52
Assessing the Demand for Uber Lissa Marten Thesis Advisor: Professor Ian Savage Instructor: Professor Joseph Ferrie June 2015

Final Thesis Lissa Marten - mmss.wcas.northwestern.edummss.wcas.northwestern.edu/thesis/articles/get/880/Marten2015.pdf · increase!at!some!levels!of!Uber!surge,!this!findingindicatesthat

  • Upload
    vudien

  • View
    217

  • Download
    2

Embed Size (px)

Citation preview

               

     

Assessing  the  Demand  for  Uber    

Lissa  Marten  Thesis  Advisor:  Professor  Ian  Savage  Instructor:  Professor  Joseph  Ferrie  

June  2015                                                    

 

   

1  

EXEMPTION DETERMINATION April 16, 2015 Joseph Ferrie 2003 Sheridan Road Dept. of Economics Evanston, IL 847-491-8210 [email protected] Dear Dr. Joseph Ferrie:

The IRB reviewed the following submission:

Determination Date: 4/16/2015 Type of Submission: Initial Study

Review Level: Exempt Exempt Category (if

applicable): - (2) Tests, surveys, interviews, or observation

Title of Study: Assessing the Demand for Uber Principal Investigator: Joseph Ferrie

IRB ID: STU00200871 Funding Source: - Name: Economics

Grant ID: NU OSR Number:

IND, IDE, or HDE: None Documents Reviewed: • Recruitment email body, Category: Recruitment

Materials; • Social Behavioral Online Consent Template v2.doc, Category: Consent Form; • IRB Protocol, Category: IRB Protocol; • Survey Document, Category: Questionnaire/Survey

The IRB has determined that the study meets the criteria for exemption from IRB review and approval.

In conducting this study, you are required to follow the requirements listed in the Northwestern University (NU) Investigator Manual (HRP-103), which can be found by navigating to the IRB Library within the eIRB+ system.

   

2  

This determination applies only to the activities described in the eIRB+ submission and does not apply should any changes be made. If changes are being considered and there are questions about whether IRB review is needed, please contact the IRB Office to discuss those changes. An exemption determination does not constitute nor guarantee institutional approval and/or support. Investigators and study team members must comply with all applicable federal, state, and local laws, as well as NU Policies and Procedures, which may include obtaining approval for your research activities from other individuals or entities.

For IRB-related questions, please consult the NU IRB website at http://irb.northwestern.edu. For general research questions, please consult the NU Office for Research website at http://www.research.northwestern.edu.

Sincerely,

Heather Gipson IRB Director          

 

 

 

 

 

 

 

 

 

 

 

 

   

3  

Table  of  Contents  

IRB  Exemption  Certificate………………………………………………………………………………………………  1    

Acknowledgments………………………………………………………………………………………………………….  4  

Abstract…………………………………………………………………………………………………………………………  5  

Introduction………………………………………………………………………………………………………….……….  6  

Literature  Review……………………………………………………………………………………………………..……  8  

Methodology………………………………………………………………………………………………………………..  12  

Survey………………………………………………………………………………………………………………………....  18  

Data…………………………………………………………………………………………………………………………….  23  

Description  of  Variables……………………………………………………………………………………………….  25  

Summary  Statistics………………………………………………………………………………………………………  27  

Results  and  Statistical  Analyses…………………………………………………………………………………….  28  

  Models………………………………………………………………………………………………………………  29  

Log-­‐Likelihood  Comparison……………………………………………………………………………….  41  

Value  of  Time  Discussion………………………………………………………………………………...…  42  

Conclusion  and  Limitations………………………………………………………………………………………..…  46  

Works  Cited…………………………………………………………………………………………………………………  48  

                       

   

4  

Acknowledgments  

  I  would  first  like  to  thank  Professor  Ian  Savage.  Without  his  help,  my  thesis  would  

not  have  been  possible.  Professor  Savage  was  there  to  encourage  and  assist  me  any  time  I  

needed  him,  and  for  that,  I  am  extremely  grateful.  My  thesis  would  also  not  have  been  

possible  without  the  assistance  of  Professor  Amanda  Stathopoulos;  she  aided  me  in  every  

bit  of  analysis  and  kindly  taught  me  how  to  use  the  program  Biogeme.  She  helped  me  out  of  

the  kindness  of  her  heart,  and  I  am  very  thankful.  I  would  also  like  to  thank  Professor  

Joseph  Ferrie  for  answering  my  many  questions  throughout  the  year,  as  well  as  having  

incredible  patience.  I  would  like  to  thank  Sarah  Muir  Ferrer,  for  her  support  throughout  all  

of  my  MMSS  classes,  but  especially  for  her  understanding  presence.  I  wish  to  also  thank  

Professor  William  Rogerson  for  his  leadership  and  guidance  as  director  of  the  MMSS  

program.  Without  him,  none  of  this  would  be  possible.  Finally,  I  would  like  to  thank  my  

friends.  My  friends  have  listened  to  me  and  advised  me  regarding  my  thesis  and  MMSS  

classes  throughout  my  four  years  at  Northwestern,  and  I  could  not  have  done  this  without  

them.  I  would  like  to  give  a  special  thank  you  to  Ashley  Augustine;  I  never  would  have  

joined  the  MMSS  program  without  her.  Lastly,  my  biggest  thank  you  goes  to  my  family.  My  

parents  have  supported  me  every  step  of  the  way,  through  all  my  highs  and  lows,  and  I  

would  not  be  here  without  them.  And  to  Carly-­‐  you  are  the  best  sister  I  could  ask  for.  

   

5  

Abstract  

  In  this  study,  I  conduct  a  survey  to  assess  the  demand  for  Uber  vs.  the  CTA  among  

Northwestern  undergraduate  students  and  determine  the  factors  that  influence  this  

demand.  I  also  calculate  a  value  of  time  spent  in  transit  for  Northwestern  students.  To  

estimate  this  demand,  I  create  a  disaggregate  demand  model,  mirroring  Daniel  McFadden’s  

pioneering  study  on  the  San  Francisco  BART.  

  I  find  that  year  in  school  and  gender  are  not  significant  in  influencing  demand  for  

these  services.  However,  I  find  that  past  transportation  behavior,  cost  of  transportation,  

and  duration  of  transportation  are  influential  in  determining  this  demand.  Finally,  I  

calculate  the  value  of  time  spent  in  transit  for  Northwestern  undergraduate  students  to  be  

$0.15  per  minute,  or  $9.00  per  hour.  I  find  that  this  value  varies  between  men  and  women.  

For  men,  the  value  is  $0.143  per  minute,  or  $8.58  per  hour;  for  women,  the  value  is  $0.155  

per  minute,  or  $9.30  per  hour.  This  value  also  fluctuates  between  inexperienced  and  

experienced  riders.  For  inexperienced  riders,  the  value  is  $0.135  per  minute,  or  $8.10  per  

hour;  for  experienced  riders,  the  value  is  $0.166  per  minute,  or  $9.96  per  hour.  

  Overall,  I  find  that  when  given  six  different  transportation  choice  situations,  

individuals  have  an  inclination  toward  the  CTA.  Within  my  survey  data,  39.1%  of  

individuals  selected  Uber  in  a  given  situation,  and  60.9%  selected  CTA.  Given  the  steep  cost  

increase  at  some  levels  of  Uber  surge,  this  finding  indicates  that  Northwestern  students  are  

open  to  both  methods  of  transportation.    

   

6  

Introduction  

  Since  its  emergence  in  San  Francisco  in  2010,  Uber  has  served  to  be  a  disruptive  

force  (Rao,  2010).  Now  in  2015,  Uber  is  valued  at  $50  billion  and  has  entered  markets  in  

300  cities  across  57  different  countries  (Newcomer,  2015).  It  would  seem  that  Uber  is  

unstoppable.  However,  this  explosion  has  not  come  without  backlash.  Uber’s  competitive  

prices  have  deeply  affected  the  taxi  industry.  Across  the  world,  taxi  drivers  are  searching  

for  ways  to  combat  Uber’s  influence  while  the  value  of  their  medallions  rapidly  declines.  In  

Chicago,  the  median  sales  peak  of  taxi  medallions  was  $357,000  in  late  2013.  Now,  that  

price  is  about  $270,000.  In  New  York,  medallion  prices  have  fallen  from  $1.2  million  to  

$870,000  (Madhani,  2015).  Thus,  there  is  a  clear  relation  between  the  prevalence  of  Uber  

in  a  city  and  the  taxi  industry’s  success.  

Uber  executives  saw  Chicago  as  an  ideal  market  because  of  the  weather,  quantity  of  

sports  arenas,  and  nightlife  (Rao,  2011).  They  were  right.  Since  its  launch  in  2011,  Uber’s  

popularity  has  grown  greatly,  now  averaging  about  2  million  rides  per  month  in  the  

Chicagoland  area  (Dallke,  2015).  With  this  information,  Chicago  is  an  ideal  market  for  a  

demand  analysis.  However,  although  Uber’s  influence  on  the  taxi  industry  is  widely  known,  

its  effect  on  public  transportation  is  more  opaque.  There  have  been  few  studies  on  this  

relationship,  and  no  strong  results  have  been  found.    

Daniel  McFadden’s  work  in  1972  using  disaggregate  data  on  individual  commuters  

to  predict  demand  for  the  Bay  Area  Rapid  Transit  system  in  San  Francisco  has  been  

repeatedly  heralded  as  groundbreaking  within  the  area  of  discrete  choice  modeling.  In  this  

study,  McFadden  used  random  utility  discrete  choice  models  to  predict  the  percentage  of  

Bay  Area  commuters  that  would  use  the  system.  Previous  predictions  were  around  15%  of  

   

7  

area  users,  but  McFadden  predicted  usage  to  be  6.3%—extremely  close  to  the  true  value  of  

6.2%  (Smith,  2014).  McFadden  later  won  a  Nobel  Prize  for  his  pioneering  work  in  discrete  

choice  modeling.  His  work  serves  as  the  basis  of  my  model.  

Many  economists  have  performed  similar  studies,  comparing  the  tradeoff  between  

various  modes  of  transportation.  However,  a  study  of  the  sort  has  not  been  completed  

using  transportation  network  providers,  such  as  Uber,  Lyft,  and  Sidecar,  which  have  come  

to  fruition  in  recent  years.  For  the  purposes  of  this  study,  I  will  collectively  refer  to  all  

transportation  network  providers  as  “Uber,”  since  Uber  has  been  the  most  influential  

player  in  the  market  so  far.  

In  this  study,  I  perform  an  analysis  to  assess  the  demand  for  Uber  vs.  the  CTA  among  

Northwestern  students.  Specifically,  I  wish  to  determine  what  factors  strongly  influence  

this  demand  and  what  a  student’s  value  of  time  spent  in  transit  is.  To  measure  this  demand,  

I  create  a  disaggregate  demand  model  using  data  I  have  collected  through  an  electronic  

survey  and  perform  an  analysis.  I  hope  for  my  research  to  be  influential  to  future  users  of  

both  public  transportation  and  Uber.  

