First Course on Power Systems - Notes (N Mohan)

Embed Size (px)

Citation preview

  • Copyright Ned Mohan 2006 1

    Ned Mohan Oscar A. Schott Professor of Power Electronics and Systems Department of Electrical and Computer Engineering University of Minnesota Minneapolis, MN 55455 USA

    First Course on

    POWER SYSTEMS

    Copyright Ned Mohan 2006 2

    Bus-1 Bus-3

    Bus-2

    1mP 1eP

    2mP

    2eP

    P jQ+

    200km

    150km150km

    A 345-kV Example System

    Copyright Ned Mohan 2006 3

    Week Book Chapters Laboratory

    1 Chapter 1: Overview Chapter 2: Energy Sources

    Lab 1: Visit to a local substation

    2 Chapter 3: Fundamentals Lab 2: Introduction to PSCAD/EMTDC; solutions of 3-phase problems

    3 Chapter 4: Transmission Lines Lab 3: Transmission Lines using PSCAD-EMTDC

    4 Chapter 5: Power Flow Lab 4: Power Flow using MATLAB and PowerWorld

    5 Chapter 6: Transformers Lab 5: Including Transformers in Power Flow using PowerWorld and MATLAB

    6 Chapter 7: HVDC, FACTS Lab 6: Power Converters and HVDC using PSCAD-EMTDC

    7 Chapter 8: Distribution Systems Lab 7: Power Quality using PSCAD-EMTDC

    8 Chapter 9: Synchronous Generators

    Lab 8: Synchronous Generators and AVR using PSCAD-EMTDC.

    9 Chapter 10: Voltage Stability Lab 9: Voltage Regulation using PowerWorld

    10 Chapter 11: Transient Stability Lab 10: Transient Stability using MATLAB

    11 Chapter 12: Interconnected Systems, Economic Dispatch

    Lab 11: AGC using Simulink, and Economic Dispatch using PowerWorld

    12 Chapter 13: Short-Circuit Faults, Relays, Circuit Breakers

    Lab 12: Transmission Line Faults using PowerWorld and MATLAB

    13 Chapter 14: Transient Over-Voltages, Surge Arrestors, Insulation Coordination

    Lab 13: Over-voltages and Surge Arrestors using PSCAD-EMTDC

    TOPICS IN POWER SYSTEMS

    Copyright Ned Mohan 2006 4

    Chapter 1

    POWER SYSTEMS: A CHANGING LANDSCAPE

    Copyright Ned Mohan 2006 5

    Fig. 1-1 Interconnected North American Power Grid [2].

    NATURE OF POWER SYSTEMS

    Copyright Ned Mohan 2006 6

    Fig. 1-2 NERC Interconnections [3]. Source: NERC.

    Control Areas

  • Copyright Ned Mohan 2006 7

    Fig. 1-3 One-line diagram as an example.

    13.8 kVTransmission line

    Generator

    Load

    Feeder

    Step up Transformer

    One-line Diagram

    Copyright Ned Mohan 2006 8

    CHANGING LANDSCAPE OF POWER SYSTEMS AND UTILITY DEREGULATION

    Fig. 1-4 Changing landscape [4]. Source: ABB. ( )a ( )b( )a ( )b

    Copyright Ned Mohan 2006 9

    CHAPTER 2

    REVIEW OF BASIC ELECTRIC CIRCUITS AND ELECTROMAGNETIC CONCEPTS

    Copyright Ned Mohan 2006 10

    Fig. 2-1 Convention for voltages and currents.

    i

    av

    +

    bv

    ba abv

    +

    + iav

    +

    bv

    ba abv

    +

    +

    Symbols and Conventions

    Copyright Ned Mohan 2006 11

    Fig. 2-2 Phasor diagram.

    Imaginary

    Real

    I I =

    V V 0=

    positiveangles

    Imaginary

    Real

    I I =

    V V 0=

    positiveangles

    Phasors

    Copyright Ned Mohan 2006 12

    Fig. 2-3 A circuit (a) in time-domain and (b) in phasor-domain; (c) impedance triangle.

    Im

    Z

    cjX

    R

    LjX

    Re0

    i( t )

    L

    R

    C

    +

    v( t )

    2V cos( t )= V V 0=

    I

    Lj L j X =

    R

    C1j j XC

    =

    +

    ( )a ( )b ( )c

    Im

    Z

    cjX

    R

    LjX

    Re0

    Im

    Z

    cjX

    R

    LjX

    Re0

    i( t )

    L

    R

    C

    +

    v( t )

    2V cos( t )= V V 0=

    I

    Lj L j X =

    R

    C1j j XC

    =

    +

    ( )a ( )b ( )c

    i( t )

    L

    R

    C

    +

    v( t )

    2V cos( t )=

    i( t )

    L

    R

    C

    +

    v( t )

    2V cos( t )= V V 0=

    I

    Lj L j X =

    R

    C1j j XC

    =

    +

    V V 0=

    I

    Lj L j X =

    R

    C1j j XC

    =

    +

    ( )a ( )b ( )c

    Phasor Analysis

  • Copyright Ned Mohan 2006 13

    Fig. 2-4 Impedance network of Example 2-1.

    5j

    0.1j

    25j

    0.1j

    2

    Example of Impedance Calculation

    Copyright Ned Mohan 2006 14

    Fig. 2-5 Circuit of Example 2-2.

    0.3 0.5j 0.2j

    15j 7.0

    +

    1V

    1I

    mI 2I

    Example of Impedance Calculation

    Copyright Ned Mohan 2006 15

    Figure 2-6 A generic circuit divided into two sub-circuits.

    ( ) ( ) ( )p t v t i t=

    +

    Subcircuit 1 Subcircuit 2( )v t

    Power Flow

    Copyright Ned Mohan 2006 16

    Figure 2-7 Instantaneous power with sinusoidal currents and voltages.

    ( )i t( )v t

    t

    ( )p t average power

    0

    ( )i t

    ( )v t/

    t

    ( )p t average power

    0

    ( )a ( )b( )i t

    ( )v tt

    ( )p t average power

    0

    ( )i t

    ( )v t/

    t

    ( )p t average power

    0

    ( )a ( )b

    Real and Reactive Power

    Copyright Ned Mohan 2006 17

    Fig. 2-8 (a) Circuit in phasor-domain; (b) phasor diagram; (c) power triangle.

    V

    I

    S P jQ= +

    +

    Subcircuit 1 Subcircuit 2

    vV V =

    iI I =

    Im

    Re Q

    P

    SIm

    Re

    ( a )

    ( b ) ( c )

    V

    I

    S P jQ= +

    +

    Subcircuit 1 Subcircuit 2

    vV V =

    iI I =

    Im

    Re Q

    P

    SIm

    Re

    ( a )

    ( b ) ( c )

    P, Q and VA by Phasors

    Copyright Ned Mohan 2006 18

    Fig. 2-9 Power factor correction in Example 2-5.

    +

    1V

    LP P=

    CjQL LP jQ+13.963j

    Example of Power Factor Correction

  • Copyright Ned Mohan 2006 19

    Fig. 2-10 One-line diagram of a three-phase transmission and distribution system.

    Feeder

    Step up Transformer

    GeneratorTransmission

    line13.8 kV

    Load

    One-line Diagram

    Copyright Ned Mohan 2006 20

    Fig. 2-11 Three-phase voltages in time and phasor domain.

