7
Experiment Number: 3 Experiment: Gravimetric Analysis of a Chloride Salt DATE: 26 Feb. 2014 Name: Amteshwar Singh Sandhu Lab Partner: Imad Sadeq Group Number: B Section: FRI PM PURPOSE To use the steps of Gravimetric analysis technique and measure the % chloride in an unknown, given quantity of salt. THEORY 1. Equation of Formation of Silver Chloride: ! (!") + ! (!") (!) Eq. 1 This equation means that ! has an extra e in its valence shell to reach stability. Whereas, ! has deficiency of one e to complete its valence shell electrons and reach stability. Therefore, ! and ! share one e to fill their valence shell electrons and attain stability. Thus, the result is the formation of a stable compound . 2. is highly insoluble in water. Thus, it forms precipitate as colloidal particles. K sp is the solubility product of the constituent ions. For example: (!) ! (!") + ! (!") Eq. 2 K sp = ! (!") . ! (!") Eq. 3 Low solubility in aqueous solutions occurs when the K sp has a lower value. This, also means when the precipitate formed is maximum the solubility was low in the aqueous solution. 3. Precipitation is carried out slowly in the presence of nitric acid to prevent interference from other anions of weak acids. Thus, the precipitate formed is free of coprecipitates.

Final Formal Report

  • Upload
    oznavee

  • View
    239

  • Download
    1

Embed Size (px)

Citation preview

Page 1: Final Formal Report

 Experiment  Number:  

3  

Experiment:  

Gravimetric  Analysis  of  a  Chloride  Salt  

DATE:      

26  Feb.  2014    

Name:  

Amteshwar  Singh  Sandhu  

Lab  Partner:    

Imad  Sadeq  

Group  Number:  

B  

Section:  

FRI  PM  

     

PURPOSE  

To  use  the  steps  of  Gravimetric  analysis  technique  and  measure  the  %  chloride  in  an  

unknown,  given  quantity  of  salt.    

THEORY  

1. Equation  of  Formation  of  Silver  Chloride:  

𝐴𝑔!(!") + 𝐶𝑙!(!") →  𝐴𝑔𝐶𝑙(!)               Eq.  1  

This  equation  means  that  𝐶𝑙!  has  an  extra  e-­‐  in  its  valence  shell  to  reach  

stability.  Whereas,  𝐴𝑔!  has  deficiency  of  one  e-­‐  to  complete  its  valence  shell  

electrons  and  reach  stability.  Therefore,  𝐶𝑙!  and  𝐴𝑔!  share  one  e-­‐  to  fill  their  

valence  shell  electrons  and  attain  stability.  Thus,  the  result  is  the  formation  

of  a  stable  compound  𝐴𝑔𝐶𝑙.    

2. 𝐴𝑔𝐶𝑙  is  highly  insoluble  in  water.  Thus,  it  forms  precipitate  as  colloidal  

particles.  Ksp  is  the  solubility  product  of  the  constituent  ions.  For  example:    

𝐴𝑔𝐶𝑙(!) → 𝐴𝑔!(!") + 𝐶𝑙!(!")                                                                                                                                        Eq.  2  

Ksp  =   𝐴𝑔!(!") . 𝐶𝑙!(!")                                                                                                                                                      Eq.  3  

Low  solubility  in  aqueous  solutions  occurs  when  the  Ksp  has  a  lower  value.  

This,  also  means  when  the  precipitate  formed  is  maximum  the  solubility  was  

low  in  the  aqueous  solution.  

3. Precipitation  is  carried  out  slowly  in  the  presence  of  nitric  acid  to  prevent  

interference  from  other  anions  of  weak  acids.  Thus,  the  precipitate  formed  is  

free  of  co-­‐precipitates.    

Page 2: Final Formal Report

4. By  heating  and  stirring  the  solution  gently  during  precipitation  prevents  the  

formation  of  precipitate  as  colloidal  particles.  The  precipitate  formed  is  

proper  crystal.  Unlike  the  colloidal  particles  this,  precipitate  can  be  collected  

using  a  filter  setup.      

5. There  are  two  cases  as  follows:  

o In  Air:    

The  photodecomposition  of  silver  chloride  (precipitate)  leads  to  the  

formation  of  finely  divided  silver  and  chlorine  gas:  

  𝐴𝑔𝐶𝑙(!) → 𝐴𝑔(!) + !!𝐶𝑙!(!)                                                                                      Eq.  4  

The  analytical  results  are  low  in  this  case.  As  the  chlorine  gas  produced  as  

shown  in  Eq.  4  escapes  the  solution.  

o When  excess  silver  chloride  is  present  in  solution:  

When  excess  silver  ion  present  in  the  solution  it  reacts  with  chlorine  gas  and  

forms  silver  chloride.  Thus  analytical  results  will  have  a  higher  value.    