   

   

   

8  

Literature  Review  

  Uber,  its  competitors  Lyft  and  Sidecar,  and  other  similar  transportation  companies  

are  collectively  known  as  “transportation  network  companies”  or  transportation  network  

providers.  At  a  basic  level,  a  transportation  network  company  uses  software  to  connect  

passengers  to  rides,  but  does  not  own  vehicles  (MacMillan,  2015).  The  software  used  is  a  

smartphone  application  that  makes  it  easy  for  users  to  order  a  driver  to  pick  them  up  in  

their  location  and  pay  for  the  ride  with  a  credit  card  solely  through  the  application;  no  

money  is  exchanged  directly  with  the  driver.  

  Uber  is  the  largest  player  in  the  transportation  network  provider  market,  so  I  will  

focus  solely  on  it.  UberX,  the  function  of  the  Uber  application  in  which  drivers  operate  their  

own  vehicles  to  pick  up  passengers  who  order  a  ride  through  the  app,  serves  as  the  largest  

competitor  to  the  taxi  market.  In  an  unofficial  study  done  in  Business  Insider,  it  was  

determined  that  in  Chicago,  with  a  20%  tip  on  taxi  fare  (a  common  practice),  a  taxi  costs  1.8  

times  more  than  an  Uber  ride  for  the  situation  in  question.  This  multiplier  varies  between  

cities;  Chicago  has  one  of  the  most  inexpensive  Uber  rates  relative  to  taxi  rates  of  any  city  

in  the  study  (Silverstein,  2014).  This  figure  is  important  to  note;  one  of  Uber’s  biggest  

critiques  is  their  practice  of  surge  pricing,  or  adjusting  prices  in  accordance  with  demand.  

Surge  prices  can  vary  between  1.1  times  the  base  fare  all  the  way  up  to  50x—the  highest  

surge  price  ever  recorded  (Shontell,  2014).  While  surge  prices  rarely  reach  this  level,  it  is  

common  to  see  UberX  on  a  surge  of  1.75x  or  2x.  A  YouTube  video  from  Uber  detailing  their  

pricing  model  explains  that  when  demand  for  rides  exceeds  supply,  prices  increase  to  incite  

drivers  to  get  on  the  road.  This  surge  occurs  until  supply  matches  demand  (2014).  It  is  

clear  why  customers  disagree  with  this  practice.  However,  as  long  as  the  surge  is  below  

   

9  

1.8x  in  Chicago,  Uber  is  less  expensive  than  a  taxi,  leading  to  great  problems  in  the  taxi  

industry.  

  The  Uberx  experience  differs  from  the  taxi  experience  in  many  ways.  While  the  

majority  of  taxi  drivers  work  full  time,  80%  of  Uber  drivers  work  part  time.  The  hourly  pay  

for  drivers  varies  wildly,  but  one  study  quotes  the  average  pay  per  hour  in  Chicago  as  being  

$16.20  per  hour  for  Uber  drivers  and  $11.87  per  hour  for  taxi  drivers  (Lawler,  2015).  Uber  

is  often  seen  as  safer  than  taxis  as  well.  The  app  employs  a  rating  system  in  which  

passengers  rate  drivers  after  every  ride,  and  vice  versa.  Drivers  who  consistently  receive  

low  ratings  are  required  to  take  a  training  course,  and  can  later  be  suspended  from  the  app  

(Smith  IV,  2015).  This  process  ensures  that  riders  know  who  their  driver  is  and  that  the  

driver  is  held  accountable  for  any  misdoings—a  practice  that  is  not  followed  as  carefully  in  

the  taxi  industry.  

  Based  on  studies  conducted  and  personal  experience,  the  customer  base  for  Uber  

and  taxis  varies  as  well.  A  Skift.com  study  found  that  the  most  frequent  users  are  older  

millennials—individuals  aged  25-­‐34.  They  also  determined  that  males  use  the  apps  more  

than  women,  but  women  are  more  aware  of  the  apps.  Finally,  they  found  that  heaviest  

users  are  wealthier  millennials—individuals  earning  $150,000  or  more  in  income—and  

that  individuals  at  the  lowest  end  of  the  income  bracket  have  much  less  knowledge  of  these  

applications  (Ali,  2015).  Taxis  are  less  limiting,  as  they  don’t  require  the  user  to  own  a  

smartphone.  

Because  of  the  differing  user  bases,  the  demand  for  the  two  modes  differs  as  well.  

There  is  no  specific  research  directly  assessing  from  what  modes  the  Uber  demand  is  

coming,  but  one  may  assume  that  much  of  it  stems  from  former  taxi  riders,  personal  vehicle  

   

10  

drivers,  and  public  transit  users.  The  latter  is  the  basis  of  this  study.  Furthermore,  in  

regards  to  public  transportation,  the  demographics  of  individuals  who  would  employ  this  

method  of  transit  vary  wildly  as  well.  In  a  2007  study  by  the  American  Public  

Transportation  Association,  several  important  findings  were  reported.  One  outcome  is  that  

users  of  public  transportation  have  a  varying  range  of  incomes:  20.1%  of  riders  have  a  

household  income  of  less  than  $15,000,  45.6%  from  $15,000  to  $49,999,  24.8%  from  

$50,000  to  $99,999,  and  9.5%  have  a  household  income  of  $100,000  or  more  (Neff  &  Pham,  

2007,  p.  7).  All  incomes  reported  are  in  2004  dollars.  As  shown  above,  the  incomes  of  

individuals  who  frequently  utilize  public  transportation  are  quite  different  than  the  

heaviest  users  of  Uber—those  with  incomes  of  $150,000  or  more  (Ali,  2015).    

In  Chicago,  the  most  utilized  form  of  public  transportation  is  the  Chicago  Transit  

Authority  (CTA).  The  CTA  is  the  second  largest  public  transportation  system  in  the  country,  

with  1.7  million  rides  taken  per  day.  The  CTA’s  “L”  train  (short  for  elevated)  operates  over  

224  miles  of  track,  including  to  many  Chicago  suburbs  (CTA  Facts  at  a  Glance).  The  CTA  has  

a  train  route  that  operates  between  Evanston  and  downtown  Chicago,  which  many  

Northwestern  students  frequent.  Often,  the  CTA  serves  as  a  viable  option  for  students  to  

use  in  transporting  themselves  around  the  city.  

While  there  have  been  some  articles  looking  into  the  effect  Uber’s  entrance  into  the  

market  has  had  on  the  value  of  taxi  medallions,  there  have  been  no  studies  linking  Uber  and  

public  transportation.  In  order  to  assess  these  differences  in  demand,  one  must  determine  

the  major  factors  influencing  individual  decisions  in  choosing  a  method  of  transportation.  

The  tradeoff  between  public  transportation  and  Uber  is  a  cost  versus  time  saving  decision.  

It  also  begs  the  question:  What  is  an  individual’s  value  of  time  spent  in  transit?  Because  

   

11  

sharing  an  Uber  ride  with  other  individuals  can  make  the  cost  of  an  Uber  ride  only  slightly  

higher  than  that  of  public  transportation,  this  is  a  reasonable  tradeoff  to  assess.  In  regards  

to  pricing,  the  surge  pricing  function  for  Uber  is  essential.  Although  Uber’s  base  prices  are  

relatively  inexpensive—especially  compared  to  a  taxi  ride—their  surge  prices  can  cause  

the  fare  to  skyrocket,  creating  an  added  wrinkle  in  the  Uber  vs.  public  transit  dilemma.  

Individuals  who  choose  to  take  Uber  when  there  is  a  high  surge  have  a  very  high  value  of  

time  spent  in  transit.  However,  other  factors  are  likely  to  influence  this  tradeoff  as  well,  

such  as  gender,  amount  of  money  typically  spent  on  transportation  costs,  age,  etc.  This  is  

what  I  aim  to  determine.  

   

   

12  

Methodology  

One  successful  method  of  assessing  demand  for  mode  choice  is  that  of  discrete  

choice  modeling.  In  fact,  the  methods  for  analyzing  discrete  choices  were  developed  

specifically  in  the  field  of  transportation  economics  (Savage,  2014,  p.  34).  McFadden  (1978)  

explains  that  disaggregate  models  begin  with  the  idea  that  travel  demand  is  generated  by  

observed  individual  choice  behavior,  or  a  maximization  of  utility  (p.  2).  Moreover,  

disaggregate  behavioral  forecasting  does  not  mandate  one  model;  rather,  it  serves  as  a  

system  for  building  models.  Data  observed  through  disaggregate  analysis  takes  the  form  of  

a  discrete  choice,  i.e.  representing  one  variable  by  0  and  one  by  1  (McFadden,  1978,  p.  2).    

Alternatively,  aggregate  models  are  based  on  observed  choices  for  groups  of  

individuals,  or  on  average  choices  at  the  zone  level  (Ortúzar  &  Willumsen,  2011,  p.  227).  

While  aggregate  models  look  at  average  decisions  that  have  previously  been  made,  

disaggregate  models  examine  individual  choices  in  hypothetical  situations.  In  fact,  

disaggregate  models  may  be  more  efficient  than  aggregate  models  in  regards  to  data  

required.  In  aggregate  modeling,  an  observation  can  be  the  average  of  many  individual  

observations.  In  disaggregate  modeling,  each  individual  choice  represents  an  observation  

in  the  model,  leading  to  the  potential  for  less  necessary  data  than  in  aggregate  models.  

Disaggregate  models  are  also  less  likely  to  incur  biases  that  can  occur  in  aggregate  models  

as  a  result  of  hidden  or  unidentified  characteristics  (Ortúzar  &  Willumsen,  2011,  p.  228-­‐

229).  Finally,  disaggregate  models  are  often  used  to  discuss  transportation  mode  choice,  so  

they  serve  as  an  excellent  basis  for  this  analysis  (Savage,  2014,  p.  34).    

Another  distinction  between  aggregate  and  disaggregate  models  is  the  use  of  

revealed  preference  data  vs.  stated  preference  data.  When  data  is  used  to  describe  a  

   

13  

traveler’s  preference  within  actual  decision  making,  it  is  called  revealed  preference  data.  