    ( )bnv t

    t0

    23

    ( )cnv t( )anv t

    23

    120

    a b c positivesequence

    bnV

    cnV

    anV120120

    ( )a

    ( )b

    Three-Phase Voltages

    Copyright Ned Mohan 2006 21

    Fig. 2-12 Balanced wye-connected, three-phase circuit.

    aI

    bnVcnV +cI

    LZ

    bIc b

    a

    n N

    anV +

    +

    aI

    bnVcnV

    +cI

    LZ

    bIc b

    a

    n N

    anV +

    +nI

    (a) (b)

    aI

    bnVcnV +cI

    LZ

    bIc b

    a

    n N

    anV +

    +

    aI

    bnVcnV +cI

    LZ

    bIc b

    a

    n N

    anV +

    +

    aI

    bnVcnV

    +cI

    LZ

    bIc b

    a

    n N

    anV +

    +nI

    (a) (b)

    Balanced Three-Phase Circuit Analysis

    Copyright Ned Mohan 2006 22

    Fig. 2-13 Per-phase circuit and the corresponding phasor diagram.

    aI a

    Nn

    anV +

    (Hypothetical)

    a

    aIbI

    cI

    anV

    cnV

    bnV

    ( a ) ( b )

    aI a

    Nn

    anV +

    (Hypothetical)

    aaI a

    Nn

    anV +

    (Hypothetical)

    a

    aIbI

    cI

    anV

    cnV

    bnV

    ( a ) ( b )

    Per-Phase Analysis

    Copyright Ned Mohan 2006 23

    Fig. 2-14 Balanced three-phase network with mutual couplings.

    a AaAZ

    (Hypothetical)

    selfZ

    selfZ

    selfZ

    mutualZ

    mutualZ

    mutualZ

    a

    b

    c

    A

    B

    C

    aI

    bI

    cI

    ( )a ( )b

    Balanced Mutual Coupling

    Copyright Ned Mohan 2006 24

    Fig. 2-15 Line-to-line voltages in a three-phase circuit.

    o30

    anV

    bV abVcnV

    caV

    bcV

    bnV

    Line-Line Voltages

  • Copyright Ned Mohan 2006 25

    Fig. 2-16 Delta-wye transformation.

    aI

    Z

    cb

    a

    Z

    aI

    bcIcaI

    abI

    Z Zc b

    a

    ( b )( a )

    Z

    Z

    aI

    Z

    cb

    a

    Z

    aI

    bcIcaI

    abI

    Z Zc b

    a

    ( b )( a )

    Z

    Z

    Wye-Delta Transformation

    Copyright Ned Mohan 2006 26

    Fig. 2-17 Power transfer between two ac systems.

    sV RV

    +

    +

    I

    jX

    RV

    sV

    I

    ( )a

    ( )b

    jXI

    Power Flow in AC Systems

    Copyright Ned Mohan 2006 27

    Fig. 2-18 Power as a function of .

    max/P P

    0

    0.5

    090 0180

    1.0

    Power-Angle Diagram

    Copyright Ned Mohan 2006 28

    Per Unit Quantities , , basebase base base

    base

    VR X ZI

    = (in ) (2-48)

    , , basebase base basebase

    IG B YV

    = (in ) (2-49)

    ( ), ,base base base basebaseP Q VA V I= (in Watt, VAR, or VA) (2-50) In terms of these base quantities, the per-unit quantities can be specified as

    actual valuePer-UnitValue = base value

    (2-51)

    Copyright Ned Mohan 2006 29

    Fig. 2-19 Energy Efficiency /o inP P = .

    inP oP

    lossP

    Power SystemApparatus

    Energy Efficiency of Apparatus

    Copyright Ned Mohan 2006 30

    Fig. 2-20 Amperes Law.

    3i

    2i

    1iH

    dl

    (a) (b) (c)

    3i

    2i

    1iH

    dl

    3i

    2i

    1iH

    dl

    (a) (b) (c)

    Electro-Magnetic Concepts:Amperes Law

  • Copyright Ned Mohan 2006 31

    Fig. 2-21 Example 2-9.

    i

    OD

    ID

    i

    OD

    ID

    OD

    ID

    mr

    OD

    ID

    mr

    (a) (b)

    Example of a Toroid

    Copyright Ned Mohan 2006 32

    Fig. 2-22 B-H characteristic of ferromagnetic materials.

    mB

    mH

    satB

    o

    o

    m

    mB

    mH

    (a) (b)

    mB

    mH

    mB

    mH

    satB

    o

    o

    m

    mB

    mH

    satB

    o

    o

    m

    mB

    mH

    (a) (b)

    B-H Curves in Ferromagnetic Materials

    Copyright Ned Mohan 2006 33

    Fig. 2-23 Toroid with flux m .

    mA

    m

    mA

    m

    Flux and Flux-Density

    Copyright Ned Mohan 2006 34

    Inductance

    Fig. 2-24 Coil inductance.

    2

    mm

    m m

    NL

    A= A

    m( )N

    m( )mA( )m

    mBmHm

    N Ai2

    mm

    m m

    NL

    A= A

    m( )N

    m( )mA( )m

    mBmHm

    N Ai

    (a) (b)

    m

    m mAi

    N

    m

    m mAi

    N

    Copyright Ned Mohan 2006 35

    Fig. 2-25 Rectangular toroid.

    h

    w r

    h

    w r

    Example of a Toroid

    Copyright Ned Mohan 2006 36

    Fig. 2-26 Voltage polarity and direction of flux and current.

    ( )i t

    ( )t

    ( )e t+

    N

    ( )i t

    ( )t

    ( )e t+

    N

    Faradays Law

  • Copyright Ned Mohan 2006 37

    Fig. 2-27 Example 2-11.

    ( )t( )e t

    t0

    ( )t( )e t

    t0

    Plot of time-varying Flux and Voltage

    Copyright Ned Mohan 2006 38

    Fig. 2-28 Including leakage flux. (a) (b)

    i

    +e

    i

    +e

    i

    +e

    m

    l

    i

    +e

    m

    l

    Leakage Flux

    Copyright Ned Mohan 2006 39

    Fig. 2-29 Analysis including the leakage flux.

    ( )v t+

    R

    m

    lL ( )i t

    ( )me t( )e t+

    +

    ( )v t+

    R

    m

    lL ( )i t

    ( )me t( )e t+

    +

    ldiLdt

    ( )me t( )e t

    +

    +

    + ( )i t

    mL

    lL

    ldiLdt

    ( )me t( )e t

    +

    +

    + ( )i t

    mL

    lL

    (a) (b)

    Representation of Leakage Flux by Leakage Inductance

    Copyright Ned Mohan 2006 40

    CHAPTER 3

    ELECTRIC ENERGY AND THE ENVIRONMENT

    Copyright Ned Mohan 2006 41

    Fig. 3-1 Production and consumption of energy in the United States in 2004 [1]. ( )a ( )b

    Energy Consumption and Production in the U.S.

    Copyright Ned Mohan 2006 42

    Fig. 3-2 Electric power generation by various fuel types in the U.S. in 2005 [1].

    Power Generation by Various Fuel Types in the U.S.

  • Copyright Ned Mohan 2006 43

    Fig. 3-3 Hydro power (Source: www.bpa.gov).

    HGenerator

    Penstock

    Turbine

    Water

    Hydro Power Generation

    Copyright Ned Mohan 2006 44

    Fig. 3-4 Rankine thermodynamic cycle in coal-fired power plants.

    Steam at High pressure

    Pump

    Heat in

    Heat out

    TurbineBoiler

    Condenser

    Gen

    Rankine Thermodynamic Cycle in Coal Plants

    Copyright Ned Mohan 2006 45

    Fig. 3-5 Brayton thermodynamic cycle in natural-gas power plants.

    Air in

    Compressor Turbine

    Exhaust

    Fuel in

    CombustionChamber

    Brayton Cycle in Gas Turbines

    Copyright Ned Mohan 2006 46

    Fig. 3-6 (a) BWR and (b) PWR reactors [5]. ( )a ( )b

    Nuclear Power Plant Types

    Copyright Ned Mohan 2006 47

    Fig. 3-7 Wind-resource map of the United States [6].

    Wind Resources in the U.S.

    Copyright Ned Mohan 2006 48

    Fig. 3-8 pc as a function of [7]; these would vary based on the turbine design.

