44
Finite Field Restriction Estimates Mark Lewko

Finite Field Restriction Estimates

  • Upload
    delta

  • View
    44

  • Download
    0

Embed Size (px)

DESCRIPTION

Finite Field Restriction Estimates. Mark Lewko. TexPoint fonts used in EMF. Read the TexPoint manual before you delete this box.: A A A A A A A A A A A A A A. What is Fourier analysis good for?. If. is small for. - PowerPoint PPT Presentation

Citation preview

Page 1: Finite Field Restriction Estimates

Finite Field Restriction Estimates

Mark Lewko

Page 2: Finite Field Restriction Estimates

What is Fourier analysis good for?Quantifying pseudo-randomness with respect to linear objects (equations/subspaces/subgroups/etc).

Let A µ ZpHow big is:

f (a;b;c) 2 A3 : a+b+c= X g »jAj3

p

c1A (x) x 6= 0If is small for

Page 3: Finite Field Restriction Estimates

Character sums Sd = fxd : x 2 Fpg

=jSdjp

X

x2Fp

e(axd)d1Sd (a) =X

x2Sd

e(ax)

dj(p¡ 1) jSdj = pp¡ 1d

S = f (xd1 ;xd2 ; : : : ;xdn ) : x 2 Fnpg

=jSjp

X

x2Fp

e(a1xd1 +a2xd2 +:::+anxdn )c1S (a) =X

x2S

e(a¢x)

Page 4: Finite Field Restriction Estimates

Character sums ¯¯¯¯¯¯

X

x2Fp

e(a1xd1 +a2xd2 +:::+anxdn )

¯¯¯¯¯¯¿ deg(f ) p

1=2

¯¯¯¯¯¯

X

x2Fp

eµf (x)g(x)

¶¯¯¯¯¯¯¿ deg(f );deg(g) p

1=2

Weil (1948)

Deligne (1974)

¯¯¯¯¯¯

X

x2Fp

e(a1xd1 +a2xd2 +:::+arxdr )

¯¯¯¯¯¯¿ r p1¡ ±(r ) Bourgain

(2005)Lots of Applications:

Distribution of quadratic residues

Gaps between primes

Distribution / Security of RSA

Extractor constructions

(Etc.)

Page 5: Finite Field Restriction Estimates

Restriction estimates attempt to understand exponential sums with arbitrary coefficients

X

x2S

c(x)e(a¢x)

S µ Fn

What can we hope to say?¯¯¯¯¯

X

x2S

c(x)e(a¢x)

¯¯¯¯¯

is small.a 2 FnFor most

ÃX

x2Fn

¯¯¯¯¯

X

x2S

c(x)e(a¢x)

¯¯¯¯¯

p! 1=p

Estimate: in terms of:

ÃX

x2S

jc(x)jq! 1=q

Page 6: Finite Field Restriction Estimates

Let us reformulate the goal:S µ Fn

(f d¾)_ (x) :=1jSj

X

»2S

f (»)e(x ¢»)

d¾surface measure on S

f : S ! C jjf jjL q (S ;d¾) :=

0

@X

»2S

jf (»)jq

jSj

1

A

1=q

jj(f d¾)_ jjL p (Fn ) · R (q! p)jjf jjL q(S;d¾)

R(1! 1 ) = 1 jj(f d¾)_ jjL 1 (Fn ) · jjf jjL 1(S;d¾)

Estimates get better (harder to prove) as p decreases and q increases.

