18
FinFET sensitivity studies Xiaowei Jiang A’nan Xiang

FinFET sensitivity studieseda.ee.ucla.edu/EE201C/uploads/Winter2012/903898383Jiang... · 2012. 2. 13. · 1E14 1E15 1E16 1E17 1E18 1E19 0 100 200 300 400 500 600 700 800) Doping Concentration

  • Upload
    others

  • View
    6

  • Download
    0

Embed Size (px)

Citation preview

Page 1: FinFET sensitivity studieseda.ee.ucla.edu/EE201C/uploads/Winter2012/903898383Jiang... · 2012. 2. 13. · 1E14 1E15 1E16 1E17 1E18 1E19 0 100 200 300 400 500 600 700 800) Doping Concentration

FinFET sensitivity studies

Xiaowei Jiang

A’nan Xiang

Page 2: FinFET sensitivity studieseda.ee.ucla.edu/EE201C/uploads/Winter2012/903898383Jiang... · 2012. 2. 13. · 1E14 1E15 1E16 1E17 1E18 1E19 0 100 200 300 400 500 600 700 800) Doping Concentration

Background • Bulk-Si MOS scaling challenges:

• As devices are scaled down, Vt variation and subthreshold swing are getting worse- Drain competes with Gate to control the channel barrier-short channel effect (SCE)

• In order to suppress SCE, heavy halo and channel doping will be required degrading carrier mobility

Tsu Jae King, “FinFETs for Nanoscale CMOS Digital Integrated Circuits”, Proceedings of ICCAD, 2005

Page 3: FinFET sensitivity studieseda.ee.ucla.edu/EE201C/uploads/Winter2012/903898383Jiang... · 2012. 2. 13. · 1E14 1E15 1E16 1E17 1E18 1E19 0 100 200 300 400 500 600 700 800) Doping Concentration

One solution- FinFET • The gate controls the thin body from more than one side

suppressing SHE- 3-D structure

• Process flow and layout similar to that of the conventional MOS

• Easy to scale

• Since 2011, ITRS shows FinFET and ultra-thin-body SOI as the two successor of MOSFETs

• Intel will use 3-D FinFET for 22nm

Page 4: FinFET sensitivity studieseda.ee.ucla.edu/EE201C/uploads/Winter2012/903898383Jiang... · 2012. 2. 13. · 1E14 1E15 1E16 1E17 1E18 1E19 0 100 200 300 400 500 600 700 800) Doping Concentration

Parameter identification

• Doping

• Channel length

• Oxide thickness

• Silicon thickness

• V_dd

• To check the sensitivity of: Delay and Power consumption( static power, total power, dynamic power)

Page 5: FinFET sensitivity studieseda.ee.ucla.edu/EE201C/uploads/Winter2012/903898383Jiang... · 2012. 2. 13. · 1E14 1E15 1E16 1E17 1E18 1E19 0 100 200 300 400 500 600 700 800) Doping Concentration

Methodology

• Model: SOI-based PTM model for FinFET http://www.ee.ucla.edu/~ankur/parent/ee201c/finfet/

• Simulation Tool: HSPICE

• For delay, we measure the FO4 delay with 3 stages

Page 6: FinFET sensitivity studieseda.ee.ucla.edu/EE201C/uploads/Winter2012/903898383Jiang... · 2012. 2. 13. · 1E14 1E15 1E16 1E17 1E18 1E19 0 100 200 300 400 500 600 700 800) Doping Concentration

Methodology

http://users.ece.gatech.edu/~jeff/ece4420/powerlecture.pdf

Page 7: FinFET sensitivity studieseda.ee.ucla.edu/EE201C/uploads/Winter2012/903898383Jiang... · 2012. 2. 13. · 1E14 1E15 1E16 1E17 1E18 1E19 0 100 200 300 400 500 600 700 800) Doping Concentration

Static power low output measurement

Static power high output measurement

Methodology • For static power consumption

http://users.ece.gatech.edu/~jeff/ece4420/powerlecture.pdf

Page 8: FinFET sensitivity studieseda.ee.ucla.edu/EE201C/uploads/Winter2012/903898383Jiang... · 2012. 2. 13. · 1E14 1E15 1E16 1E17 1E18 1E19 0 100 200 300 400 500 600 700 800) Doping Concentration

Methodology • For dynamic power:

• First measure the average switching power of H-L and L-H per Clock Period (total power)

• Then the dynamic power can be calculated by

http://users.ece.gatech.edu/~jeff/ece4420/powerlecture.pdf

𝐸𝑡𝑜𝑡𝑎𝑙_𝐻𝐿 = 𝐸𝑠𝑡𝑎𝑡𝑖𝑐_𝐿 + 𝐸𝑑𝑦𝑛𝑎𝑚𝑖𝑐_𝐻𝐿

𝐸𝑡𝑜𝑡𝑎𝑙_𝐿𝐻 = 𝐸𝑠𝑡𝑎𝑡𝑖𝑐_𝐻 + 𝐸𝑑𝑦𝑛𝑎𝑚𝑖𝑐_𝐿𝐻

Page 9: FinFET sensitivity studieseda.ee.ucla.edu/EE201C/uploads/Winter2012/903898383Jiang... · 2012. 2. 13. · 1E14 1E15 1E16 1E17 1E18 1E19 0 100 200 300 400 500 600 700 800) Doping Concentration