    Coefficient of Performance

  • Copyright Ned Mohan 2006 49

    Fig. 3-9 Induction generator directly connected to the grid [8].

    Utility

    InductionGenerator

    WindTurbine

    Wind Generation using an Induction Generator Connected Directly to the AC Grid

    Copyright Ned Mohan 2006 50

    Fig. 3-10 Doubly-fed, wound-rotor induction generator [9].

    AC

    DC

    DC

    AC

    Wound rotor Induction Generator

    Generator-sideConverter

    Grid-sideConverter

    Wind Turbine

    AC

    DC

    DC

    AC

    Wound rotor Induction Generator

    Generator-sideConverter

    Grid-sideConverter

    Wind Turbine

    Wind Generation using a Doubly-Fed Induction Generator

    Copyright Ned Mohan 2006 51

    Fig. 3-11 Power Electronics connected generator [10].

    Gen

    Utility

    Power Electronics Interface

    1Conv 2Conv

    Wind Generation using an AC Generator Connected through Power Electronics

    Copyright Ned Mohan 2006 52

    Fig. 3-12 PV cell characteristics [11].

    Photovoltaics

    Copyright Ned Mohan 2006 53

    Fig. 3-13 Photovoltaic systems.

    Isolated DC-DC

    Converter

    PWM Converter

    Max. Power-point Tracker

    Utility1

    Isolated DC-DC

    Converter

    PWM Converter

    Max. Power-point Tracker

    Utility1

    Interfacing PV with AC Grid

    Copyright Ned Mohan 2006 54

    Fig. 3-14 Fuel cell v-i relationship and cell power [12].

    1.4 -

    1.2 -

    1 -

    0.8 -

    0.6 -

    0.4 -

    0.2 -

    0 - - 0

    - 200

    - 400

    - 600

    - 800

    - 1000

    - 1200

    |

    0|

    500|

    1000|

    1500|

    2000

    Maximum Theoretical Voltage

    Current Density ( i in mA/cm2 )

    ActivationLosses

    Ohmic Losses

    MassTransport

    Losses

    OpenCircuitVoltage

    Cell P

    ower

    ( PC

    inm

    W)

    Cell V

    olta

    ge ( V C

    inVo

    lts )

    - gE = 2 F

    Cell PowerPC= VC x i

    1.4 -

    1.2 -

    1 -

    0.8 -

    0.6 -

    0.4 -

    0.2 -

    0 -

    1.4 -

    1.2 -

    1 -

    0.8 -

    0.6 -

    0.4 -

    0.2 -

    0 - - 0

    - 200

    - 400

    - 600

    - 800

    - 1000

    - 1200

    - 0

    - 200

    - 400

    - 600

    - 800

    - 1000

    - 1200

    |

    0|

    500|

    1000|

    1500|

    2000|

    0|

    500|

    1000|

    1500|

    2000

    Maximum Theoretical Voltage

    Current Density ( i in mA/cm2 )

    ActivationLosses

    Ohmic Losses

    MassTransport

    Losses

    OpenCircuitVoltage

    Cell P

    ower

    ( PC

    inm

    W)

    Cell V

    olta

    ge ( V C

    inVo

    lts )

    - gE = 2 F- gE = 2 F

    Cell PowerPC= VC x i

    Fuel Cells

  • Copyright Ned Mohan 2006 55

    Fig. 3-15 Greenhouse effect [13].

    Greenhouse Effect

    Copyright Ned Mohan 2006 56

    Fig. 3-16 Resource mix at XcelEnergy [14].

    1

    12

    2

    3

    3445

    5

    6

    6

    1

    12

    2

    3

    3445

    5

    6

    6

    Resource mix XcelEnergy

    Copyright Ned Mohan 2006 57

    Fig. 3-17 Electric power industry fuel costs in the U.S. in 2005 [1].

    Fuel Costs in the U.S. in 2005

    Copyright Ned Mohan 2006 58

    CHAPTER 4

    AC TRANSMISSION LINES AND UNDERGROUND CABLES

    Copyright Ned Mohan 2006 59 Fig. 4-1 500-kV transmission line (Source: University of Minnesota EMTP course).

    ( )a ( )c

    ( )b

    ( )a ( )c

    ( )b

    Transmission Tower, Conductor and Bundling

    Copyright Ned Mohan 2006 60

    Fig. 4-2 Transposition of transmission lines.

    1D2D

    3D

    1 cycle

    ( )a ( )b

    a

    b

    c

    Transposition

  • Copyright Ned Mohan 2006 61

    Fig. 4-3 Distributed parameter representation on a per-phase basis.

    line

    neutral (zeroimpedance)

    line R L

    C

    Distributed Parameters

    Copyright Ned Mohan 2006 62

    Fig. 4-4 (a) Cross-section of ACSR conductors, (b) skin-effect in a solid conductor.

    D

    TJ

    towards centersurface( )a ( )b

    Calculation of Transmission Line Resistance: Skin Effect

    Copyright Ned Mohan 2006 63

    Fig. 4-5 Flux linkage with conductor-a. ( )a ( )b ( )c

    Drai bi

    ci

    rai x dx

    a b

    c

    a b

    c

    D

    D

    bidx

    xa

    b

    c

    Calculation of Transmission Line Inductance

    Copyright Ned Mohan 2006 64

    Fig. 4-6 Electric field due to a charge.

    x

    q1 21x

    2x

    Electric Field Due to Transmission Line Voltage

    Copyright Ned Mohan 2006 65

    Fig. 4-7 Shunt capacitances.

    aq bq

    cq

    a b

    c

    D

    aq bq

    cq

    a b

    c

    D a b

    c

    a b

    c

    ( )a ( )b

    CC

    C

    n

    hypotheticalneutral

    Calculation of Transmission Line Capacitance

    Copyright Ned Mohan 2006 66

    Table 4-1 Transmission Line Parameters with Bundled Conductors (except at 230 kV)

    at 60 Hz [2, 6]

    Nominal Voltage ( / )R km ( / )L km ( / )C km 230 kV 0.055 0.489 3.373

    345 kV 0.037 0.376 4.518

    500 kV 0.029 0.326 5.220

    765 kV 0.013 0.339 4.988

    Typical Parameters for various Voltage Transmission Lines

  • Copyright Ned Mohan 2006 67

    Fig. 4-8 A 345-kV, single-conductor per phase, transmission system.

    Calculating Transmission Line Parameters using EMTDC

    Copyright Ned Mohan 2006 68

    Fig. 4-9 Distributed per-phase transmission line (G not shown).

    +

    ( )RV s

    +

    ( )SV s

    +

    ( )xV s

    0x

    ( )RI s( )SI s R sL

    1sC

    ( )xI s

    Distributed-Parameter Representation

    Copyright Ned Mohan 2006 69

    Fig. 4-10 Per-phase transmission line terminated with a resistance equal to cZ .

    +

    SV

    SIj L

    1jC cZ

    +

    0R RV V=

    0x

    SV RV

    ( )a ( )b

    RI

    Voltage Profile under SIL

    Copyright Ned Mohan 2006 70

    Table 4-2 Surge Impedance and Three-Phase Surge Impedance Loading [2, 6]

    Nominal Voltage ( )cZ ( )SIL MW230 kV 375 140 MW

    345 kV 280 425 MW

    500 kV 250 1000 MW

    765 kV 255 2300 MW

    Typical Surge Impedances and SIL for various Voltage Transmission Lines

    Copyright Ned Mohan 2006 71

    Table 4-3 Loadability of Transmission Lines [6]

    Line Length (km) Limiting Factor Multiple of SIL

    0 - 80 Thermal > 3

    80 - 240 5% Voltage Drop 1.5 - 3

    240 - 480 Stability 1.0 1.5

    Loadability of Transmission Lines

    Copyright Ned Mohan 2006 72

    Fig. 4-11 Long line representation.