Page 7: Finite Field Restriction Estimates

Finite Field Restriction Conjecture for the Paraboloid

P := f (! ;! ¢! ) : ! 2 Fn¡ 1gµ Fn jP j = Fn¡ 1

(f d¾)_ (x) :=1

jFjn¡ 1X

»2Fn ¡ 1

f (»)e(x1»1+x2»2+:::+xn(»21 +»22 +:::+»2n))

jj(f d¾)_ jjL p (Fn ) · R (q! p)jjf jjL q(S;d¾)

Classify (p,q) such that

holds with independent of the field size.R(q! p)

Page 8: Finite Field Restriction Estimates

Finite Field Restriction Conjecture for the Paraboloid, II• Extension Estimate:

jj(f d¾)_ jjL p (Fn ) · R (q! p)jjf jjL q(S;d¾)

(f d¾)_ (x) :=1

jFjn¡ 1X

»2Fn ¡ 1

f (»)e(x1»1+x2»2+:::+xn(»21 +»22 +:::+»2n))

• Restriction Estimate:

jjgjjL q0(P ;d¾) · R (q! p)jjgjjL p0(Fn )

Page 9: Finite Field Restriction Estimates

Finite Field Restriction: Motivation

• Understanding Exponential sums with coefficients

• Model problem for Euclidean harmonic analysis

Page 10: Finite Field Restriction Estimates

The Fourier Transform

bf (») :=RR n f (x)e2¼ix¢»dx

The Fourier Restriction Problem:

bf (») »2 S

Given a surface with measure can we define: S d¾

for a.e. ?

Page 11: Finite Field Restriction Estimates

The Fourier Restriction Problem I

(3-d Paraboloid) (3-d Sphere) f 2 L1

bf (»)is continuous

f 2 L2

bf (») arbitrary inL2

d¾What about ? 1< p< 2

Page 12: Finite Field Restriction Estimates

The Fourier Restriction Problem II

RS jbf (»)jd¾· Cjjf jjL p (R n )

We want an inequality of the form:

This is equivalent to the `extension’ inequality:

jj bf jjL 1(S;d¾) · Cjjf jjL p (R n )

jj(gd¾)_ jjL p0(R n ) · CjjgjjL 1 (S;d¾)

Page 13: Finite Field Restriction Estimates

jj(gd¾)_ jjL p0(R 3) · CjjgjjL 1 (S;d¾)

Score Board (3-d Sphere/Paraboloid):

(trivial)

Stein 1968

p0=1p0¸ 6p0>4 Tomas

1975p0¸ 4 Stein/Sjolin 1975

p0¸ 3:866

Wolff 1995p0¸ 3:818

Bourgain 1991

Tao, Vargas, Vega 1998 Tao, Vargas 2000

Tao 2002

Bourgain, Guth 2010

p0¸ 3:777p0¸ 3:715p0¸ 3:333p0¸ 3:3p0¸ 3:27 * Bourgain, Guth

2010

Page 14: Finite Field Restriction Estimates

Geometric Propertiesjj(gd¾)_ jjL p0(R 3) · CjjgjjL 1 (S;d¾)

(g­ d¾)_

e2¼i¿¢»g­ (»)

¿

(e2¼i¿¢»g­ (»)d¾)_

Page 15: Finite Field Restriction Estimates

Geometric Properties IIjj(gd¾)_ jjL p0(R 3) · CjjgjjL 1 (S;d¾)

Overlap is the Enemy!

Page 16: Finite Field Restriction Estimates

Kakeya Maximal Conjecture

How much overlap can tubes have?

Restriction Conjecture Kakeya Maximal Conjecture

jjP¿i (x)jjL p (R 3) ¿

Page 17: Finite Field Restriction Estimates

If a set contains a line in every direction, how small can its dimension be?

E µ R3

Kakeya Set Conjecture

E E²

Kakeya Maximal

Restriction Conjecture

Kakeya set Conjecture

Page 18: Finite Field Restriction Estimates

3-d Kakeya Set Score Board

dim(E ) ¸ 2dim(E ) ¸ 2:333dim(E ) ¸ 2:5dim(E ) ¸ 2:5+10¡ 10

Drury 1983

Bourgain 1991

Wolff 1995

Tao, Katz, Laba 1999

Page 19: Finite Field Restriction Estimates

Back to Finite Fields

Page 20: Finite Field Restriction Estimates

So what is the 3-d finite field restriction conjecture:

jj(f d¾)_ jjL p (F3) · R (q! p)jjf jjL q(P ;d¾)