When  respondents  are  asked  about  hypothetical  situations,  their  responses  create  stated  

preference  data.  Stated  preference  methods  are  especially  useful  for  new  developments  in  

transit  or  hypothetical  price  changes;  McFadden  used  this  method  in  his  study  on  the  San  

Francisco  BART,  as  the  BART  had  yet  been  opened  at  the  time  of  his  study.  Stated  

preference  data  allows  the  values  in  question  to  vary  much  more  widely  than  revealed  

preference  data,  as  it  is  difficult  to  determine  the  effect  of  a  change  in  transit  when  user’s  

previous  behavior  is  the  only  known  data.  However,  many  researchers  are  hesitant  to  trust  

in  individual  responses  regarding  hypothetical  situations.  Combining  the  two  methods  is  

truly  ideal.  In  fact,  McFadden  did  just  this  in  his  study.  After  the  BART  began  to  operate,  he  

combined  the  stated  preference  data  gathered  with  revealed  preference  data  on  actual  user  

patterns.  Overall,  my  study  incorporates  solely  stated  preference  data,  but  I  have  controlled  

for  many  researchers’  concern  of  respondents  answering  questions  about  which  they  lack  

knowledge  by  eliminating  all  participants  who  have  never  taken  these  methods  of  

transportation  previously  (Small  &  Winston,  1999,  p.  33-­‐34).  

According  to  Juan  de  Dios  Ortúzar  and  Luis  G.  Willumsen,  discrete  choice  models  are  

based  on  the  probability  of  individuals  selecting  a  certain  option.  Moreover,  their  choices  

are  a  function  of  their  socioeconomic  characteristics  and  the  relative  appeal  of  a  certain  

option  (2011,  p.  227).  Thus,  one’s  utility  varies  based  on  individual  factors  such  as  travel  

time  and  cost.  Moreover,  another  important  factor  to  note  is  that  disaggregate  models  are  

probabilistic;  they  indicate  the  probability  of  choosing  each  alternative,  but  do  not  show  

which  alternative  is  ultimately  selected  (Ortúzar  &  Willumsen,  2011,  p.  229).  For  my  study,  

I  specifically  focus  on  these  characteristics  and  their  influence  on  mode  choice.  Because  of  

   

14  

the  diverse  groups  of  individuals  utilizing  the  competing  modes,  determining  the  factors  in  

play  with  mode  choice  is  essential.  

Furthermore,  Daniel  McFadden  explains  that  certain  variables  must  be  controlled  

for.  He  provides  the  example  of  family  size;  this  can  vary  one’s  distance  from  public  transit,  

cost  of  transportation,  and  walk  time.  Disaggregate  calibration  methods  do  allow  these  

variables  to  be  included,  but  it  is  also  possible  to  use  only  conventional  variables,  which  is  

seen  in  my  study.  He  explains  that  including  variables  other  than  traditional  hindrances  

may  only  slightly  improve  the  model’s  ability  to  explain  observed  choices  within  the  data  

(McFadden,  1978,  p.  7).  With  this  knowledge,  I  have  limited  my  study  to  the  Northwestern  

undergraduate  population,  excluding  all  graduate  students,  so  as  to  keep  my  population  

somewhat  homogeneous  and  control  for  individuals’  proximity  to  public  transportation.    

  One  benefit  of  disaggregate  demand  models  is  that  they  investigate  people’s  

individual  choices.  They  use  the  true  values  of  variables  that  each  individual  is  faced  with,  

rather  than  average  values,  which  can  often  hide  varying  information  (Small  &  Winston,  

1999,  p.  15).  These  models  assume  that  an  individual’s  utility  is  made  up  of  two  parts.  The  

first  part  is  systematic;  it  can  be  predicted  based  on  existing  features  of  the  respondent  and  

of  the  transit  mode  itself.  In  my  model,  I  look  at  user  characteristics  such  as  gender,  year  in  

school,  and  number  of  rides  taken  in  the  past,  as  well  as  choice  characteristics  including  

length  of  time  of  each  mode  and  cost  of  each  mode.  The  second  part  is  a  random  utility  

component  that  cannot  be  predicted;  it  represents  an  individual’s  distinctive  inclination  

toward  a  mode.  Thus,  two  individuals  with  identical  personal  characteristics  could  have  

distinctive  preferences  toward  different  modes  of  transit.  In  the  case  of  Uber  vs.  the  CTA,  

there  are  many  factors  to  individual  decision  making  that  are  not  accounted  for  in  the  

   

15  

model,  thus,  it  is  important  to  keep  the  random  utility  component  in  mind.  With  this,  we  do  

not  know  anything  about  the  distribution  of  the  values  of  the  random  utility  element,  so  we  

cannot  predict  precisely  whether  an  individual  will  choose  Uber  or  the  CTA  (Savage,  2014,  

p.  34-­‐35).  

  To  further  explain  the  second  component,  the  common  starting  point  for  most  

disaggregate  models  is  a  utility  function  with  a  random  element.  The  chosen  mode  is  likely  

the  one  that  maximizes  individual  i’s  utility,  which  can  be  displayed  as:  

If  selecting  Uber:      𝑈!" = 𝑉 𝑋! , 𝑆!;  𝛽 +  𝜀!"  

If  selecting  CTA:      𝑈!" = 𝑉 𝑋! , 𝑆!;  𝛽 +  𝜀!"  

Here,  𝑋!  and  𝑋!  denote  the  characteristics  of  Uber  and  the  CTA,  respectively.  𝑆!  represents  

the  characteristics  of  the  individual  I;  𝛽  signifies  unknown  parameters;  𝜀!"  and  𝜀!"  are  the  

random  utility  components  representing  differing  influences  on  the  individual,  including  

idiosyncratic  preferences.  Finally,  𝑉  represents  the  systematic  utility  that  applies  to  all  

individuals.    

Thus,  an  individual  will  choose  Uber  if:  

  𝑈!" = 𝑉 𝑋! , 𝑆!;  𝛽 +  𝜀!"  >  𝑈!" = 𝑉 𝑋! , 𝑆!;  𝛽 +  𝜀!" ,  or  if      

    𝑉 𝑋! , 𝑆!;  𝛽 − 𝑉 𝑋! , 𝑆!;  𝛽  >   𝜀!" −  𝜀!"  

They  will  choose  the  CTA  if:  

  𝑈!" = 𝑉 𝑋! , 𝑆!;  𝛽 +  𝜀!" > 𝑈!" = 𝑉 𝑋! , 𝑆!;  𝛽 +  𝜀!" ,  or  if  

    𝑉 𝑋! , 𝑆!;  𝛽 − 𝑉 𝑋! , 𝑆!;  𝛽  >   𝜀!" −  𝜀!"  

Since  the  utility  is  partly  random,  we  can  predict  choices  solely  as  probabilities  of  

the  above  functions.  For  example,  the  probability  that  individual  i  will  take  Uber  is:  

PiU  =  Prob  [𝑉 𝑋! , 𝑆!;  𝛽 − 𝑉 𝑋! , 𝑆!;  𝛽  >   𝜀!" −  𝜀!"]  

   

16  

The  probability  that  individual  i  will  take  the  CTA  is:  

PiC  =  Prob  [𝑉 𝑋! , 𝑆!;  𝛽 − 𝑉 𝑋! , 𝑆!;  𝛽  >   𝜀!" −  𝜀!"]  

Material  from  previous  paragraphs  derived  from  (Savage,  2014,  p.  34-­‐35)  and  from  (Small  

&  Winston,  1999,  p.  15-­‐16)  

A  variety  of  frameworks  can  be  used  to  show  this  model,  however,  I  will  be  using  the  

multinomial  logit  model  (MNL),  which  is  the  simplest  and  most  popular  model  for  discrete  

choice  (Ortúzar  and  Willumsen,  2011,  p.  232).  This  model  has  choice  probabilities  in  the  

following  form:  [Share  of  the  i-­‐th  alternative]  =  exp[mean  utility  of  i-­‐th  alternative]  /  

{exp[mean  utility  of  the  first  alternative]  +  …  +  exp[mean  utility  of  the  last  alternative]}.  

Because  the  structure  of  the  mean  utility  function  in  MNL  is  based  on  individual  behavior,  

the  form  will  be  similar  regardless  of  the  aspect  of  transportation  being  studied,  such  as  

distribution  or  mode  split.  Moreover,  for  homogeneous  market  segments—here,  the  

Northwestern  undergraduate  population—the  utilization  of  the  model  is  carried  out  at  the  

disaggregate  level,  rather  than  the  aggregate  level  (McFadden,  1978,  p.  5-­‐7).  Furthermore,  

for  my  purposes,  the  demand  curve  will  be  vertical,  as  participants  are  only  offered  the  

choice  between  Uber  and  the  CTA.  Abstaining  from  traveling  is  not  an  option,  so  it  is  

assumed  that  the  trip  is  taking  place.    

McFadden’s  study  on  the  BART  is  still  similar  to  my  study  in  terms  of  the  use  of  

discrete  mode  choice  theory.  In  San  Francisco,  the  BART  served  as  a  new  mode  of  

transportation,  similar  to  Uber,  that  put  itself  in  a  part  of  the  travel  spectrum  that  was  

previously  empty.  Just  as  Uber  has  gained  passengers  who  previously  utilized  taxis,  drove  

their  own  cars,  or  used  public  transportation,  the  BART  took  passengers  from  various  

transit  methods.  In  his  study,  McFadden  surveyed  771  commuters  in  the  Bay  Area  before  

   

17  

the  BART  was  open,  asking  about  their  current  transit  mode,  cost,  and  time,  as  well  as  

characteristics  about  each  commuter.  He  then  constructed  a  binary  logit  model  to  forecast  

individual  mode  choice  between  the  alternatives  that  would  exist  once  the  BART  was  

finished.  After  the  BART  was  opened,  he  contacted  each  study  participant  to  observe  their  

mode  choice  and  compared  those  results  

with  the  original  findings.  Overall,  the  

discrete  choice  models  predicted  the  

individuals’  mode  choices  fairly  accurately.  

The  predictions  are  shown  here  (Train,  

2009,  p.  71-­‐74).  Overall,  this  study  mirrors  the  analysis  shown  here;  it  is  unique,  however,  

as  no  discrete  choice  models  have  been  previously  constructed  involving  Uber  as  a  transit  

mode.    

   

18  

Survey    

In  thinking  about  this  thesis  and  my  data  set,  I  knew  that  in  order  to  assess  the  true  

stated  preferences  of  individuals,  I  would  need  to  gather  the  data  via  a  survey.  Thus,  I  chose  

to  focus  on  Northwestern  undergraduates  as  an  easily  accessible  population  who  I  knew  

would  be  largely  familiar  with  both  methods  of  transportation.  

After  following  the  Northwestern  Institutional  Review  Board  approval  process  to  

format  the  questions  and  language  of  my  survey,  I  received  a  certificate  of  exemption  

(certificate  attached  on  page  1  of  thesis).  I  was  then  able  to  distribute  my  survey.  In  April,  

my  survey  was  dispersed  among  various  Northwestern  listservs  and  Facebook  groups.  In  

total,  I  received  572  responses.  Participants  were  asked  for  background  information,  

including  gender,  year  in  school,  average  monthly  spending  on  transportation  (excluding  

car  ownership  and  operations  costs),  and  the  number  of  trips  taken  using  Uber  and/or  the  

CTA  since  the  beginning  of  the  school  year  (September  2014).  Average  monthly  spending  

on  transportation  was  capped  at  $200  per  month,  and  the  number  of  trips  taken  using  Uber  

and/or  the  CTA  was  capped  at  50  per  transit  method  since  September  2014.    