    +

    ( )SV s

    ( )SI s

    +

    ( )RV s

    ( )RI sseriesZ

    2shuntY

    2shuntY

    Long-Line Representation

  • Copyright Ned Mohan 2006 73

    Fig. 4-12 Per-phase transmission line representation based on length.

    +

    SV

    SI

    +

    RV

    RIseriesZ

    2shuntY

    2shuntY

    +

    SV

    SI

    +

    RV

    RIlinej L

    2

    line

    jC

    2

    line

    jC

    lineR

    ( )a ( )b ( )c

    +

    SV

    SI

    +

    RV

    RIlinej LlineR

    Transmission Line Representations

    Copyright Ned Mohan 2006 74

    Fig. 4-13 Underground cable.

    Underground Cables

    Copyright Ned Mohan 2006 75

    CHAPTER 5

    POWER FLOW IN POWER SYSTEM NETWORKS

    Copyright Ned Mohan 2006 76

    Fig. 5-1 A three-bus 345-kV example system.

    Bus 1 Bus 3

    Bus 2

    Slack Bus

    PV Bus

    PQ BusP jQ+

    200km

    150km 150km

    Bus 1 Bus 3

    Bus 2

    Slack Bus

    PV Bus

    PQ BusP jQ+

    200km

    150km 150km

    Three-Bus Example Power System

    Copyright Ned Mohan 2006 77

    Table 5-1 Per-Unit Values in the Example System

    Line Series Impedance Z in (pu) Total Susceptance B in (pu) 1-2 12 (5.55 56.4)Z j= + = (0.0047 0.0474)j+ pu 675TotalB = = (0.8034) pu 1-3 13 (7.40 75.2)Z j= + = (0.0062 0.0632)j+ pu 900TotalB = = (1.0712) pu 2-3 23 (5.55 56.4)Z j= + = (0.0047 0.0474)j+ pu 675TotalB = = (0.8034) pu

    Transmission Lines in Example Power System

    Copyright Ned Mohan 2006 78

    Fig. 5-2 Example system of Fig. 5-1 for assembling Y-bus matrix.

    Bus 1 Bus 3

    Bus 2

    1I

    2I

    3I

    13Z

    12Z 23Z1V 3V

    2V

    Calculating Y-Bus in the Example Power System

  • Copyright Ned Mohan 2006 79

    Fig. 5-3 Plot of 24 x as a function of x .

    x

    24 x4

    2

    0

    2468

    1012

    0.5 1.0 1.5 2 3.0 3.5 4.0

    (0)x(1)x(2)x

    Newton-Raphson Procedure

    Copyright Ned Mohan 2006 80

    Fig. 5-4 Power-Flow results of Example 5-4.

    01 1 0V pu=

    02 1.05 -2.07V pu=

    03 0.978 -8.79V pu=

    ( )0.69 - 1.11j pu( )2.39 0.29j pu+

    ( )2.68 1.48j pu+( )5.0 1.0j pu+

    1 1 (3.08 - 0.82)P jQ j pu+ =

    2 2 ( 2.0 2.67)P jQ j pu+ = +

    Power Flow Results in the Example Power System

    Copyright Ned Mohan 2006 81

    CHAPTER 6

    TRANSFORMERS IN POWER SYSTEMS

    Copyright Ned Mohan 2006 82

    Fig. 6-1 Principle of transformers, beginning with just one coil.

    +

    1e

    1N

    m+

    1e

    1N

    mmi+

    1e

    mL

    mi+

    1e

    mL

    (a) (b)

    Transformer Principle: Generation of Flux

    Copyright Ned Mohan 2006 83

    Fig. 6-2 B-H characteristics of ferromagnetic materials.

    mB

    mH

    mB

    mH

    satB

    o

    o

    m

    mB

    mH

    satB

    o

    o

    m

    mB

    mH

    (a) (b)

    Core in Transformers

    Copyright Ned Mohan 2006 84

    Fig. 6-3 Transformer with the open-circuited second coil.

    +

    mi+

    1e m

    L

    Ideal

    Transformer

    1N 2N

    2e

    +

    mi+

    1e m

    L

    Ideal

    Transformer

    1N 2N

    2e

    +

    1e

    1N

    m

    2e

    2N

    +

    +

    1e

    1N

    m

    2e

    2N

    +

    (a) (b)

    Flux Coupling

  • Copyright Ned Mohan 2006 85

    Fig. 6-4 Transformer with load connected to the secondary winding.

    +

    1e

    1N

    m

    2e

    2N

    +

    ( )1i t

    ( )2i t

    +

    1e

    1N

    m

    2e

    2N

    +

    ( )1i t

    ( )2i t

    ( )2i t( )1i t

    +

    mi+

    1e m

    L

    Ideal

    Transformer

    1N 2N

    2e

    ( )2i t( )2i t( )1i t

    +

    mi+

    1e m

    L

    Ideal

    Transformer

    1N 2N

    2e

    ( )2i t

    (a) (b)

    Transformer with Load Connected to the Secondary

    Copyright Ned Mohan 2006 86

    Fig. 6-5 Transformer equivalent circuit including leakage impedances and core losses.

    '2I1I

    +

    mi+

    1E m

    jX

    Ideal Transformer

    1N 2N

    2E

    2I1R l1jX 2Rl2jX

    2V

    +

    1V

    +

    Real Transformer

    heR

    '2I1I

    +

    mi+

    1E m

    jX

    Ideal Transformer

    1N 2N

    2E

    2I1R l1jX 2Rl2jX

    2V

    +

    1V

    +

    Real Transformer

    heR

    Transformer Model

    Copyright Ned Mohan 2006 87

    Fig. 6-6 Eddy currents in the transformer core.

    m

    circulatingcurrents

    im

    circulatingcurrents

    i

    mcirculatingcurrents

    mcirculatingcurrents

    (a) (b)

    Eddy Current and Hysteresis Losses

    Copyright Ned Mohan 2006 88

    Fig. 6-7 Simplified transformer model.

    +

    pV

    +

    sV

    pI sIpZ sZ

    1: n

    pn sn+

    sV

    Transformer Simplified Model

    Copyright Ned Mohan 2006 89Fig. 6-8 Transferring leakage impedances across the ideal transformer of the model.

    +

    pV

    +

    sV

    pI sIpsZ

    1: n

    pn sn

    +

    pV

    +

    sV

    pI sIspZ1: n

    pn sn

    ( )a

    ( )b

    Transferring Leakage Impedances from One Side to Another

    Copyright Ned Mohan 2006 90

    Fig. 6-9 Transformer equivalent circuit in per unit (pu).

    +

    (pu)pV

    +

    (pu)sV

    (pu)I (pu)I(pu)trZ

    Transformer Equivalent Circuit in Per Unit

  • Copyright Ned Mohan 2006 91

    Fig. 6-10 Winding connections in a three-phase system. ( )a ( )b

    Connection of Transformer Windings

    Copyright Ned Mohan 2006 92

    Fig. 6-11 Including nominal-voltage transformers in per-unit.

    345 / 500 kV 500 / 345kV

    500kV

    Bus 3Bus 1

    Including Nominal Turns-Ratio Transformer in Power Flow Studies

    Copyright Ned Mohan 2006 93

    Fig. 6-12 Auto-transformer.

    +

    1V

    +

    2V

    1I

    1n2n

    ( )a

    2I

    +

    1V

    ( )1 2V V+1I

    1n

    2n 2I

    ( )1 2I I++

    2V

    ( )b

    +

    Auto-Transformer

    Copyright Ned Mohan 2006 94

    Fig. 6-13 Phase-shift in -Y connected transformers. ( )c

    +

    AV

    +

    aV

    03012:3

    jn e n

    ( )a

    a

    bc

    A

    B

    C( )b

    aVAV

    1n2n

    Phase-Shift Due to Wye-Delta Transformers

    Copyright Ned Mohan 2006 95

    Fig. 6-14 Transformer for phase-angle control.

    a

    bc

    a

    b

    c

    ( )a ( )b

    aV

    bVcV

    abV

    bcV

    caV

    ( )c

    aV

    bV

    cV

    a bV

    b cV

    c aV

    aV

    a

    bc

    a

    b

    c

    a

    bc

    a

    b

    c

    ( )a ( )b

    aV

    bVcV

    abV

    bcV

    caV

    ( )c

    aV

    bV

    cV

    a bV

    b cV

    c aV

    aV

    Phase-Shift Control by Transformers

    Copyright Ned Mohan 2006 96

    Fig. 6-15 Three-winding auto-transformer.