¡ 1 is a square ¡ 1 is not a square

P := f (! ;! ¢! ) : ! 2 Fn¡ 1gµ F2

jj(f d¾)_ jjL 3(F3) ¿ jjf jjL 2(P ;d¾)jj(f d¾)_ jjL 3(F3) ¿ jjf jjL 3(P ;d¾)

Mockenhaupt, Tao 2002

p¸ 4

L 2013

p> 3:6Bennett, Carbery, Garrigos, and Wright / Lewko-L 2010

p¸ 3:6p¸ 3:6¡ ±p> 3:5 L 2013*

Stein-Tomasp¸ 4 Stein-Tomas

L 2013p¸ 3:6¡ ±

Page 21: Finite Field Restriction Estimates

The Stein-Tomas method

jj(f d¾)_ jjL 4(F3) ¿ jjf jjL 2(P ;d¾)

(doesn’t care if -1 is a square)

Want to prove:

jjgjjL 2(P ;d¾) ¿ jjgjjL 4=3(F3)

jjgjjL 2(P ;d¾) ¿ jFj1=2jjgjjL 2(F3) (Parseval)

jjgjjL 2(P ;d¾) = jhg;g¤(d¾)_ i j1=2 » jjgjj1maxx6=0

j(d¾)_ j1=2

maxx6=0

j(d¾)_ j ¿ jFj¡ 1 (via Gauss Sums)

Page 22: Finite Field Restriction Estimates

The Stein-Tomas method, I(d¾)_ (x1;x2;x3) =

1jFj2

X

»2F2

e(x1»1+x2»2+x3(»21 +»22))

(d¾)_ (0;0;0) = 1x3 6= 0If

(d¾)_ (x1;x2;x3) =1jFj2

0

@X

»12F2

e(x1»1+x3»21)

1

A

0

@X

»22F2

e(x1»2+x3»22)

1

A

(d¾)_ (x1;x2;x3) =1jFj2

Y

i=1;2

0

@X

»12F2

e(»i»i=4x3)e(x3(»1+x1=2x3)2)

1

A

(d¾)_ (x1;x2;x3) =1jFj2

e(x ¢x=4xn)(S(xn))2

S(xn) =X

»2Fp

e(x»2) j(d¾)_ (x1;x2;x3)j ¿ jFj¡ 1

Page 23: Finite Field Restriction Estimates

The Stein-Tomas method, II

jjc1E jjL 2(P ;d¾) ¿ jFj1=2jj1E jjL 2(F3)

g=X

1· i · 10 log(F)

g1E i g(x) » 2¡ i x 2 E i

¿ jFj(1+° )=2

jE j = jFj°

¿ jFj3°=4if ° ¸ 2

= jj1E jjL 4=3(F3)

Page 24: Finite Field Restriction Estimates

The Stein-Tomas method, III

jjc1E jjL 2(P ;d¾) = jh1E ;1E ¤(d¾)_ i j1=2

jE j = jFj° for ° · 2Consider:

(d¾)_ (x) = ±(x) +K (x) jK (x)j ¿ jFj¡ 1

jjc1E jjL 2(P ;d¾) ¿ jE j1=2+jh1E ;1E ¤K i j1=2

j1E ¤K (x)j = jX

t

1E (t)K (x ¡ t)j ¿ jE jjFj¡ 1

j h1E ;1E ¤K i j1=2 ¿ jE jjFj¡ 1=2

Page 25: Finite Field Restriction Estimates

The Stein-Tomas method, IV

jjc1E jjL 2(P ;d¾) ¿ jE j1=2+jE jjFj¡ 1=2

jjc1E jjL 2(P ;d¾) ¿ jFj°=2+jFj° ¡ 1=2

¿ jFj3°=4

for ° · 2

= jj1E jjL 4=3(F3)

jjc1E jjL 2(P ;d¾) ¿ jj1E jjL 4=3(F3)We have proven:

jj(f d¾)_ jjL 4(F3) ¿ jjf jjL 2(P ;d¾)