Participants  were  also  asked  whether  they  had  taken  Uber  or  the  CTA  previously.  If  

they  responded  “no”  to  either  of  these  two  questions,  the  survey  automatically  concluded,  

preventing  those  participants  from  reaching  the  travel  situation  questions  (pictured  

below).  This  decision  was  made  based  on  the  difficulty  of  assessing  an  individual’s  

likelihood  of  choosing  an  unfamiliar  method  of  transit.  Thus,  to  eliminate  bias,  these  

responses  were  removed  from  the  survey;  individuals  who  did  not  identify  as  

undergraduates  were  also  eliminated.  Finally,  I  removed  responses  from  individuals  who  

had  not  completed  the  user  characteristic  or  experience  questions,  providing  me  with  little  

   

19  

information  about  their  choices.  After  this  removal  process,  I  was  left  with  488  unique  

responses  in  my  sample.  

The  crux  of  the  survey  included  three  unique  travel  situation  questions,  each  with  

two  different  scenarios  (pictured  below).  Each  of  the  three  questions  asked  the  survey  

participant  to  choose  between  a  journey  using  Uber  or  the  CTA.  The  trips  included  journeys  

from  Evanston  to  the  Loop,  Lincoln  Park  to  the  South  Loop,  and  the  West  Loop  to  the  East  

Loop.  The  times  and  costs  presented  took  on  real  world  values  to  make  the  model  as  

accurate  as  possible.  These  specific  scenarios  were  selected  for  their  variability  in  time  and  

cost.  Moreover,  not  traveling  was  not  an  option  in  my  survey.  Each  initial  question  

presented  a  choice  scenario  between  Uber  and  the  CTA  using  one  of  the  three  journeys  

above.  In  the  initial  question,  the  price  of  Uber  did  not  have  a  surge.  Each  follow-­‐up  

question  varied  the  price  of  the  Uber  journey,  with  the  possible  surges  of  1.5,  1.75,  and  2  

times  the  original  price.  The  price  of  the  CTA  journey  did  not  vary  between  scenarios  or  

situations  since  the  price  of  the  CTA  does  not  vary  in  the  real  world;  it  remained  $2.25  for  

each  situation  I  presented.  The  length  of  each  journey  also  remained  the  same  for  each  

initial  and  follow  up  question.    

All  participants  received  the  same  initial  travel  situation,  but  received  only  one  of  

the  three  follow-­‐up  surge  questions  (1.5,  1.75,  or  2  times  the  original  price).  Thus,  about  

one  third  of  my  respondents  received  each  unique  surge  scenario.  This  allowed  me  to  vary  

the  responses  from  my  sample.  Through  these  travel  situation  questions,  I  assigned  a  

binary  value  to  the  individual’s  choice,  allowing  me  to  create  a  disaggregate  demand  model  

for  the  choice  of  Uber  vs.  the  CTA.  For  the  purposes  of  my  study,  I  assigned  each  response  

   

20  

the  binary  values  of  1  (Uber)  or  2  (CTA),  with  the  value  of  0  assigned  to  unanswered  

options  that  I  then  excluded  from  the  model.  

Shown  here  are  the  three  unique  situations  and  one  of  three  possible  follow  up  

questions  for  each  situation:  

Situation  1:  Evanston  to  the  Loop  

 

 

   

21  

Situation  2:  Lincoln  Park  to  the  South  Loop  

 

 

 

 

 

 

   

22  

Situation  3:  The  West  Loop  to  the  East  Loop  

 

 

   

   

23  

Data  

In  order  to  prepare  the  data,  I  first  downloaded  it  from  the  Qualtrics  survey  

software  and  imported  it  into  Excel.  Once  imported,  I  assigned  each  survey  participant  a  

unique  identifier  and  cleaned  the  data  of  questions  that  did  not  pertain  to  my  model,  such  

as  the  respondents’  email  addresses.  In  the  initial  import,  the  data  was  sorted  so  that  each  

row  header  contained  the  exact  question  participants  had  been  asked.  I  coded  each  column  

with  a  variable  name  that  would  later  be  used  in  the  model.  I  filled  all  gaps  in  the  data  with  

zeroes,  so  as  not  to  cause  an  error  in  the  model.    

Finally,  I  cut  the  data  and  imported  the  time  and  cost  information  for  each  situation.  

Initially,  the  data  did  not  include  the  time  and  cost  information  that  participants  had  been  

asked.  Each  column  was  sorted  with  the  situational  question  participants  had  seen  and  

populated  with  a  1  (Uber),  2  (CTA),  or  0  (indicating  they  had  not  received  that  question),  

showing  their  selection.  I  then  cut  the  data  so  that  each  unique  individual  had  twelve  rows  

attributed  to  him  or  her.  This  is  equivalent  to  the  number  of  possible  discrete  choice  

situational  questions  that  the  survey  contained—three  unique  questions,  each  with  one  

base  case  and  three  separate  surge  follow  up  questions,  or  twelve  total  questions.  Each  

participant  received  and  responded  to  six  total  questions.  The  user  characteristic  and  user  

experience  questions  that  did  not  vary  were  pasted  identically  into  each  of  the  twelve  rows.    

I  then  created  Cost_Uber,  Time_Uber,  Cost_CTA,  and  Time_CTA  variables  indicating  

the  cost  and  time  of  each  respective  mode  for  a  given  situation.  From  this,  a  CHOICE  

variable  for  each  participant  was  formed.  This  is  the  most  important  variable  in  the  model;  

it  indicates  which  choice  participants  had  made  with  the  given  cost  and  time  options  

presented  to  them  and  allows  the  model  to  read  in  each  row  of  data  as  corresponding  to  

   

24  

one  of  the  two  unique  choices.  The  CHOICE  variable  takes  on  the  values  of  1,  2,  or  0,  based  

on  the  individual’s  selection.  Additionally,  the  model  is  coded  to  ignore  each  line  of  data  

where  CHOICE  =  0.  Using  the  base  set  of  data,  I  was  able  to  create  new  variables.  With  the  

data  formatted  properly,  I  was  continually  able  to  sort  it  to  spot  check  any  results  I  was  

finding  when  modeling  to  determine  whether  or  not  they  appeared  to  be  accurate.  I  also  

created  data  tables  to  cut  the  data  into  smaller,  sorted  groups  and  analyze  the  appropriate  

size  of  groups  within  subsets  of  my  sample.  

 

   

   

25  

Description  of  Variables  

  Through  adjusting  my  model  and  creating  new  variables,  I  worked  with  a  wide  

range  of  variables.  Each  participant  was  assigned  a  unique  identifier,  in  the  form  of  the  

numbers  1  to  488.  The  variable  Year  was  coded  so  that  1  represents  that  the  participant  

was  a  freshman,  2  a  sophomore,  3  a  junior,  and  4  a  senior.  For  Gender,  1  signifies  males  and  

0  signifies  females.  From  this,  I  created  the  new  variables  Female  and  Male  for  simplicity.    

Cost_Uber  and  Cost_CTA  are  the  costs  of  Uber  and  the  CTA  (in  dollars),  respectively,  

for  a  given  situation.  Time_Uber  and  Time_CTA  are  the  lengths  of  time  of  a  ride  using  Uber  

or  the  CTA,  respectively,  for  a  given  situation  (in  minutes).  Trips_Taken_Uber  and  

Trips_Taken_CTA  take  on  a  whole  number  value  from  0  to  50  trips,  at  the  participant’s  

discretion.  This  indicates  the  number  of  trips  the  individual  has  taken  on  Uber  and/or  the  

CTA  since  September  2014.  Money_Spent  represents  the  average  monthly  transportation  

expenditure  in  dollars,  excluding  car  ownership  and  operations  costs.  This  variable  took  on  

a  whole  number  value  from  $0  to  $200.  Both  the  money  spent  per  month  and  number  of  

trips  were  capped  by  the  survey  question  mechanism.  In  order  to  determine  an  

appropriate  cap,  as  well  as  poll  my  survey  audience  for  any  clarity  issues  in  the  survey,  I  

conducted  several  tests  of  my  survey  and  asked  the  participants  for  their  thoughts  on  an  

appropriate  cap  for  these  two  questions.  Overall,  12  participants  selected  a  value  of  “50”  

for  Trips_Taken_Uber,  28  participants  selected  a  value  of  “50”  for  Trips_Taken_CTA,  and  four  

participants  selected  a  value  of  “$200”  for  Money_Spent.  Out  of  the  488  total  individuals  

included  in  analysis,  the  individuals  who  selected  the  maximum  value  for  these  questions  

represent  a  very  small  percentage  of  the  total.  Increasing  the  maximum  values  for  each  

question  could  have  led  to  survey  bias,  and  the  cap  was  rarely  binding  in  my  survey.  

   

26  

From  this  data,  I  created  the  variable  CHOICE,  which  takes  on  a  value  of  1  if  the  

individual  selected  Uber  for  a  given  situation,  2  if  they  selected  the  CTA,  and  0  if  they  did  

not  receive  or  answer  the  question.  When  modeling  the  data,  I  excluded  the  lines  of  data  

where  CHOICE  was  equal  to  0.  Trip_Ratio_Uber  is  equal  to  the  ratio  of  Uber  trips  to  the  sum  

of  Uber  and  CTA  trips,  or  total  trips.  Trip_Ratio_CTA  is  equal  to  the  ratio  of  CTA  trips  to  total  

trips.  Cost_Diff  represents  the  difference  in  cost  between  Uber  and  CTA  trips,  for  each  

individual  situation,  expressed  in  dollars.  In  my  models,  I  subtracted  CTA  cost  from  Uber  

cost,  so  all  values  within  the  Cost_Diff  variable  are  positive.  Time_Diff  represents  the  

difference  in  length  between  Uber  and  CTA  trips,  for  each  individual  situation,  expressed  in  

minutes.  In  my  models,  I  subtracted  CTA  time  from  Uber  time,  so  all  values  within  the  

Time_Diff  variable  are  negative.  

 

   

   

27  

Summary  Statistics  

Among  the  488  individual  participants  used  in  models,  the  makeup  is  18%  

freshmen,  25%  sophomores,  20%  juniors,  and  37%  seniors.  Within  the  gender  variable,  

there  are  36%  males  and  64%  females.  The  market  share  of  Uber  is  39.1%,  while  the  

market  share  of  the  CTA  is  60.9%,  which  can  be  seen  by  the  mean  of  the  CHOICE  variable,  

calculated  excluding  CHOICE  =  0.  The  average  and  standard  deviation  for  Cost_Diff  and  

Time_Diff  were  calculated  by  dividing  the  sample  into  CHOICE  =  1  (Uber)  and  CHOICE  =  2  

(CTA)  and  then  finding  the  desired  value  using  the  sign  that  is  appropriate  to  each  

situation.  For  Uber,  the  values  were  calculated  by  subtracting  CTA  cost  and  time  from  Uber  

cost  and  time.  For  the  CTA,  the  opposite  calculation  occurred.  