Eq.  5  shows  the  precipitation  of  silver  chloride  when  there  are  silver  ions  

present  in  the  solution.    

                           3𝐶𝑙! ! + 3𝐻!𝑂 ! + 5𝐴𝑔! !" → 5𝐴𝑔𝐶𝑙 ! + 𝐶𝑙𝑂!!!" + 6𝐻!

!"                Eq.  5  

6. Because  AgCl  has  very  small  amount  of  solubility  in  water.  The  maximum  loss  

can  be  accounted  for  using  Ksp  formula  as:  

The  Ksp  for  AgCl  is  [1]  1.6×10!!"!"#!  

The  loss  in  moles  when  washed  with  100  ml  or  0.1  L  of  water  will  be:  

       1.6×10!!" !"#!  ×  0.1𝐿 = 1.6×10!!!  𝑚𝑜𝑙  

Thus,  the  maximum  precipitate  loss  in  mass:  

 𝑚𝑎𝑠𝑠 = 𝑚𝑜𝑙𝑒𝑠  ×  𝑀.𝑊. 𝑜𝑓  𝐴𝑔𝐶𝑙  

𝑚𝑎𝑠𝑠 = 1.6  ×10!!!  𝑚𝑜𝑙  ×143.32  𝑔𝑚𝑜𝑙 = 2.3  ×10!!  𝑔  

7. Ions  such  as  CO3  2-­‐  and  CH3COO  –  form  co-­‐precipitates  with  silver  and  increase  

the  mass  of  the  precipitate  significantly.    

 

 

 

Page 3: Final Formal Report

PROCEDURE  

Each  partner  performed  the  following  procedure  of  the  experiment  individually.  A  

sample  of  salt  #291  weighed  as  0.1596  g  and  poured  into  a  250  ml  beaker.  The  color  

of  the  salt  was  white  and  the  shape  of  the  salt  crystals  was  irregular.  The  sample  salt  

#  291  and  crucibles  were  weighed  as  0.1596  g  and  31.3192  g  with  analytical  balance.  

The  crucibles  were  weighted  using  a  tissue  to  hold  them  and  an  error  of  ±0.0001  g  

was  accounted.  100  ml  of  distilled  water  and  1  ml  of  dilute  6M  HNO3  were  added  to  

the  salt  in  a  250  ml  beaker.  Then  the  solution  was  heated  and  stirred  slowly.  Just  

before  the  heating  was  started  calculated  amount  of  AgNO3  (30  mL)  was  added  to  

the  salt  (including  5ml  extra).  When  the  solution  was  almost  transparent,  the  test  to  

check  if  the  precipitation  of  silver  chloride  was  complete  was  performed  by  adding  

small  amount  of  AgNO3.  If  more  precipitate  formed  then,  more  AgNO3  was  added  

until  precipitation  was  completed.  When  the  precipitation  was  complete,  solution  

was  stored  in  the  drawer  carefully  without  much  moment  of  the  solution.    

 

Later,  the  vacuum  filtration  was  setup  and  filter  crucibles  were  used  to  Filter  the  

solution  and  the  precipitate  was  collected.  5  ml  of  0.01M  HNO3  was  used  to  remove  

the  remaining  precipitate  from  the  beaker  and  filtered  through  the  crucible.  Also,  

water  was  used  to  remove  the  precipitate  clung  to  the  walls  of  the  beaker.  **5  ml  of  

washings  were  collected  and  add  a  small  amount  of  HCL  was  added  with  help  of  TA.  

If  little  or  no  turbidity  was  observed,  the  washing  was  complete.  If  cloudiness  

appeared  small  amount  of  0.01M  HNO3  was  filtered  through  the  precipitate.  The  test  

was  performed  again  and  if  no  turbidity  appeared  the  washing  was  complete.  When  

the  washing  was  complete  then  5  ml  Acetone  was  filtered  through  the  precipitate  

and  collected  separate,  as  this  waste  had  to  be  treated  before  disposal.    

The  crucible  was  not  placed  in  oven  due  to  prior  breakage.    The  mass  of  the  

precipitate  with  crucible  is  *31.7216.  The  lab  coordinator  to  complete  the  

calculations  and  formal  report  provides  this  mass.    

**  Please  note  –  Due  to  the  breakage  of  Crucibles  prior  to  placing  in  oven,  further  

experiment  was  not  performed  and  the  procedure  is  written  based  on  observing  

partners  experiment.    

Page 4: Final Formal Report

OBSERVATIONS  

1. The  sample  number  of  the  salt  was  #291.  The  salt  was  of  white  color  and  it  

consisted  of  fine  crystals.    

2. A  small  amount  of  AgNO3  was  added  to  the  precipitate  to  complete  the  

precipitation.  The  test  of  washing  the  precipitate  was  performed  using  no  

more  than  5  ml  0.01M  HNO3  but  the  test  of  HCL  to  check  the  washing  was  

not  completed  to  the  breakage  of  crucibles.  Precipitate  was  lost  due  to  

breakage.    