    HL T H

    L

    T

    ( )HZ ( )LZ

    ( )TZ 1n

    2n

    3n

    ( )a( )b

    a

    bc

    A

    B

    C

    a aa

    A

    C

    HL T H

    L

    T

    ( )HZ ( )LZ

    ( )TZ 1n

    2n

    3n

    ( )a( )b

    a

    bc

    A

    B

    C

    a aa

    A

    C

    Three-Winding Auto-Transformers

  • Copyright Ned Mohan 2006 97

    Fig. 6-16 General representation of an auto-transformer and a phase-shifter.

    +

    1V

    1: t

    1I 2I +

    2V

    +

    2Vt

    1/Y Z=A A

    General Representation of Auto- and Phase-Shift Transformers

    Copyright Ned Mohan 2006 98

    Fig. 6-17 Transformer with an off-nominal turns-ratio or taps in per unit; t is real.

    +

    1V

    1/Y Z=A A

    1: t

    1I 2I

    +

    2V

    ( )a ( )b

    11 Yt

    A2

    1 1 Yt t

    A

    /Y tA+

    1V

    +

    2V

    1I 2I

    11 Yt

    A2

    1 1 Yt t

    A

    /Y tA+

    1V

    +

    2V

    1I 2I

    PU Representation of Off-Nominal Turns-Ratio Transformers

    Copyright Ned Mohan 2006 99

    Fig. 6-18 Transformer of Example 6-3.

    +

    1V

    0.1j pu

    1: t

    1I 2I

    +

    2V

    ( )a ( )b

    1 0.909Y j pu= 2 0.826Y j pu=

    0.11sZ j pu=+

    1V

    +

    2V

    1I 2I

    Example of Off-Nominal Turns-Ratio Transformers

    Copyright Ned Mohan 2006 100

    CHAPTER 7

    HIGH VOLTAGE DC (HVDC) TRANSMISSION SYSTEMS

    Copyright Ned Mohan 2006 101

    Fig. 7-1 Power semiconductor devices.

    Thyristor IGBT MOSFETIGCT(a)

    101 102 103 104

    102

    104

    106

    108

    Thyr

    isto

    r

    IGBT

    MOSFET

    Pow

    er (V

    A)

    Switching Frequency (Hz)

    IGCT

    (b)

    Thyristor IGBT MOSFETIGCT(a)

    Thyristor IGBT MOSFETIGCT(a)

    101 102 103 104

    102

    104

    106

    108

    Thyr

    isto

    r

    IGBT

    MOSFET

    Pow

    er (V

    A)

    Switching Frequency (Hz)

    IGCT

    (b)

    101 102 103 104

    102

    104

    106

    108

    Thyr

    isto

    r

    IGBT

    MOSFET

    Pow

    er (V

    A)

    Switching Frequency (Hz)

    IGCT

    101 102 103 104

    102

    104

    106

    108

    Thyr

    isto

    r

    IGBT

    MOSFET

    Pow

    er (V

    A)

    Switching Frequency (Hz)

    IGCT

    (b)

    Symbols and Capabilities of Power Semiconductor Devices

    Copyright Ned Mohan 2006 102

    Figure 7-2 Power semiconductor devices: (a) ratings (source: Siemens), (b) variousapplications (source: ABB).

    ( )a

    Device blocking voltage [V]

    Dev

    ice

    curre

    nt [A

    ]

    104103102101

    104

    103

    102

    101

    100

    HVDCTraction

    MotorDrive

    PowerSupply

    Auto-motive

    Lighting

    FACTS

    Device blocking voltage [V]

    Dev

    ice

    curre

    nt [A

    ]

    104103102101

    104

    103

    102

    101

    100

    Device blocking voltage [V]

    Dev

    ice

    curre

    nt [A

    ]

    104103102101

    104

    103

    102

    101

    100

    HVDCTraction

    MotorDrive

    PowerSupply

    Auto-motive

    Lighting

    FACTS

    ( )b( )a

    Device blocking voltage [V]

    Dev

    ice

    curre

    nt [A

    ]

    104103102101

    104

    103

    102

    101

    100

    HVDCTraction

    MotorDrive

    PowerSupply

    Auto-motive

    Lighting

    FACTS

    Device blocking voltage [V]

    Dev

    ice

    curre

    nt [A

    ]

    104103102101

    104

    103

    102

    101

    100

    Device blocking voltage [V]

    Dev

    ice

    curre

    nt [A

    ]

    104103102101

    104

    103

    102

    101

    100

    HVDCTraction

    MotorDrive

    PowerSupply

    Auto-motive

    Lighting

    FACTS

    ( )b

    Power Semiconductor Devices and Applications

  • Copyright Ned Mohan 2006 103

    Fig. 7-3 HVDC system one-line diagram. 1AC 2AC

    HVDC Line

    HVDC System

    Copyright Ned Mohan 2006 104

    Fig. 7-4 HVDC systems: (a) Current-Link, and (b) Voltage-Link.

    AC1 AC2

    +

    AC1 AC2AC1 AC2AC1 AC2

    +

    AC1 AC2AC1 AC2AC1 AC2AC1 AC2

    ( )a ( )b

    HVDC Systems: Voltage-Link and Current-Link

    Copyright Ned Mohan 2006 105

    Fig. 7-5 HVDC projects, mostly current-link systems, in North America [source: ABB]

    3100MW

    1920MW

    200MW

    200MW

    200MW

    200MW

    200MW

    210MW

    150MW

    200MW

    600MW

    1000MW500MW

    1000MW

    36MW

    312MW370MW

    320MW

    100MW

    200MW

    350MW

    330MW

    1620MW

    2000MW

    2000MW

    690MW

    2250MW

    2138MW

    3100MW

    1920MW

    200MW

    200MW

    200MW

    200MW

    200MW

    210MW

    150MW

    200MW

    600MW

    1000MW500MW

    1000MW

    36MW

    312MW370MW

    320MW

    100MW

    200MW

    350MW

    330MW

    1620MW

    2000MW

    2000MW

    690MW

    2250MW

    2138MW

    HVDC Projects in North America

    Copyright Ned Mohan 2006 106

    Fig. 7-6 Block diagram of a current-link HVDC system.

    Current-Link HVDC System

    Copyright Ned Mohan 2006 107

    Fig. 7-7 Thyristors.

    K

    A

    G

    P

    N

    P

    N

    A

    G

    pn1

    pn2

    pn3

    K

    (a) (b)

    K

    A

    GK

    A

    G

    P

    N

    P

    N

    A

    G

    pn1

    pn2

    pn3

    K

    P

    N

    P

    N

    A

    G

    pn1

    pn2

    pn3

    K

    (a) (b)

    Thyristors

    Copyright Ned Mohan 2006 108

    Fig. 7-8 Thyristor circuit with a resistive load and a series inductance.