Variable   Mean  Standard  Deviation   Min   Max  

Year   2.75   1.13   1   4  Gender  (Male  =  1)   0.36   0.48   0   1  Trips_Taken_Uber   13.25   11.66   1   50  Trips_Taken_CTA   14.78   13.26   1   50  Money_Spent   37.35   33.30   0   200  Cost_Uber  (Given  CHOICE  =  1)   7.28   2.30   5   14  Time_Uber  (Given  CHOICE  =  1)   22.43   10.38   10   33  Cost_Diff  (Uber  -­‐  CTA    Given  CHOICE  =  1)   5.03   2.30   2.75   11.75  Time_Diff  (Uber  -­‐  CTA    Given  CHOICE  =  1)   -­‐24.26   11.87   -­‐37   -­‐12  Cost_CTA  (Given  CHOICE  =  2)   2.25   0   2.25   2.25  Time_CTA  (Given  CHOICE  =  2)   40.31   18.44   22   70  Cost_Diff  (CTA  -­‐  Uber    Given  CHOICE  =  2)   -­‐6.82   2.73   -­‐11.75   -­‐2.75  Time_Diff  (CTA  -­‐  Uber    Given  CHOICE  =  2)   20.13   10.06   12   37  Trip_Ratio_Uber   0.49   0.28   0   1  Trip_Ratio_CTA   0.51   0.28   0   1  CHOICE   1.61   0.49   1   2  

   

28  

Results  and  Statistical  Analyses       My  analysis  was  completed  in  a  software  called  Biogeme,  an  open  source  freeware  

designed  for  the  estimation  of  discrete  choice  models.  This  software  is  readily  available  

online.  I  used  this  software  at  the  recommendation  of  Professor  Amanda  Stathopoulos,  as  it  

is  often  used  to  model  transportation  choices.  The  model  is  a  multinomial  logit  model,  and  

it  is  used  to  predict  the  individual  utilities  of  the  choice  between  Uber  and  CTA  transit  

modes.  The  left  hand  side  of  the  model  represents  the  utility  of  each  individual  choice,  

while  the  right  hand  side  shows  the  explanatory  variables  that  go  into  the  model,  as  well  as  

the  intercept  for  each  mode.  This  includes  both  personal  characteristics  about  individual  

travelers,  as  well  as  experience  and  user  characteristic  variables.  

  For  each  model  displayed  here,  the  left  side  of  the  Uber  and  CTA  functions  

represents  the  utilities  of  each  alternative.  The  right  side  of  each  function  includes  

explanatory  variables.  Here,  Cost_Diff,  Time_Diff,  Female,  Freshman,  Sophomore,  Junior,  

Money_Spent,  Trip_Ratio_Uber,  Trips_Taken_Uber,  Time_Uber,  and  Surge  were  regressed  on  

the  CHOICE  =  1  variable,  indicating  the  participant  selected  “Uber”  in  the  situational  choice  

questions.  The  variables  Trips_Taken_CTA  and  Time_CTA  were  regressed  on  the  CHOICE  =  2  

variable,  indicating  the  participant  selected  “CTA”  in  the  situational  choice  questions.  It  is  

important  to  keep  in  mind  which  alternative  the  variables  are  being  regressed  on,  as  the  

coefficient  for  each  variable  changes  sign  accordingly.  The  models  shown  here  contain  

differing  combinations  of  these  variables,  and  each  function  is  displayed  above  the  output.  

 

 

 

   

29  

Model  1-­‐  Base  model  

𝑈𝑏𝑒𝑟 = 𝐴𝑆𝐶!"#$ ∗ 𝑜𝑛𝑒 + 𝛽!"#$%"&& ∗ 𝑇𝑖𝑚𝑒_𝐷𝑖𝑓𝑓 +  𝛽!"#$%&'' ∗ 𝐶𝑜𝑠𝑡_𝐷𝑖𝑓𝑓  

+  𝛽!"#$!!"# ∗ 𝐹𝑟𝑒𝑠ℎ𝑚𝑎𝑛 +  𝛽!"#!!"!#$ ∗ 𝑆𝑜𝑝ℎ𝑜𝑚𝑜𝑟𝑒 +  𝛽!"#$%& ∗ 𝐽𝑢𝑛𝑖𝑜𝑟  

                             +  𝛽!"#$"% ∗ 𝐹𝑒𝑚𝑎𝑙𝑒 +  𝛽!"#$%&'$#( ∗𝑀𝑜𝑛𝑒𝑦_𝑆𝑝𝑒𝑛𝑡  

                             +  𝛽!"#$_!"#$%_!"#$ ∗ 𝑇𝑟𝑖𝑝_𝑅𝑎𝑡𝑖𝑜_𝑈𝑏𝑒𝑟        

𝐶𝑇𝐴 = 𝐴𝑆𝐶!"# ∗ 𝑜𝑛𝑒  

 

  After  creating  a  variety  of  models,  this  model  served  to  be  the  best  choice  for  the  

data,  including  choice  variables,  user  characteristics,  and  experience  variables.  Displayed  

first  in  the  output  are  the  coefficients  ASC_UBER  and  ASC_CTA.  They  serve  as  intercepts  in  

the  model;  one  is  always  held  constant.  The  abbreviation  ASC  represents  the  term  

“Alternative  Specific  Constant.”  In  the  model,  they  appear  as  “ASC_UBER  *  one”  and  

“ASC_CTA  *  one”  to  indicate  that  they  are  not  multiplied  by  a  variable.  With  ASC_CTA  held  

constant,  the  intercept  for  Uber  takes  on  a  negative  value.  This  intercept  represents  all  

unobserved  effects  that  are  unaccounted  for  in  the  model.  Here,  the  unobserved  effects  are  

inclined  toward  Uber.  When  Uber  is  held  constant,  the  CTA  intercept  simply  takes  on  the  

opposite  of  the  Uber  intercept.    

   

30  

The  two  essential  choice  variables  corresponding  to  the  decisions  participants  made  

are  Cost_Diff  and  Time_Diff,  shown  here  with  the  coefficients  of  BETA_COSTDIFF  and  

BETA_TIMEDIFF,  respectively.  As  I  explained  previously,  to  calculate  these  differences,  CTA  

cost  was  subtracted  from  Uber  cost,  and  CTA  time  from  Uber  time,  respectively.  The  

rationale  for  calculating  the  difference  is  that  in  this  model,  since  participants  were  asked  

to  choose  one  of  two  modes  of  transportation  when  not  traveling  was  not  an  option,  it  was  

necessary  to  look  at  the  gap  between  these  two  values,  rather  than  the  true  values  for  each  

mode.  For  those  travelers  who  have  an  extremely  high  value  of  time,  they  may  be  inclined  

to  choose  Uber,  regardless  of  the  surge  cost.  For  those  who  have  an  extremely  low  value  of  

time,  they  may  select  CTA  regardless  of  the  shorter  time  duration  of  an  Uber  ride.  However,  

for  those  travelers  who  have  a  value  of  time  in  between  these  extremes,  looking  at  their  

choices  as  the  time  and  cost  gaps  widen  becomes  essential  to  determining  the  overall  value  

of  time  spent  traveling.  

In  regards  to  BETA_COSTDIFF,  when  regressed  on  the  utility  of  Uber,  the  coefficient  

takes  on  a  significant  value  of  -­‐0.370.  This  affirms  my  hypothesis;  as  the  cost  of  an  Uber  

ride  rises  (often  due  to  surge),  the  individual  traveler  is  less  likely  to  choose  that  method  of  

transportation,  and  instead  switch  to  the  CTA.  BETA_TIMEDIFF  is  very  significant  as  well,  

and  it  takes  on  a  value  of  -­‐0.0556.  This  variable  is  a  bit  more  complex.  While  Cost_Diff  takes  

on  positive  values,  Time_Diff  takes  on  negative  values.  As  the  length  of  an  Uber  ride  

increases,  the  gap  between  the  two  values  shrinks,  assuming  CTA  ride  length  has  not  

changed.  For  example,  if  the  initial  values  for  time  are  30  minutes  for  Uber  and  70  minutes  

for  CTA,  the  difference  between  the  two  is  40  minutes,  or  for  our  purposes,  -­‐40.  If  the  Uber  

time  increases  to  40  minutes,  the  difference  between  the  two  is  now  30  minutes,  or  -­‐30.  

   

31  

Thus,  as  the  length  of  time  in  an  Uber  ride  increases,  the  difference  between  the  two  

shrinks,  and  Cost_Diff  moves  toward  0.  At  the  same  time,  the  likelihood  of  choosing  Uber  

decreases,  as  corroborated  by  the  coefficient  of  -­‐0.0556.  Thus,  both  variables  indicate  an  

inclination  toward  the  CTA,  which  holds  true  in  the  data.    

Although  the  cost  and  time  variables  are  essential  to  this  model,  the  user  

characteristics  serve  to  be  important  as  well.  While  the  Female  variable  does  have  a  

positive  inclination  toward  Uber,  it  does  not  prove  to  be  significant  in  this  model,  indicating  

that  gender  is  not  significant  in  determining  whether  an  individual  will  select  Uber  or  the  

CTA.  This  is  an  important  finding.  My  initial  hypothesis  was  that  females  would  be  highly  

likely  to  choose  Uber  over  the  CTA;  the  CTA  is  often  seen  as  unsafe,  and  Uber  ensures  a  safe  

journey  from  door  to  door.  However,  although  there  is  an  inclination  toward  Uber  for  

women,  it  is  not  significant  in  this  model.  A  similar  trend  occurred  with  Year.  Initially,  I  

hypothesized  that  as  year  in  school  increased,  individuals  would  be  more  likely  to  take  

Uber.  From  personal  experience,  as  year  in  school  increases,  students  often  spend  more  

time  traveling  to  and  from  Chicago.  Because  of  this  trend,  I  hypothesized  that  they  are  also  

more  likely  to  take  Uber  as  they  become  more  aware  of  it  and  have  more  traveling  

experiences  to  compare.  However,  this  trend  was  not  true  in  the  model.  In  the  model  above,  

Senior  is  held  constant.  The  variable  Senior  was  never  significant  in  any  model,  even  with  

Freshman  held  constant  instead.  Freshman  and  Sophomore  do  not  prove  to  be  significant.  

Both  indicate  a  positive  inclination  toward  Uber.  However,  Junior  is  very  significant,  and  

has  a  coefficient  of  0.340,  indicating  a  preference  toward  Uber.  This  is  likely  just  a  trend  in  

the  data,  rather  than  an  overall  trend,  as  there  was  no  pattern  among  the  four  years,  and  

only  one  of  the  four  is  significant.  