Page 26: Finite Field Restriction Estimates

jj(gd¾)_ jjL p (F3 ;dx) · CpjjgjjL 2(P ;d¾)

jjf jjL 2(P ;d¾) · Cjjf jjL p0(F3 ;dx)

Restriction estimate

Extension estimate

F3

f = 1E

How did Mockenhaupt-Tao go beyond Stein-Tomas? (-1 not a square)

jjP

sd1E s jjL 2(P ;d¾) ¿

Ps jjd1E s jjL 2(P ;d¾)

Page 27: Finite Field Restriction Estimates

Ps jjd1E s jjL 2(P ;d¾)

jjd1E s jjL 4(P ;d¾)

F2pointsN linesN# incidences*

¿ N 3=2

Es Ls

jj(gd¾)_ jjL p (F18=5 ;dx) ¿ jjgjjL 2 (P ;d¾)

Mockenhaupt-Tao

Page 28: Finite Field Restriction Estimates

Detour: Sum-product Estimates

A ½RjAj · jA +Aj · jAj2 jAj · jA ¢Aj · jAj2

arithmetic progression geometric progression

max(jA +Aj; jA ¢Aj) ¸ jAj2+o(1)Erdős and Szemerédi’s sum-product conjecture:

¸ jAj1+±

¸ jAj4=3+o(1)

Erdős and Szemerédi’s (1983)

Solymosi (2008)

….

Page 29: Finite Field Restriction Estimates

Sum-product estimates (finite fields) A ½F

max(jA +Aj; jA ¢Aj) ¸ jAj1+±A(* not `near’ a

subfield)

Bourgain, Katz, Tao (2002)

Szemerédi-Trotter Incidence Problem (finite fields)

F2

pointslines

# incidences ¿ N 3=2(Cauchy-Schwarz)

# incidences* ¿ N 3=2¡ ±

(Bourgain, Katz, Tao)

NN

Page 30: Finite Field Restriction Estimates

Ps jjd1E s jjL 2(P ;d¾)

jjd1E s jjL 4(P ;d¾)

F2pointsN linesN# incidences*

¿ N 3=2¡ ±(Bourgain, Katz, Tao)

A) The Stein-Tomas / Mockenhaupt-Tao method isn’t sharp.

B) Each slice contains the same number of points, and is far from being contained in a subfield.

Es

p¸ 3:6¡ ±The finite field restriction conjecture holds for:

Es Ls

p> 3:5

Beyond Mockenhaupt-Tao

Page 31: Finite Field Restriction Estimates

What happens if -1 is a square?

f (! ;! ¢! ) : ! 2 F2gf (x ¡ iy);(x+ iy);x2 ¡ (iy)2) : x;y 2 Fg

f (! 1; ! 2;! 1! 2) : ! 1;! 2 2 Fg

(1 d¾)_ (x) :=1jFj2

X

»12F

e(x1»1)

` := ((»;0;0) : »2 F)

=1jFj

±(x1)

jj(1 d¾)_ jjL 3(F3) =µ(1jFj

)3jFj2¶1=3

= jFj¡ 1=3

jj1 jjL p (P ;d¾) =µ

1jFj2

jFj¶1=p

= jFj¡ 1=p

Page 32: Finite Field Restriction Estimates

-1 is a square, what goes wrong with the Mockenhaupt-Tao argument?

jjf jjL 2(P ;d¾) · Cjjf jjL 4=3 (F3;dx)

f = 1E

Want to go beyond S-T: Increase this exponent

But you need to decrease this exponent(and M-T needs to use the 2 for Parseval)

Page 33: Finite Field Restriction Estimates

Let’s run the Mockenhaupt-Tao argument even though it can’t work

jjP

sd1E s jjL 2(P ;d¾) ¿

Ps jjd1E s jjL 2(P ;d¾)