    ( )b

    t

    t

    t

    0

    0

    0

    dvdV

    svsi

    Gi

    0t =

    ( )a

    si

    sL+

    +

    dvsv R

    ( )b

    t

    t

    t

    0

    0

    0

    dvdV

    svsi

    Gi

    0t =

    ( )b

    t

    t

    t

    0

    0

    0

    dvdV

    svsi

    Gi

    0t =

    ( )a

    si

    sL+

    +

    dvsv R( )a

    si

    sL+

    +

    dvsv R

    Primitive Thyristor Circuits

  • Copyright Ned Mohan 2006 109

    Fig. 7-9 Three-phase Full-Bridge thyristor converter. (a)

    di

    6

    5

    4 2

    1 3

    cnv +

    +

    +anv

    bnv sL

    ai

    +

    +anv ai

    dI+ d

    v

    N

    P135

    462

    (b)

    n n

    (a)

    di

    6

    5

    4 2

    1 3

    cnv +

    +

    +anv

    bnv sL

    ai

    +

    +anv ai

    dI+ d

    v

    N

    P135

    462

    (b)

    n n

    +

    dv

    (a)

    di

    6

    5

    4 2

    1 3

    cnv +

    +

    +anv

    bnv sL

    ai

    +

    +anv ai

    dI+ d

    v

    N

    P135

    462

    (b)

    n n

    (a)

    di

    6

    5

    4 2

    1 3

    cnv +

    +

    +anv

    bnv sL

    ai

    +

    +anv ai

    dI+ d

    v

    N

    P135

    462

    (b)

    n n

    +

    dv

    Three-Phase Thyristor Converter

    Copyright Ned Mohan 2006 110

    Fig. 7-10 Waveforms in a three-phase rectifier with 0sL = and 0 = .

    t0

    cvbvav

    (a)

    ai

    0o120

    o60 tbi

    0

    ci

    0

    Nv

    Pv

    (c)t

    doV

    LL2Vdv

    0(b)

    t

    t

    t0

    cvbvav

    (a)

    ai

    0o120

    o60 tbi

    0

    ci

    0

    Nv

    Pv

    (c)t

    doV

    LL2Vdv

    0(b)

    t

    t

    Three-Phase Diode Rectifier Waveforms

    Copyright Ned Mohan 2006 111Fig. 7-11 Waveforms with 0sL = .

    0

    0

    0

    0

    t

    t

    t

    t

    anv bnv cnvPnv

    Nnv

    A

    ai

    bi

    ci

    1

    4

    3

    66

    1

    5 5

    2

    4

    0

    0

    0

    0

    t

    t

    t

    t

    anv bnv cnvPnv

    Nnv

    A

    ai

    bi

    ci

    1

    4

    3

    66

    1

    5 5

    2

    4

    Three-Phase Thyristor Converter Waveforms with zero AC-Side Inductance

    Copyright Ned Mohan 2006 112Fig. 7-12 Waveforms in the inverter mode.

    0

    0

    0

    0

    t

    t

    t

    t

    anv bnv cnv

    Pnv

    Nnv

    ai

    bi

    ci

    1

    4

    3

    6

    1

    5

    2

    4

    3

    2

    0

    0

    0

    0

    t

    t

    t

    t

    anv bnv cnv

    Pnv

    Nnv

    ai

    bi

    ci

    1

    4

    3

    6

    1

    5

    2

    4

    3

    2

    Three-Phase Inverter Waveforms

    Copyright Ned Mohan 2006 113

    Fig. 7-13 Average dc-side voltage as a function of . ( )b( )a

    00

    dV

    090 0160

    0180

    dV

    dI

    Rectifierd dP V I= = +

    Inverterd dP V I= =

    DC-Side Voltage as a Function of Delay Angle

    Copyright Ned Mohan 2006 114

    Fig. 7-14 Waveforms with sL .

    0

    0

    t

    t

    anv bnv cnvPnv

    Nnv

    uA

    ai 1

    4

    1

    4

    u

    0

    0

    t

    t

    anv bnv cnvPnv

    Nnv

    uA

    ai 1

    4

    1

    4

    u

    Thyristor Converter Waveforms in the Presence of AC-Side Inductance

  • Copyright Ned Mohan 2006 115

    Fig. 7-15 Power-factor angle. ( )b( )a

    aV aV

    1aI1aI

    1

    1

    Power Factor Angle in Rectifier and Inverter Modes

    Copyright Ned Mohan 2006 116

    CU One-line Diagram

    Fig. 7-16 One-line diagram of the HVDC Transmission System (source: CU project).

    Copyright Ned Mohan 2006 117

    Fig. 7-17 Six-pulse and 12-pulse current and voltage waveforms [2]. ( )a ( )b

    ( )ai Y Y

    ( )ai Y

    12-Pulse Waveforms

    Copyright Ned Mohan 2006 118

    Fig. 7-18 A pole of an HVDC system.

    di

    +

    1dv

    +

    2dvAC 1 AC 2AC 1 AC 2

    dR dL

    di

    +

    1dv

    +

    2dvAC 1 AC 2AC 1 AC 2

    dR dL

    HVDC System Representation for Control

    Copyright Ned Mohan 2006 119

    Fig. 7-19 Control of an HVDC system [3].

    1dV

    0dI,d refI

    min

    Inverter characteristicwith =

    Rectifier characteristicin a current-control mode

    Control of HVDC Converters

    Copyright Ned Mohan 2006 120Fig. 7-20 Voltage-link HVDC transmission system [source: ABB].

    A Voltage-Link HVDC System in Northeastern U.S.

  • Copyright Ned Mohan 2006 121

    Fig. 7-21 Block diagram of voltage-link HVDC system.

    AC1 AC2

    +

    AC1 AC2AC1 AC2AC1 AC2

    +

    1 1,P Q 2 2,P Q

    Voltage-Link HVDC System Block Diagram

    Copyright Ned Mohan 2006 122

    Fig. 7-22 Block diagram of a voltage-link converter and the phasor diagram.

    +dV

    convv

    L

    busvLi+

    dVconvv

    L

    busvLi +

    convV

    LI

    + busV

    + L LjX I

    ( )a ( )b ( )c

    LI

    LI

    L LjX I

    convV

    busV

    Phasor Diagram on the Ac-Side of the Voltage-Link Converter

    Copyright Ned Mohan 2006 123

    Fig. 7-23 Synthesis of sinusoidal voltages.

    +

    dV

    abc

    1: ad 1: bd 1: cd 1: ad

    ai

    dV

    dai

    +

    aNv

    ( )a ( )b

    Representation of Voltage-Link Converter with Ideal Transformers

    Copyright Ned Mohan 2006 124

    Fig. 7-24 Sinusoidal variation of turns-ratio ad .

    1

    0.5

    0

    dV

    0.5 dV

    0

    t

    t

    ad

    aNv

    ad

    aV

    Synthesis of Average Sinusoidal Voltages

    Copyright Ned Mohan 2006 125

    Fig. 7-25 Three-phase synthesis.

    a

    b

    c

    N

    2dV

    2dV

    2dV

    av bv cvac-side

    ( )a

    dV

    0.5 dV

    0

    av

    t( )a

    aNv bNv cNv

    Converter Output Voltages and Voltages across the Load

    Copyright Ned Mohan 2006 126

    Fig. 7-26 Realization of the ideal transformer functionality.

    aq

    +

    dV

    daiaia

    N

    +aNv

    (a) (b)

    +

    dV

    aq

    Buck Boost

    aq

    ai

    +

    aNv

    Switching Power-Pole of Voltage-Link Converters

  • Copyright Ned Mohan 2006 127

    Fig. 7-27 PWM to synthesize sinusoidal waveform.

    aNv

    0 t

    dV

    aNv

    aNv

    aNv

    0

    0sT

    ( )a

    ( )b

    hV

    1f sf 2 sf 3 sf

    Switching in Sinusoidal Average Voltage Waveform

    Copyright Ned Mohan 2006 128

    CHAPTER 8

    Distribution System, Loads and Power Quality

    Copyright Ned Mohan 2006 129

    Fig. 8-1 Residential distribution system.

    13.8kV

    Transformer

    120V

    120V

    120V

    1House

    2House

    3House

    Residential Distribution System

    Copyright Ned Mohan 2006 130

    Fig. 8-2 System load.