   

32  

Trip  experience  variables  remain.  Here,  I  measured  Money_Spent  and  

Trip_Ratio_Uber.  In  this  model,  Trips_CTA  and  Trips_Uber  are  held  constant  because  they  

are  likely  substitutes  for  Money_Spent;  as  the  number  of  trips  on  either  method  of  

transportation  increases,  the  money  spent  on  transportation  increases  as  well.  

Trip_Ratio_CTA  is  also  held  constant,  as  it  could  not  be  identified  simultaneously  with  

Trip_Ratio_Uber.  Thus,  both  Money_Spent  and  Trip_Ratio_Uber  are  highly  significant  and  

have  a  positive  correlation  with  the  utility  of  Uber.  As  the  money  individuals  spend  on  

transportation  increases,  they  are  more  likely  to  choose  Uber.  The  same  is  true  for  

Trip_Ratio_Uber;  if  individuals  have  taken  many  more  Uber  trips  than  CTA  trips  in  the  past,  

they  are  likely  to  repeat  this  behavior,  and  vice  versa.  

 

 

 

 

 

 

 

 

 

 

 

 

 

   

33  

Model  2-­‐  Base  model  with  trip  counts    

𝑈𝑏𝑒𝑟 = 𝐴𝑆𝐶!"#$ ∗ 𝑜𝑛𝑒 + 𝛽!"#$%"&& ∗ 𝑇𝑖𝑚𝑒_𝐷𝑖𝑓𝑓 +  𝛽!"#$%&'' ∗ 𝐶𝑜𝑠𝑡_𝐷𝑖𝑓𝑓  

+  𝛽!"#$!!"# ∗ 𝐹𝑟𝑒𝑠ℎ𝑚𝑎𝑛 +  𝛽!"#!!"!#$ ∗ 𝑆𝑜𝑝ℎ𝑜𝑚𝑜𝑟𝑒 +  𝛽!"#$%& ∗ 𝐽𝑢𝑛𝑖𝑜𝑟  

                             +  𝛽!"#$!" ∗ 𝐹𝑒𝑚𝑎𝑙𝑒 +  𝛽!"#$%_!"#$ ∗ 𝑇𝑟𝑖𝑝𝑠_𝑇𝑎𝑘𝑒𝑛_𝑈𝑏𝑒𝑟    

𝐶𝑇𝐴 = 𝐴𝑆𝐶!"# ∗ 𝑜𝑛𝑒 +  𝛽!"#$%_!"# ∗ 𝑇𝑟𝑖𝑝𝑠_𝑇𝑎𝑘𝑒𝑛_𝐶𝑇𝐴    

 

  The  next  model  is  very  similar  to  the  first,  yet  instead  of  holding  Trips_CTA  and  

Trips_Uber  constant,  Money_Spent  and  Trip_Ratio_Uber  are  held  constant.  With  this  change,  

Cost_Diff  and  Time_Diff  maintain  similar  values  to  the  previous  model.  However,  there  are  

several  changes  from  Model  1A  to  Model  1B.  First,  the  intercept  ASC_UBER  shifts  from  

negative  to  positive.  This  indicates  that  there  are  some  unexplained  effects  in  the  model  

that  tend  toward  choosing  Uber,  although  it  is  not  significant  with  95%  confidence.  

Although  Female  and  Sophomore  both  changed  from  positive  coefficients  to  negative,  

neither  is  significant.  In  fact,  Junior,  the  only  user  characteristic  variable  that  was  

significant  in  our  previous  model,  is  now  insignificant.  Finally,  both  Trips_CTA  and  

Trips_Uber  are  significant,  and  there  is  a  larger  positive  coefficient  for  Trips_Uber  than  for  

Trips_CTA.  This  indicates  that  as  the  number  of  trips  taken  using  Uber  increases,  the  effect  

   

34  

is  stronger  on  utility  than  if  the  number  of  trips  taken  using  the  CTA  increases.  Overall,  this  

model  has  a  much  smaller  log-­‐likelihood  than  that  of  Model  1A,  so  Model  1A  will  continue  

to  be  used  in  subsequent  analyses.  

 

 

 

 

 

 

 

 

                 

   

35  

Model  3-­‐  Base  model  with  time  separated  by  mode 𝑈𝑏𝑒𝑟 = 𝐴𝑆𝐶!"#$ ∗ 𝑜𝑛𝑒 + 𝛽!"#$_!"#$ ∗ 𝑇𝑖𝑚𝑒_𝑈𝑏𝑒𝑟 +  𝛽!"#$%&'' ∗ 𝐶𝑜𝑠𝑡_𝐷𝑖𝑓𝑓  

+  𝛽!"#$!!"# ∗ 𝐹𝑟𝑒𝑠ℎ𝑚𝑎𝑛 +  𝛽!"#!!"!#$ ∗ 𝑆𝑜𝑝ℎ𝑜𝑚𝑜𝑟𝑒 +  𝛽!"#$%& ∗ 𝐽𝑢𝑛𝑖𝑜𝑟  

                             +  𝛽!"#$"% ∗ 𝐹𝑒𝑚𝑎𝑙𝑒 +  𝛽!"#$%&'$#( ∗𝑀𝑜𝑛𝑒𝑦_𝑆𝑝𝑒𝑛𝑡  

                             +  𝛽!"#$_!"#$%_!"#$ ∗ 𝑇𝑟𝑖𝑝_𝑅𝑎𝑡𝑖𝑜_𝑈𝑏𝑒𝑟        

𝐶𝑇𝐴 = 𝐴𝑆𝐶!"# ∗ 𝑜𝑛𝑒 +  𝛽!"#$_!"# ∗ 𝑇𝑖𝑚𝑒_𝐶𝑇𝐴    

      From  here,  the  time  variables  were  separated  from  the  base  model.  The  model  could  

not  be  specified  with  the  Cost_CTA  variable,  as  it  did  not  vary  in  the  model,  so  the  cost  

difference  between  the  two  modes  is  modeled  instead.  The  coefficients  of  both  time  

variables  are  negative.  This  satisfied  my  hypothesis;  as  the  length  of  a  ride  on  each  mode  

increases,  users  are  less  likely  to  take  that  mode.  Further,  both  time  variables  are  highly  

significant.  One  curious  revelation  from  this  model  is  that  the  coefficient  of  Time_Uber  is  

1.68  times  that  of  Time_CTA.  This  can  have  several  explanations.  First,  because  an  

additional  ten  minutes  in  an  Uber  can  mean  an  additional  $5,  users  are  reluctant  to  choose  

Uber.  With  the  CTA,  however,  the  cost  does  not  change  as  time  changes.  This  decision  

works  the  opposite  way  as  well;  if  a  rider  were  to  save  ten  minutes  on  an  Uber  ride,  it  

   

36  

would  likely  be  more  beneficial  to  their  utility  than  saving  ten  minutes  on  a  CTA  ride,  which  

are  usually  longer  rides.  This  time  saving  would  save  money  on  Uber,  but  not  the  CTA.  

Thus,  time  spent  in  Uber  vs.  the  CTA  affects  riders’  utility  to  different  extents.  

 

Another  interesting  result  of  this  model  can  be  shown  within  the  correlation  of  coefficients.  

When  performing  a  test  with  the  null  hypothesis  that  BETA_TIME_CTA  and  

BETA_TIME_UBER  are  equal,  this  hypothesis  is  rejected  in  favor  of  the  alternative.  This  is  

shown  by  the  p-­‐value  of  0  when  the  hypothesis  test  is  performed.  Thus,  BETA_TIME_CTA  

and  BETA_TIME_UBER  are  significantly  different.  

 

   

   

37  

Model  4-­‐  Base  model  with  surge  effect  

𝑈𝑏𝑒𝑟 = 𝐴𝑆𝐶!"#$ ∗ 𝑜𝑛𝑒 + 𝛽!"#$%"&& ∗ 𝑇𝑖𝑚𝑒_𝐷𝑖𝑓𝑓 +  𝛽!"#$%&'' ∗ 𝐶𝑜𝑠𝑡_𝐷𝑖𝑓𝑓  

+  𝛽!"#$!!"# ∗ 𝐹𝑟𝑒𝑠ℎ𝑚𝑎𝑛 +  𝛽!"#!!"!#$ ∗ 𝑆𝑜𝑝ℎ𝑜𝑚𝑜𝑟𝑒 +  𝛽!"#$%& ∗ 𝐽𝑢𝑛𝑖𝑜𝑟  

                             +  𝛽!"#$!" ∗ 𝐹𝑒𝑚𝑎𝑙𝑒 +  𝛽!"#$%&'$#( ∗𝑀𝑜𝑛𝑒𝑦_𝑆𝑝𝑒𝑛𝑡  

                             +  𝛽!"#$_!"#$%_!"#$ ∗ 𝑇𝑟𝑖𝑝_𝑅𝑎𝑡𝑖𝑜_𝑈𝑏𝑒𝑟 +  𝛽!"#$% ∗ 𝑆𝑢𝑟𝑔𝑒        

𝐶𝑇𝐴 = 𝐴𝑆𝐶!"# ∗ 𝑜𝑛𝑒  

 

  Here,  we  determine  the  effect  of  a  surge  Uber  price  on  the  model.  Surge  is  a  dummy  

variable  that  represents  surge;  the  dummy  equals  1  if  a  surge  is  present  for  a  given  

situation  and  0  if  it  is  not.  Overall,  the  surge  dummy  is  insignificant,  and  with  it  in  the  

model,  the  effect  of  Cost_Diff  increases.  Because  the  dummy  is  insignificant,  it  is  evident  that  

individuals  are  reacting  to  real  price  differences,  or  the  price  increase  that  comes  with  a  

surge,  rather  than  the  concept  of  a  surge  itself.  This  indicates  that  Uber’s  surge  pricing  is  

not  off-­‐putting  because  of  the  concept;  it  is  off-­‐putting  simply  because  of  the  value  of  the  

price  increase.  Individuals  will  continue  to  choose  Uber  until  the  surge  price  reaches  a  

personal  cutoff  level  for  transportation.    