3.  

• The  color  of  the  precipitate  was  light  violet.  The  color  appeared  

because  certain  exposure  to  light  is  inevitable.  When  the  solution  was  

exposed  to  light  silver  chloride  splits  up  into  its  constituent  molecules  

as  shown  in  Eq.  4  above.  The  finely  divided  silver  precipitate  acquired  

a  violet  color.  Also,  the  silver  precipitate  was  opaque  in  nature.  Thus,  

it  prevented  further  decomposition  unless  the  solution  was  steady.  

• The  shape  of  the  precipitate  was  slightly  powdery.    

 

 

 

Partner’s  data:    

Physical  description     Completeness  of  precipitation    

Washings  with  HNO3    

Physical  description  of  precipitate    

White  powder  and  fine  shaped  crystals    

The  precipitation  was  completed  using  24  mL  of  AgNO3  

The  washing  was  successfully  completed.    

The  precipitate  was  light  purple  and  powdery  after  drying.  

 

 

 

 

 

Page 5: Final Formal Report

DATA  

 

  Values     Partner’s  values    

Sample  mass     0.1596  ± 0.0001  𝑔   0.1227± 0.0001  𝑔  

Required  AgNO3   30  mL   29  mL  

Mass  of  crucible   31.3192  ± 0.0001  𝑔   32.6559± 0.0001  𝑔  

Oven  temperature     N.A.*   111.0  ℃  ± 0.2  ℃  

Time  precipitate  in  oven     N.A.*   30  minutes  

Precipitate  cooling  time     N.A.*   5  minutes  

Mass  of  crucible  with  

precipitate    

31.7216± 0.0001  𝑔   33.0079± 0.0001  𝑔  

Mass  precipitate     0.4024± 0.0002  𝑔   0.352± 0.0002  𝑔  

 

*PLEASE  NOTE:  because  the  crucible  broke  prior  to  placing  in  oven.  Lab  coordinator  provided  the  crucible  with  precipitate  mass  to  complete  the  calculations  and  formal  report.    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Page 6: Final Formal Report

DISCUSSION  

The  average  value  of  the  %  Cl-­‐  in  solution  is  66.7%,  where  as  the  true  value  is  56.19%.  There  are  several  reasons  why  average  calculated  value  is  higher  than  true  value.  Firstly,  the  most  significant  cause  of  this  error  could  be  addition  of  large  excess  of  AgNO3  during  precipitation.  The  precipitate  must  have  entrapped  anions  of  weak  acids  from  the  solution.  Thus,  the  mass  of  the  precipitate  increased  significantly  due  to  impurities.    Secondly,  the  result  could  be  high  because  of  improper  washing  of  the  precipitate  during  filtration.  The  anions  of  the  weak  acids  might  have  been  present  in  the  precipitate  even  after  washing.  Also,  during  the  HCl  test  *if  little  turbidity  was  observed  that  means  a  small  amount  of  Ag  is  also  accounted  for  in  the  precipitate.  Other  reasons  for  higher  results  could  be  uncertainty  in  weighing  salts  and  measuring  volume  of  chemicals.        *PLEASE  NOTE:  because  the  crucible  broke  prior  to  HCl  test.  Lab  coordinator  provided  the  crucible  with  precipitate  mass  to  complete  the  calculations  and  formal  report.    

CONCLUSION    

1. The  salt  Sample  #291  was  used  for  the  Gravimetric  Analysis.      

2. The  average  %  Cl-­‐  was  66.7%  and  the  real  value  is  56.19%    

3. The  uncertainty  for  weighing  sample  salt  was  6.2  ×10!!  ,  uncertainty  for  weighing  the  precipitate  is  4.9  ×10!!  and  uncertainty  for  oven  temperature  is  *N.A.    Partner’s  Values  for  uncertainties:    Uncertainty  for  weighing  sample  salt  =  8.1  ×  10!!  ,  uncertainty  for  weighing  precipitate  was  5.6  ×10!!  and  the  uncertainty  for  oven  temperature  was  1.8  ×10!!    

4. The  precision  was  129  ppt      

5. The  relative  error  was  11%      Partner’s  relative  error  was  –  26.4%  

       

Page 7: Final Formal Report

BIBLIOGRAPHY    

1.  Archer  D.W.,  Burk  R.C.,  White  C.A.,  Wolff  P.A.  and  Levac  S.  ‘Gravimetric  Analysis  of  a  Chloride  Salt’,  CHEM  1101:  Chemistry  for  engineers  Laboratory  Lab  manual,  Carleton  University,  Ottawa,  Fall  2013,  54-­‐59.                                                                            *PLEASE  NOTE:  because  the  crucible  broke  prior  to  placing  in  oven.  Lab  coordinator  provided  the  crucible  with  precipitate  mass  to  complete  the  calculations  and  formal  report.