Static power dissipation

• Static Power vs channel length

Page 10: FinFET sensitivity studieseda.ee.ucla.edu/EE201C/uploads/Winter2012/903898383Jiang... · 2012. 2. 13. · 1E14 1E15 1E16 1E17 1E18 1E19 0 100 200 300 400 500 600 700 800) Doping Concentration

Static power dissipation varies with channel length

• Sub threshold leakage current (VT and SS)

R. Ramesh, M. Madheswaran, K. KannanSelf, “consistent 3-D numerical modeling of a uniformly doped nanoscale FinFET using interpolating wavelets”, C.: J. Comput. Electron. 10, 331-340, 2011

Page 11: FinFET sensitivity studieseda.ee.ucla.edu/EE201C/uploads/Winter2012/903898383Jiang... · 2012. 2. 13. · 1E14 1E15 1E16 1E17 1E18 1E19 0 100 200 300 400 500 600 700 800) Doping Concentration

Static power dissipation • Static Power vs Pnch

1E13 1E14 1E15 1E16 1E17 1E18 1E19-20

0

20

40

60

80

100

120

140

Sta

tic

Po

we

r(a

J)

Doping Concentration(cm-3)

staticL

staticH

Page 12: FinFET sensitivity studieseda.ee.ucla.edu/EE201C/uploads/Winter2012/903898383Jiang... · 2012. 2. 13. · 1E14 1E15 1E16 1E17 1E18 1E19 0 100 200 300 400 500 600 700 800) Doping Concentration

Static power dissipation varies with doping concentration

Dnyanesh S. Havaldar, Guruprasad Katti, Nandita DasGupta, and Amitava DasGupta, “Subthreshold Current Model of FinFETs Based on Analytical Solution of 3-D Poisson’s Equation”, IEEE Trans. Electron Devices, vol. 53, No. 4, pp. 737-742, Apr 2006

Opposite with our simulation result: probably due to random dopant fluctuation A simple calculation: AR=5, T=30nm, H= 150nm, L= 45nm, V= 2.025E-16cm3, less than one atom within the fin!!!

Page 13: FinFET sensitivity studieseda.ee.ucla.edu/EE201C/uploads/Winter2012/903898383Jiang... · 2012. 2. 13. · 1E14 1E15 1E16 1E17 1E18 1E19 0 100 200 300 400 500 600 700 800) Doping Concentration

Total power and dynamic power

• Average Power per switch vs Pnch

• Dynamic Power vs Pnch

1E13 1E14 1E15 1E16 1E17 1E180

100

200

300

400

500

600

700

800

To

tal P

ow

er

(aJ

)

Doping Concentration(cm-3

)

THL

TLH

1E14 1E15 1E16 1E17 1E18 1E190

100

200

300

400

500

600

700

800

Dy

na

mic

Po

we

r(a

J)

Doping Concentration(cm-3)

dynamicHL

dynamicLH

Not very sensitive

Page 14: FinFET sensitivity studieseda.ee.ucla.edu/EE201C/uploads/Winter2012/903898383Jiang... · 2012. 2. 13. · 1E14 1E15 1E16 1E17 1E18 1E19 0 100 200 300 400 500 600 700 800) Doping Concentration

• Average Power per switch vs len

• Dynamic Power vs len

Total power and dynamic power

Page 15: FinFET sensitivity studieseda.ee.ucla.edu/EE201C/uploads/Winter2012/903898383Jiang... · 2012. 2. 13. · 1E14 1E15 1E16 1E17 1E18 1E19 0 100 200 300 400 500 600 700 800) Doping Concentration

Simulation Results • Input vs Output

Page 16: FinFET sensitivity studieseda.ee.ucla.edu/EE201C/uploads/Winter2012/903898383Jiang... · 2012. 2. 13. · 1E14 1E15 1E16 1E17 1E18 1E19 0 100 200 300 400 500 600 700 800) Doping Concentration

Delay • Delay vs len

tlh

thl

Ion (channel resistance), load capacitance: gate capacitance and parasitic capacitance As devices are scaled down, parasitic capacitance starts to dominant the effective capacitance

Page 17: FinFET sensitivity studieseda.ee.ucla.edu/EE201C/uploads/Winter2012/903898383Jiang... · 2012. 2. 13. · 1E14 1E15 1E16 1E17 1E18 1E19 0 100 200 300 400 500 600 700 800) Doping Concentration

Delay • Delay vs Pnch

tlh

thl

Page 18: FinFET sensitivity studieseda.ee.ucla.edu/EE201C/uploads/Winter2012/903898383Jiang... · 2012. 2. 13. · 1E14 1E15 1E16 1E17 1E18 1E19 0 100 200 300 400 500 600 700 800) Doping Concentration

Conclusion • Total power dissipation is not very sensitive to

channel length or doping concentration • FO4 inverter delay increases with channel length

and doping concentration • Random variation associated with the

discreteness of dopant atoms needs to be carefully included into the model

• With superior control of SCE and higher driving current, FinFET is a promising solution to surmount the challenges of increasing leakage current and device-to-device variability for future high-density, low-power ICs.