   

   

38  

Model  5A-­‐  Base  model  with  inexperienced  riders  

𝑈𝑏𝑒𝑟 = 𝐴𝑆𝐶!"#$ ∗ 𝑜𝑛𝑒 + 𝛽!"#$%"&& ∗ 𝑇𝑖𝑚𝑒_𝐷𝑖𝑓𝑓 +  𝛽!"#$%&'' ∗ 𝐶𝑜𝑠𝑡_𝐷𝑖𝑓𝑓  

+  𝛽!"#$!!"# ∗ 𝐹𝑟𝑒𝑠ℎ𝑚𝑎𝑛 +  𝛽!"#!!"!#$ ∗ 𝑆𝑜𝑝ℎ𝑜𝑚𝑜𝑟𝑒 +  𝛽!"#$%& ∗ 𝐽𝑢𝑛𝑖𝑜𝑟  

                             +  𝛽!"#$!" ∗ 𝐹𝑒𝑚𝑎𝑙𝑒 +  𝛽!"#$%&'$#( ∗𝑀𝑜𝑛𝑒𝑦_𝑆𝑝𝑒𝑛𝑡  

                             +  𝛽!"#$_!"#$%_!"#$ ∗ 𝑇𝑟𝑖𝑝_𝑅𝑎𝑡𝑖𝑜_𝑈𝑏𝑒𝑟        

𝐶𝑇𝐴 = 𝐴𝑆𝐶!"# ∗ 𝑜𝑛𝑒  

 

  In  parts  A  and  B  of  Model  5,  the  data  is  segmented  into  two  groups:  inexperienced  

riders  and  experienced  riders.  Experience  was  determined  by  number  of  trips  taken  since  

September  2014,  or  Total_Trips.  Total_Trips  ranges  from  0  to  100  trips.  The  data  was  

divided  by  the  median  of  this  variable,  23.  Inexperienced  riders  have  taken  between  0  and  

22  rides  since  the  fall,  and  experienced  riders  have  taken  between  23  and  100  rides.  Female  

becomes  more  significant  here  than  in  the  base  model,  and  continues  to  have  a  positive  

inclination  toward  Uber.  However,  Junior  loses  significance,  while  Sophomore  gains  

significance.  This  is  likely  due  to  the  number  of  cases  within  each  group;  the  Freshman  and  

Sophomore  variables  have  much  higher  counts  among  the  inexperienced  riders  than  the  

experienced  riders.  It  is  interesting  that  Sophomore  is  positively  correlated  with  the  utility  

of  Uber;  likely,  this  is  just  a  trend  due  to  the  quantity  of  inexperienced  sophomores  who  

   

39  

completed  the  survey.  Cost_Diff,  Time_Diff,  Trip_Ratio_Uber  and  Money_Spent  remain  

significant.  

   

   

40  

Model  5B-­‐  Base  model  with  experienced  riders  

𝑈𝑏𝑒𝑟 = 𝐴𝑆𝐶!"#$ ∗ 𝑜𝑛𝑒 + 𝛽!"#$%"&& ∗ 𝑇𝑖𝑚𝑒_𝐷𝑖𝑓𝑓 +  𝛽!"#$%&'' ∗ 𝐶𝑜𝑠𝑡_𝐷𝑖𝑓𝑓  

+  𝛽!"#$!!"# ∗ 𝐹𝑟𝑒𝑠ℎ𝑚𝑎𝑛 +  𝛽!"#!!"!#$ ∗ 𝑆𝑜𝑝ℎ𝑜𝑚𝑜𝑟𝑒 +  𝛽!"#$%& ∗ 𝐽𝑢𝑛𝑖𝑜𝑟  

                             +  𝛽!"#$"% ∗ 𝐹𝑒𝑚𝑎𝑙𝑒 +  𝛽!"#$%&'$#( ∗𝑀𝑜𝑛𝑒𝑦_𝑆𝑝𝑒𝑛𝑡  

                             +  𝛽!"#$_!"#$%_!"#$ ∗ 𝑇𝑟𝑖𝑝_𝑅𝑎𝑡𝑖𝑜_𝑈𝑏𝑒𝑟        

𝐶𝑇𝐴 = 𝐴𝑆𝐶!"# ∗ 𝑜𝑛𝑒  

 

  This  model  contains  experienced  riders,  or  riders  who  have  used  Uber  or  the  CTA  23  

or  more  times  since  September  2014.  This  model  more  closely  resembles  the  base  model,  

as  Freshman,  Sophomore,  and  Female  are  insignificant,  while  Junior  is  significant.  This  is  

likely  just  a  trend  within  the  sample,  rather  than  a  trend  within  the  population  as  a  whole.  

Cost_Diff,  Time_Diff,  Trip_Ratio_Uber  and  Money_Spent  remain  significant.  Overall,  the  true  

differences  between  inexperienced  and  experienced  riders  are  revealed  through  the  

calculation  of  their  values  of  time  spent  in  transit,  which  occurs  on  pages  42-­‐44  of  this  

paper.  

 

   

   

41  

Log-­‐Likelihood  Comparison  

  The  final  log-­‐likelihood  value  when  modeling  solely  the  intercepts  in  the  model,  

with  no  explanatory  variables,  is  -­‐1841.606.  With  Model  1A,  the  best  model  found  after  

many  iterations,  this  value  is  equal  to  -­‐1438.056.  Thus,  when  performing  a  log-­‐likelihood  

test,  -­‐1438.056  is  subtracted  from  -­‐1841.606  and  the  difference  is  multiplied  by  -­‐2,  giving  

us  a  value  of  807.1.  To  determine  the  degrees  of  freedom,  the  number  of  parameters  in  the  

model  with  no  explanatory  variables  (0)  is  subtracted  from  the  number  of  parameters  in  

Model  1A  (8),  to  find  8  degrees  of  freedom.  These  values  are  compared  to  a  chi-­‐square  

distribution.  In  looking  at  the  distribution,  it  is  evident  that  807.1  is  greater  than  15.507,  so  

the  test  passes  with  95%  certainty.  

 

 

 

 

 

 

 

 

   

42  

Value  of  Time  Discussion  

  One  major  takeaway  from  these  models  that  we  are  able  to  study  is  the  value  of  time  

spent  in  transit  for  individuals.  In  their  chapter  “The  Demand  for  Transportation:  Models  

and  Applications”  in  Essays  in  Transportation  Economics  and  Policy:  A  Handbook  in  Honor  of  

John  R.  Meyer,  Kenneth  Small  and  Clifford  Winston  define  value  of  travel  time  as  the  

“marginal  rate  of  substitution  between  time  and  cost,”  or  “the  ratio  of  the  time  and  cost  

coefficients  of  that  linear  relation”  (1999,  p.  18).  Here,  it  is  the  dollar  value  per  minute  that  

students  are  willing  to  pay  for  time  spent  in  transit.  To  calculate  this,  we  take  the  ratio  of  

Time_Diff  to  Cost_Diff  for  each  situation  and  determine  a  value  of  time.  

Table  detailing  subsequent  information:  

Model   Description  

VOT  per  

minute  

VOT  per  hour  

1   Base  model   $0.150   $9.00  

1  Base  model  segmented  by  males   $0.143   $8.58  

1  Base  model  segmented  by  females   $0.155   $9.30  

1  Base  model  segmented  by  freshmen   $0.150   $9.00  

1  Base  model  segmented  by  sophomores   $0.153   $9.18  

1  Base  model  segmented  by  juniors   $0.144   $8.64  

1  Base  model  segmented  by  seniors   $0.150   $9.00  

2  Base  model  with  trip  counts     $0.149   $8.94  

5A  Base  model  with  inexperienced  riders   $0.135   $8.10  

5B  Base  model  with  experienced  riders   $0.166   $9.96  

 

   

43  

Model  1-­‐  Base  model:    

VOT:  -­‐0.0556/-­‐0.370  =  $0.150  

In  these  models,  the  value  of  time  represents  a  utility  comparison  of  dollar  to  

minute,  as  the  output  of  each  model  is  the  utility  of  Uber  or  CTA.  Thus,  for  the  above  

example,  if  the  cost  difference  increases  by  $1,  the  utility  of  Uber  decreases  by  0.0556  units.  

If  the  time  difference  increases  by  1  minute,  the  utility  of  Uber  decreases  by  0.370  units.  

This  estimation  for  value  of  time  effectively  translates  minutes  into  dollars.  

Moreover,  this  value  is  an  extremely  important  finding.  First  of  all,  it  demonstrates  

that  a  Northwestern  student’s  average  value  of  time  spent  in  transit  is  $0.15  per  minute,  or  

$9.00  per  hour.  This  rate  is  close  to  the  Chicago  minimum  wage  rate,  $8.25  per  hour  

(Lobosco,  2014).  This  value  is  helpful  for  transportation  services  that  wish  to  price  their  

services  at  a  desirable  value.  

From  the  base  model,  I  made  several  variations  to  determine  the  value  of  time  

among  smaller  subsets  of  our  sample  by  partitioning  the  sample.  To  do  this,  I  ran  the  same  

model  on  the  sample  but  instructed  the  model  to  solely  include  the  desirable  data.  For  

instance,  I  ran  one  model  including  exclusively  men  and  one  including  exclusively  women.  

For  men,  the  VOT  is  $0.143  per  minute,  while  for  women  it  is  $0.155.  While  this  difference  

may  not  seem  large,  over  an  hour,  the  values  rise  to  $8.58  and  $9.30,  respectively.  This  

result  is  interesting;  it  would  seem  that  women  value  their  time  more  highly  than  men,  an  

important  finding  in  determining  how  Uber  can  better  market  to  these  groups.  One  

hypothesis  regarding  this  occurrence  is  that  women  may  feel  unsafe  when  riding  the  CTA  

alone,  so  they  are  willing  to  pay  more  for  Uber  to  gain  a  feeling  of  security.  However,  this  

finding  may  not  be  significant;  because  this  is  a  small  sample,  there  may  be  some  

   

44  

unexplained  variation  that  does  not  ring  true  for  the  population.  More  work  must  be  done  

to  determine  further  motivation  behind  this  difference.    

Furthermore,  the  value  of  time  also  varies  by  year  in  school.  When  partitioning  the  

data  by  year,  I  found  the  value  of  time  for  these  sub  groups.  For  freshmen,  the  VOT  is  

$0.150  per  minute;  for  sophomores,  it  is  $0.153  per  minute;  for  juniors,  it  is  $0.144  per  

minute;  and  for  seniors,  it  is  $0.150  per  minute.  Clearly,  there  is  no  distinct  pattern  in  this  

variation,  as  I  mentioned  in  my  model  analysis.  This  finding  indicates  that  value  of  time  has  

no  trend  by  year  in  school.  More  analysis  must  be  done  to  search  for  further  trends  in  this  

realm.  

Model  2-­‐  Base  model  with  trip  counts:    

VOT:  -­‐0.0541/-­‐0.362  =  $0.149  

The  value  of  time  in  Model  1B  is  strikingly  similar  to  that  of  Model  1A,  indicating  

that  although  some  variables  differed  slightly  between  the  models,  both  are  viable  options  

for  determining  the  value  of  time  spent  in  transit  among  individuals.    

Model  5A-­‐  Base  model  with  inexperienced  riders  

  VOT:  -­‐0.0527/-­‐0.391  =  $0.135  

  The  value  of  time  for  inexperienced  riders  is  lower  than  the  overall  value  of  time.  On  

a  per  hour  basis,  inexperienced  riders  value  time  at  $8.10  per  hour,  in  comparison  to  the  

base  value  of  $9.00  per  hour.  This  is  a  noteworthy  finding.  This  indicates  that  as  users  

become  more  familiar  with  transit  modes,  they  will  be  more  likely  to  pay  more  for  trips  and  

value  their  time  more  highly.  

