4 Fundamental Glass Properties 278 7.4.1 Viscosity-Temperature Relationship 279 7.4.2 Devitrification and Crystal Growth 281 7.4.3 Conductivity and Heat Transfer 286 7.4.4 Interfaces, Surfaces, and Gases 291 7.4.5 Chemical Durability 297 7.4.6 Density and Thermo-mechanical Properties 299

7.5 Design of New SLS Glasses 300 7.5.1 Batch Processing, Preheating, and Melting 300 7.5.2 Cullet 302 7.5.3 Silica, Si02 304 7.5.4 Soda,Na20 305 7.5.5 Calcia,CaO 307 7.5.6 Magnesia, MgO 309 7.5.7 Alumina, A1203 310 7.5.8 Potassia, K20 313 7.5.9 Lithia,Li20 315 7.5.10 Boric Oxide, B 2 0 3 316 7.5.11 Sulfate, SO3 318 7.5.12 Water, H 20 321 7.5.13 Chlorides and Fluorides 322 7.5.14 Baria, BaO 323 7.5.15 Zinc Oxide, ZnO 323 7.5.16 Strontia, SrO 324 7.5.17 Multivalent Constituents 324 7.5.18 Other Compounds 327 7.5.19 Recycled Filter Dust 329 7.5.20 Nitrates 329

Contents xiii

7.6 Glass Reformulation Methodologies 330 7.6.1 Worked Examples and Implementation 330 7.6.2 Reformulation Benefits and Pitfalls 341 7.6.3 Research Requirements and Closing Remarks . . . . 343

References 345

Part III Glass Melting Technology

8 Basics of Melting and Glass Formation 355 Hans-Jiirgen Hoffmann 8.1 Motivation 355 8.2 Former Melting Criteria 356 8.3 Analysis of the Enthalpy Functions of One-Component

Systems 359 8.3.1 Theoretical Preliminaries 359 8.3.2 Pre-melting Range and the Contribution to the

Molar Specific Heat Capacity by Electrons 361 8.4 Melting and the Glass Transformation 365 8.5 Effects Occurring in the Glass Transformation Range 368 8.6 What Makes Solids and Melts Expand? 369 8.7 Modulus of Compression of the Chemical Elements 375 8.8 Necessary Criteria for Glass Formation 375 8.9 Possible Extension to Multi-Component Systems 381 8.10 Discussion 381 References 382

9 Thermodynamics of Glass Melting 385 Reinhard Conradt 9.1 Approach to the Thermodynamics of Glasses

and Glass Melts 385 9.1.1 Description Frame for the Thermodynamic

Properties of Industrial Glass-Forming Systems . . . 386 9.1.2 Heat Content of Glass Melts 388 9.1.3 Chemical Potentials and Vapor Pressures of

Individual Oxides 391 9.1.4 Entropy and Viscosity 394

9.2 The Role of Individual Raw Materials 395 9.2.1 Sand 395 9.2.2 Boron Carriers 397 9.2.3 Dolomite and Limestone 400

9.3 The Batch-to-Melt Conversion 404 9.3.1 Stages of Batch Melting 404 9.3.2 Heat Demand of the Batch-to-Melt Conversion . . . . 405 9.3.3 Modeling of the Batch-to-Melt Conversion

Reaction Path 407 References 409

xiv Contents

10 Glass Melt Stability 413 Helmut A. Schaeffer and Hayo Müller-Simon 10.1 Introduction 413 10.2 Target Properties of Glass Melt and Glass Product 414

10.2.1 Batch-Related Fluctuations 415 10.2.2 Combustion-Related Fluctuations 416 10.2.3 Process-Related Fluctuations 416

10.3 In Situ Sensors 417 10.3.1 Sensors for Monitoring Glass Melt Properties 418 10.3.2 Sensors for Monitoring Species in the

Combustion Space 422 10.4 Examples of Glass Melt Stability Control 423

10.4.1 Redox Control of Glass Melting with High Portions of Recycled Glass 423

10.4.2 Redox Control of Amber Glass Melting 425 10.5 Conclusions and Outlook 427 References 427

11 Plasma Melting Technology and Applications 431 J. Ronald Gonterman and M.A. Weinstein 11.1 Concepts of Modular and Skull Melting 431 11.2 The Technology of High-Intensity DC-Arc Plasmas 433

11.2.1 Conductive 434 11.2.2 Radiant 435 11.2.3 Joule Heating 436

11.3 Brief History of Plasma Melting of Glass 437 11.3.1 Johns-Manville 437 11.3.2 British Glass Institute 438 11.3.3 Plasmelt Glass Technologies, LLC 438 11.3.4 Japanese Consortium Project 439

11.4 DOE Research Project - 2003-2006 440 11.4.1 Acknowledgments 440 11.4.2 Experimental Setup of the Plasmelt Melting System . 440 11.4.3 Technical Challenges of Plasma Glass Melting . . . . 442 11.4.4 Glasses Melted: Results and Broad Implications . . . 444 11.4.5 Synthetic Minerals Processing Implications 447 11.4.6 Energy Efficiency vs. Throughput 448

11.5 Future Applications for Plasma Melting 450 11.6 Summary and Conclusions 451 References 451

Index 453