    100%0

    Load(MW)

    percentage of the time 100%0

    Load(MW)

    percentage of the time

    kW

    TimeAM NOON PM

    12 6 12 6 12

    peak

    (a) (b)

    Daily Load and Load-Duration Curves

    Copyright Ned Mohan 2006 131

    Fig. 8-3 Utility loads.

    Motors 51%HVAC 16%

    IT 14%

    Lighting 19%

    Motors 51%HVAC 16%

    IT 14%

    Lighting 19%

    Motors 51%HVAC 16%

    IT 14%

    Lighting 19%

    36%Residential35%

    Commercial

    29%Industrial

    36%Residential35%

    Commercial

    29%Industrial

    ( )a ( )b

    Utility Load Distribution

    Copyright Ned Mohan 2006 132

    Table 8-1 Power Factor and Voltage Sensitivity of Power Systems Load

    Type of Load Power Factor /a P V= /b Q V= Electric Heating 1.0 2.0 0

    Incandescent Lighting 1.0 1.5 0 Fluorescent Lighting 0.9 1.0 1.0

    Motor Loads 0.8 0.9 0.05 0.5 1.0 3.0 Modern Power-

    Electronics based Loads

    1.0 0 0

    Power Factor and Voltage Sensitivity of Power Systems Load

  • Copyright Ned Mohan 2006 133

    Fig. 8-4 Voltage-link-system for modern and future power-electronics based loads.

    dV

    +

    Utility

    Load

    Voltage-Link System used in Power Electronics Based Loads

    Copyright Ned Mohan 2006 134

    Fig. 8-5 Per-phase, steady state equivalent circuit of a three-phase induction motor.

    +

    (at )a

    V+

    lsj LmaI

    maE

    'raIaIsR

    'lrj L

    ' synrslip

    R

    mj L

    Induction Motor Per-Phase Diagram

    Copyright Ned Mohan 2006 135

    Fig. 8-6 Torque-speed characteristic of induction motor at various applied frequencies.

    emT

    1f LoadTorque

    0

    2f3f4f5f

    m1syn

    1slip

    3syn

    3slip

    Torque-Speed Characteristics

    Copyright Ned Mohan 2006 136

    Fig. 8-7 Switch-mode dc power supply.

    60Hz ac

    inputrectifier

    topology to convertdc to dc with isolation

    Feedbackcontroller

    HF transformer

    dc to HF ac

    OutputinV

    +

    *oV

    oV60Hz ac

    inputrectifier

    topology to convertdc to dc with isolation

    Feedbackcontroller

    HF transformer

    dc to HF ac

    OutputinV

    +

    *oV

    oV

    Switch-Mode DC Power Supplies

    Copyright Ned Mohan 2006 137

    Fig. 8-8 Uninterruptible power supply.

    Rectifier Inverter Filter Critical Load

    Energy Storage

    Rectifier Inverter Filter Critical Load

    Energy Storage

    Rectifier Inverter Filter Critical Load

    Energy Storage

    Uninterruptible Power Supplies (UPS)

    Copyright Ned Mohan 2006 138

    Fig. 8-9 Alternate feeder.

    Load

    Feeder 1

    Feeder 2

    Load

    Feeder 1

    Feeder 2

    Static Power-Transfer Switch

  • Copyright Ned Mohan 2006 139

    Fig. 8-10 CBEMA curve.

    CBEMA Curve Showing Acceptable Voltage-Time Region

    Copyright Ned Mohan 2006 140

    Fig. 8-11 Dynamic Voltage Restorer (DVR).

    Power Electronic Interface

    Loadsv +

    +injv

    Power Electronic Interface

    LoadPower Electronic Interface

    Loadsv +

    +injv

    Dynamic Voltage Restorers (DVR)

    Copyright Ned Mohan 2006 141

    Fig. 8-12 Three-Phase Voltage Regulator (Courtesy of Siemens) [5].

    Voltage Regulating Transformers

    Copyright Ned Mohan 2006 142

    Fig. 8-13 STATCOM [4].

    Utility

    STATCOM

    jXUtility

    STATCOM

    jX

    STATCOM

    Copyright Ned Mohan 2006 143

    Figure 8-14 Voltage and current phasors in simple R-L circuit.

    sI

    sV

    is

    vs+

    ( )a( )b

    sI

    sV

    is

    vs+

    is

    vs+

    ( )a( )b

    Linear Load

    Copyright Ned Mohan 2006 144

    Figure 8-15 Current drawn by power electronics equipment without PFC.

    t

    ( )distortion s s1i i i=

    t0/1

    s1iisvs

    1T

    0

    ( )a

    ( )b

    t

    ( )distortion s s1i i i=

    t0/1

    s1iisvs

    1T

    0

    ( )a

    ( )b

    Waveforms Associated with Power Electronics-Based Load

  • Copyright Ned Mohan 2006 145

    1T

    si

    t

    I

    I 0

    s1i

    t0

    I

    I

    /4I

    t

    distortioni

    0

    Figure 5-4 Example 5-1.

    ( )c

    ( )b

    ( )a

    1T

    si

    t

    I

    I 0

    s1i

    t0

    I

    I

    /4I

    t

    distortioni

    0

    Figure 5-4 Example 5-1.

    ( )c

    ( )b

    ( )a

    Figure 8-16 Example 8-1.

    1T

    si

    t

    I

    I 0

    s1i

    t0

    I

    I

    /4I

    t

    distortioni

    0

    Figure 5-4 Example 5-1.

    ( )c

    ( )b

    ( )a

    1T

    si

    t

    I

    I 0

    s1i

    t0

    I

    I

    /4I

    t

    distortioni

    0

    Figure 5-4 Example 5-1.

    ( )c

    ( )b

    ( )a

    Figure 8-16 Example 8-1.

    Example of Distorted Current

    Copyright Ned Mohan 2006 146

    Fig. 8-17 Relation between PF/DPF and THD.

    PFDPF

    %THD0 50 100 150 200 250 300

    1

    .0 9

    .0 8

    .0 7

    .0 6

    .0 5

    .0 4

    PFDPF

    %THD0 50 100 150 200 250 300

    1

    .0 9

    .0 8

    .0 7

    .0 6

    .0 5

    .0 4

    Influence of Distortion on Power Factor

    Copyright Ned Mohan 2006 147

    Table 5-1 Harmonic current distortion (Ih/I1)

    1/scI I

    ( %)Odd HarmonicOrder h in

    35 h23 35h

  • Copyright Ned Mohan 2006 151

    Fig. 9-1 Synchronous generators driven by (a) steam turbines, and (b) hydraulic turbines.

    HGenerator

    Penstock

    Turbine

    Water

    Steam at High pressure

    Pump

    Heat in

    Heat out

    TurbineBoiler

    Condenser

    Gen

    ( )a ( )b

    Application of Synchronous Generators

    Copyright Ned Mohan 2006 152

    Fig. 9-2 Machine cross-section. (a) (b)

    Air gap

    Stator

    Air gap

    Stator

    Cross-section of Synchronous Generators

    Copyright Ned Mohan 2006 153

    Fig. 9-3 Machine structure. (a) (b) (c)

    SN SN

    S

    N N

    S

    S

    N N

    S

    S

    N

    N

    S S

    N

    N

    S

    Synchronous Generator Structure

    Copyright Ned Mohan 2006 154

    Fig. 9-4 Three phase windings on the stator.

    axisa

    axisb

    axisc

    2 / 32 / 3

    2 / 3

    bi

    ai

    ci

    axisa

    axisb

    axisc

    2 / 32 / 3

    2 / 3

    bi

    ai

    ci1

    234

    56

    7

    1'

    2 '

    3 ' 4 ' 5 '

    6 ' ai

    ai7 '1

    234

    56

    7

    1'

    2 '

    3 ' 4 ' 5 '

    6 ' ai

    ai7 '

    (a) (b)

    Sinusoidally-Distributed Windings

    Copyright Ned Mohan 2006 155

    Fig. 9-5 Connection of three phase windings.