Model  5B-­‐  Base  model  with  experienced  riders  

  VOT:  -­‐0.0590/-­‐0.355  =  $0.166  

   

45  

  The  value  of  time  for  experienced  riders  is  higher  than  the  overall  value  of  time,  and  

significantly  higher  than  the  value  for  inexperienced  riders.  On  a  per  hour  basis,  

experienced  riders  value  time  at  $9.96  per  hour,  which  is  much  higher  than  the  

inexperienced  value  of  $8.10  per  hour.    Uber  could  use  this  information  to  target  

experienced  riders  and  encourage  them  to  continue  traveling  with  Uber.  This  shows  that  

the  value  of  time  climbs  sharply  with  experience,  and  that  past  behavior  is  a  strong  

determinant  of  future  behavior.  

 

 

 

 

 

 

 

 

 

   

   

46  

Conclusion  and  Limitations  

  Overall,  the  analysis  presented  returned  some  very  interesting  results.  I  determined  

that  an  individual’s  time  spent  in  transit  is  $0.15  per  minute.  On  an  hourly  basis,  this  value  

of  time  is  $9.00.  The  value  jumps  to  $0.17  per  minute  among  experienced  riders,  and  also  

varies  by  gender  and  year  in  school.  This  information  sheds  some  light  on  individual  

transportation  behavior.  I  also  found  that  overall,  year  in  school  and  gender  are  not  

significant  in  determining  individual  travel  behavior,  although  the  value  of  time  varies  

among  these  groups.  Finally,  I  found  that  influential  variables  in  determining  an  

individual’s  mode  choice  are  the  ratio  of  trips  taken  in  the  past  and  average  amount  of  

money  spent  on  transit.  This  indicates  that  past  behavior  is  highly  influential  in  future  

decisions.  

  This  study  had  many  limitations.  First  of  all,  by  not  varying  CTA  time,  I  entirely  lost  

the  ability  to  assess  the  cost  variables  for  each  mode  separately.  This  decision  was  made  to  

ensure  that  the  time  and  cost  values  presented  were  accurate  to  those  seen  in  the  real  

world.  Another  limiting  decision  was  choosing  to  ask  about  money  spent  on  transit,  rather  

than  polling  participants  about  total  income.  This  choice  was  made  for  surveying  purposes,  

and  to  encourage  users  to  be  honest;  income  questions  can  incite  deceit.  However,  money  

spent  on  transit  may  not  be  an  accurate  substitute  for  total  income,  so  this  decision  could  

have  been  harmful  to  the  results.  Another  decision  that  potentially  hampered  my  results  

was  asking  very  few  demographic  questions.  This  was  made  in  order  to  encourage  

individuals  to  complete  my  survey;  lengthy  surveys  can  dishearten  those  who  wish  to  take  

them.  As  a  potential  result,  the  response  rate  was  very  large,  but  this  came  at  the  cost  of  

many  additional  survey  background  questions.  Finally,  the  last  limiting  choice  was  the  

   

47  

sample;  rather  than  attempting  to  get  data  from  individuals  across  the  Chicagoland  region,  

I  surveyed  solely  Northwestern  students.  This  was  done  for  convenience.  

  Overall,  the  study  went  very  well,  and  the  results  are  quite  strong.  Future  research  

would  involve  a  larger  sample  size  and  more  specific  user  characteristic  questions,  such  as  

those  used  in  Daniel  McFadden’s  study.  Regardless  of  the  specific  results,  this  study  shows  

the  enormous  impact  Uber  has  had  on  the  transportation  market  as  a  whole.    

   

   

48  

Works  Cited  

Ali,  R.  (2015,  April  30).  Skift  Survey:  Younger  Millennials  Use  Uber-­‐Type  Apps  More  Than  

Older  Millennials.  Skift.  Retrieved  June  8,  2015,  from  

http://skift.com/2015/04/30/skift-­‐survey-­‐younger-­‐millennials-­‐using-­‐uber-­‐type-­‐

apps-­‐more-­‐than-­‐older-­‐millennials/  

CTA  Facts  at  a  Glance.  (n.d.).  Chicago  Transit  Authority.  Retrieved  June  8,  2015,  from  

http://www.transitchicago.com/about/facts.aspx  

Dallke,  J.  (2015,  January  20).  How  Much  do  Uber  Drivers  Make  in  Chicago?  Study  Looks  at  

Uber  Pay  Across  the  Country.  Chicago  Inno.  Retrieved  June  8,  2015,  from  

http://chicagoinno.streetwise.co/2015/01/22/uber-­‐driver-­‐pay-­‐how-­‐much-­‐to-­‐

chicago-­‐uberx-­‐drivers-­‐make/  

Lawler,  R.  (2015,  January  22).  Uber  Study  Shows  Its  Drivers  Make  More  Per  Hour  And  

Work  Fewer  Hours  Than  Taxi  Drivers.  TechCrunch.  Retrieved  June  8,  2015  from  

http://techcrunch.com/2015/01/22/uber-­‐study/  

Lobosco,  K.  (2014,  December  2).  Chicago  hikes  minimum  wage  to  $13.  CNN  Money.  

Retrieved  June  8,  2015,  from  

http://money.cnn.com/2014/12/02/news/economy/chicago-­‐minimum-­‐wage-­‐

hike/  

MacMillan,  D.  (2015,  January  29).  Uber  Laws:  A  Primer  on  Ridesharing  Regulations.  Digits:  

Tech  News  and  Analysis  from  the  WSJ.  Retrieved  June  8,  2015,  from  

http://blogs.wsj.com/digits/2015/01/29/uber-­‐laws-­‐a-­‐primer-­‐on-­‐ridesharing-­‐

regulations/  

   

49  

Madhani,  A.  (2015,  May  18).  Once  a  sure  bet,  taxi  medallions  becoming  unsellable.  USA  

Today.  Retrieved  June  8,  2015,  from  

http://www.usatoday.com/story/news/2015/05/17/taxi-­‐medallion-­‐values-­‐

decline-­‐uber-­‐rideshare/27314735/  

McFadden,  D.  L.  (1987).  The  Theory  and  Practice  of  Disaggregate  Demand  Forecasting  for  

Various  Modes  of  Urban  Transportation.  In  W.  F.  Brown,  R.  B.  Dial,  D.  S.  Gendell,  &  E.  

Weiner  (Eds.),  Emerging  Transportation  Planning  Methods.  U.S.  Department  of  

Transportation:  Washington,  D.C.  

Neff,  J.  &  Pham,  L.  (2007).  A  Profile  of  Public  Transportation  Passenger  Demographics  and  

Travel  Characteristics  Reported  in  On-­‐Board  Surveys.  American  Public  

Transportation  Association.  Retrieved  June  8,  2015,  from  

http://www.apta.com/resources/statistics/Documents/transit_passenger_characte

ristics_text_5_29_2007.pdf  

Newcomer,  E.  (2015,  May  9).  Uber  Said  to  Seek  $1.5  Billion  in  Funds  at  $50  Billion  

Valuation.  Bloomberg.  Retrieved  June  8,  2015,  from  

http://www.bloomberg.com/news/articles/2015-­‐05-­‐09/uber-­‐said-­‐to-­‐seek-­‐1-­‐5-­‐

billion-­‐in-­‐funds-­‐at-­‐50-­‐billion-­‐valuation  

Ortúzar,  J.  &  Willumsen,  L.  G.  (2011).  Modelling  Transport  (4th  Edition).  John  Wiley  &  Sons,  

Ltd:  Chichester.  

Rao,  L.  (2010,  July  5).  UberCab  Takes  The  Hassle  Out  Of  Booking  A  Car  Service.  TechCrunch.  

Retrieved  June  8,  2015,  from  http://techcrunch.com/2010/07/05/ubercab-­‐takes-­‐

the-­‐hassle-­‐out-­‐of-­‐booking-­‐a-­‐car-­‐service/  

   

50  

Rao,  L.  (2011,  September  20).  Uber  Brings  Its  Disruptive  Car  Service  To  Chicago.  

TechCrunch.  Retrieved  June  8,  2015,  from  

http://techcrunch.com/2011/09/22/uber-­‐brings-­‐its-­‐disruptive-­‐car-­‐service-­‐to-­‐

chicago/  

Savage,  I.  (2014).  Disaggregate  Demand  Models.  Transportation  Economics  and  Public  

Policy.  Department  of  Economics,  Northwestern  University,  Evanston,  IL.  

Shontell,  A.  (2014,  November  25).  Is  This  The  Highest  Surge  Price  Ever  Recorded  In  Uber  

History?  Business  Insider.  Retrieved  June  8,  2015,  from  

http://www.businessinsider.com/ubers-­‐highest-­‐surge-­‐price-­‐ever-­‐may-­‐be-­‐50x-­‐

2014-­‐11  

Silverstein,  S.  (2014,  October  16).  These  Animated  Charts  Tell  You  Everything  About  Uber  

Prices  In  21  Cities.  Business  Insider.  Retrieved  June  8,  2015,  from  

http://www.businessinsider.com/uber-­‐vs-­‐taxi-­‐pricing-­‐by-­‐city-­‐2014-­‐10  

Small,  K.  A.  &  Winston,  C.  (1999).  The  Demand  for  Transportation:  Models  and  

Applications.  In  J.  A.  Gomez-­‐Ibanez,  W.  B.  Tye,  &  C.  Winston  (Eds.),  Essays  in  

Transportation  Economics  and  Policy:  A  Handbook  in  Honor  of  John  R.  Meyer  (pp.  11-­‐

56).  London:  Brookings  Institution  Press.  

Smith,  N.  (2014,  December  31).  Here's  What  Economics  Gets  Right.  Bloomberg  View.  

Retrieved  June  8,  2015,  from  http://www.bloombergview.com/articles/2014-­‐12-­‐

31/heres-­‐what-­‐economics-­‐gets-­‐right  

Smith  IV,  J.  (2015,  February  3).  Uber  Drivers:  The  Punishment  For  Bad  Ratings  Is  Costly  

Training  Courses.  Observer.  Retrieved  June  8,  2015,  from  

   

51  

http://observer.com/2015/02/uber-­‐drivers-­‐the-­‐punishment-­‐for-­‐bad-­‐ratings-­‐is-­‐

costly-­‐training-­‐courses/  

Train,  K.  E.  (2009).  Discrete  Choice  Methods  With  Simulation.  New  York:  Cambridge  

University  Press.  

Uber.  (2014,  December  29).  Dynamic  Pricing  101  |  Uber.  YouTube.  Retrieved  June  8,  2015,  

from  https://www.youtube.com/watch?v=76q7PDnxWuE