If the slices of E do not concentrate on lines then one can get some improvementF3Eµ

Unless jE j » F2one can get more out of the Stein-Tomas method

Consistent with the known problematic case:

Page 34: Finite Field Restriction Estimates

If E concentrates on a plane:

E c1E

jjc1E jjL 3=2(P ;d¾)

We can then geometrically understand

It is here were we have to (and do) avoid methodsL2

Being more careful, we can handle sets contained in planes jFj±

Page 35: Finite Field Restriction Estimates

Last Case: Every slice of E is a line but E isn’t contained in a small number of planes.

jjf jjL 2(P ;d¾) = jhf ;f ¤(d¾)_ i j1=2 · jjf jj2jjf ¤(d¾)_ jj2

Tf := f ¤(d¾)_

Page 36: Finite Field Restriction Estimates

f s Tf i := f i ¤(d¾)_

jjf ¤(d¾)_ jj2Planes correspond to 1-d Fourier coefficients off sf

Only potential problem is if all the planes stack up

…but this can’t happen since we have assumed that the slices (green lines) don’t lie in small number of planes!

Page 37: Finite Field Restriction Estimates

Stein-Tomas does better

F3Eµ

jE j ¿ jFj2Summary of cases 1.

2. Most vertical slices don’t concentrate on lines

Mockenhaupt-Tao argument3. E is contained in a small number of planes

Direct computation using geometry of paraboloid 4. Slices of E are contained

in lines, but E isn’t contained in a small number of planes

Geometric estimate for the BR operator

jj(gd¾)_ jjL 3:6(F3 ;dx) · CpjjgjjL 3(P ;d¾)

Can do better with sum-product

M-T still bottleneck

Page 38: Finite Field Restriction Estimates

 Finite Field Kakeya conjectureF finite field

E µ F3

wesay E has diminesion ®if jE j ¸ CjFj®

 is a Kakeya set if it contains a line in every direction

a line is a set of the form ` := fx + tv : t 2 Fgwherex;v 2 F3

Finite Field Kakeya conjecture (Wolff):A Kakeya set has dimension 3.

Page 39: Finite Field Restriction Estimates

Finite Field Kakeya

E

F3How big must E be?

d¸ 2:5Wolff ~1995

d¸ 2:5+±Bourgain, Katz, Tao 2002

d¸ 3 Dvir 2008

(elementary combinatorics)

(sum-product estimates)

(Polynomial method)

jE j À jFjd

Page 40: Finite Field Restriction Estimates

What’s the relation between finite field restriction and Kakeya?

f

(3-d Euclidean Paraboloid)

(f d¾)_One can’t do this in a finite field!

Kakeya and restriction thought to be less connected over finite fields.

Page 41: Finite Field Restriction Estimates

They are connected.Restriction for hyperbolic paraboloid in 2n-1 dimensions implies n dimensional Kakeya

In odd dimensions with -1 a square this is equivalent to the standard paraboloid.

f (! 1; ! 2; ! 1 ¢! 2) : ! 1;! 2 2 Fng

Page 42: Finite Field Restriction Estimates

f (! 1; ! 2; ! 1 ¢! 2) : ! 1; ! 2 2 F2gConsider

Hµ := f (µ;! 2;µ¢! 2) : ! 2 2 F2g

(Hµd¾)_ (x1;x2;x3;x4;x5)x3

x4

x5µ

(e(¡ b1»1; ¡ b2»2)Hµd¾)_ (x1;x2;x3;x4;x5)

b

Page 43: Finite Field Restriction Estimates

If we had a 3-d Kakeya set

X

µ

(e(¡ b1(µ)»1; ¡ b2(µ)»2)Hµd¾)_ (x1;x2;x3;x4;x5)

x3x4

x5

Page 44: Finite Field Restriction Estimates

Thank You!