    a'a

    b

    'b

    c

    'c

    ai

    bi

    ci

    axisa

    axisb

    axisc o240

    o120

    o0

    a'a

    b

    'b

    c

    'c

    ai

    bi

    ci

    axisa

    axisb

    axisc o240

    o120

    o0

    b

    bi

    ai

    cic

    a

    bbi

    ai

    cic

    a

    (a) (b)

    Three-Phase Winding Connection in a Wye

    Copyright Ned Mohan 2006 156

    Fig. 9-6 Field winding on the rotor that is supplied by a dc current fI .

    a-axis

    N

    S

    syn

    Synchronous Generator Rotor Field

  • Copyright Ned Mohan 2006 157

    Fig. 9-7 Current direction and voltage polarities; the rotor position shown induces maximum ae .

    a-axis

    N

    Ssyn

    +

    ae

    Voltage induced in the Stator Phase due to Rotating Rotor Field

    Copyright Ned Mohan 2006 158

    Fig. 9-8 Induced emf afe due to rotating rotor field with the rotor.

    a-axis

    N

    Ssyn

    +

    afe

    ( )a ( )b ( )c

    N

    S

    a-axis

    (at 0)fB t =G

    afERe

    Im

    syn

    Representation of Induced Stator Voltage due to Rotor Field

    Copyright Ned Mohan 2006 159

    Fig. 9-9 Armature reaction due to phase currents.

    axisa

    axisb

    axisc

    2 / 32 / 3

    2 / 3

    bi

    ai

    ci

    axisa

    axisb

    axisc

    2 / 32 / 3

    2 / 3

    bi

    ai

    ci

    ( )a ( )b ( )c

    0je

    23

    je

    43

    je

    aI

    Re

    Im

    (at 0)ARB t =

    G

    a-axis

    ,a ARE

    090

    Armature Reaction Due to Three Stator Currents

    Copyright Ned Mohan 2006 160

    Fig. 9-10 Phasor diagram and per-phase equivalent circuit.

    ( )a ( )b

    Re

    Im

    aI

    afE

    ,a ARE

    aE

    m ajX I afE

    +

    + ,a ARE

    + m ajX I +

    aE

    +

    aV

    sX A

    aI

    sR

    Superposition of the two Induced Voltages and Per-Phase Representation

    Copyright Ned Mohan 2006 161

    Fig. 9-11 Power output and synchronism.

    stability limitsteady state

    generatormode

    motoringmode

    0o90

    o90

    Pstability limit

    steady state

    +

    oV V 0 =

    aI

    af afE E = TjX +

    ( )a

    ( )b

    Power Out as a function of rotor Angle

    Copyright Ned Mohan 2006 162

    Fig. 9-12 Steady state stability limit.

    0 o90( )a

    eP

    1 2

    e1Pe2P

    m1Pm2P

    ( )b0 o90

    eP,maxeP

    Steady State Stability Limit

  • Copyright Ned Mohan 2006 163

    Fig. 9-13 Excitation control to supply reactive power.

    {aqIaqI o90

    o90

    aIaI

    aI

    s ajX I s ajX I

    s ajX IafEafE afE

    aV

    aV

    aV

    ( )a ( )b ( )c

    {aqIaqI o90

    o90

    aIaI

    aI

    s ajX I s ajX I

    s ajX IafEafE afE

    aV

    aV

    aV

    ( )a ( )b ( )c

    Reactive Power Control by Field Excitation

    Copyright Ned Mohan 2006 164

    Fig. 9-14 Synchronous Condenser.

    SynchronousCondenser

    Synchronous Condenser

    Copyright Ned Mohan 2006 165

    Fig. 9-15 Field exciter for automatic voltage regulation (AVR).

    ac input

    phase-controlledrectifier

    slip rings

    field winding

    Generator

    ac regulator

    output

    Automatic Voltage Regulation (AVR)

    Copyright Ned Mohan 2006 166

    Fig. 9-16 Armature reaction flux in steady state.

    Armature Reaction Flux in Steady State Leading to Synchronous Reactance

    Copyright Ned Mohan 2006 167

    Fig. 9-17 Armature (a) and field current (b), after a sudden short circuit [source: 4]. ( )a ( )b

    Simulation of a Short-Circuit Assuming a Constant-Flux Model

    Copyright Ned Mohan 2006 168

    Fig. 9-18 Synchronous generator modeling for transient and sub-transient conditions.

    ( )b( )a

    '

    ''

    af

    af

    af

    EEE

    +

    + '

    ''

    s a

    s a

    s a

    jX IjX IjX I

    +

    aE

    aI

    Re

    Im

    aI

    afE

    aE

    s ajX I'afE

    's ajX I

    ''s ajX I

    ''afE

    Representation for Steady State, Transient Stability and Fault Analysis

  • Copyright Ned Mohan 2006 169

    CHAPTER 10

    VOLTAGE REGULATION AND STABILITY IN POWER SYSTEMS

    Copyright Ned Mohan 2006 170

    Fig. 10-1 A radial system.

    R RP jQ+SV RVLjX

    S SP jQ+

    Load

    (a) (b)

    S SP jQ+ R RP jQ+LjX

    SV RV

    +

    +

    I

    A Radial System

    Copyright Ned Mohan 2006 171

    Fig. 10-2 Phasor diagram and the equivalent circuit with 1puS RV V= = . (a)

    I

    LjX I

    RV

    SV

    / 2

    (b)

    S SP jQ+

    SV

    +

    LjX I

    RQRP

    RV

    +

    Voltages and Current Phasors with Both-Side Voltages at 1 PU

    Copyright Ned Mohan 2006 172

    Fig. 10-3 Voltage profile along the transmission line.

    SV

    +

    RV

    +

    xV

    +

    x

    (a) (b)

    (1pu)SV

    (1pu)RV

    xV

    RP SIL

    Voltage Profile for Three Values of SIL

    Copyright Ned Mohan 2006 173

    Fig. 10-4 Voltage collapse in a radial system (example of 345-kV line, 200 km long).

    0 0.5 1 1.5 2 2.5 3 3.50

    0.2

    0.4

    0.6

    0.8

    1

    1.2

    1.4

    ( )a

    ( )b

    SV RVLjX

    R RP jQ+

    /RP SIL

    R

    S

    VV

    1PF =

    0.9(leading)PF =

    0.9(lagging)PF =

    Nose Curves at Three Power Factors as a function of Loading

    Copyright Ned Mohan 2006 174

    Fig. 10-5 Reactive power supply capability of synchronous generators.

    A

    B

    C

    0P

    Q

    Synchronous Generator Reactive Power Supply Capability

  • Copyright Ned Mohan 2006 175

    Fig. 10-6 Effect of leading and lagging currents due to the shunt compensating device.

    +

    ThV

    ThjX +

    busV

    I

    (a)

    busV

    I

    ThjX IThV

    busV

    I

    ThjX I

    ThV

    (b)

    ThjX I+

    Effect of Current Power Factor on Bus Voltage

    Copyright Ned Mohan 2006 176

    Fig. 10-7 V-I characteristic of SVC.

    busV

    1j C

    CI

    busV

    0CI

    ( )a ( )b

    Static Var Compensators (SVC)

    Copyright Ned Mohan 2006 177

    Fig. 10-8 Thyristor-Controlled Reactor (TCR).

    busV

    LI

    ( )a ( )c0

    LI

    busV

    090 090 >

    ( )b

    busv

    LiLi

    Thyristor Controlled Reactors (TCR)

    Copyright Ned Mohan 2006 178

    Fig. 10-9 Parallel combination of SVC and TCR.

    busV

    1j C

    CI

    ( )a

    LILI

    I

    ( )b ( )c

    busV busV

    I0 0 Iinductivecapacitive inductivecapacitive

    AB

    C

    1V

    1V 2V

    2V

    LinearRange

    Voltage Control by SVC and TCR Combination

    Copyright Ned Mohan 2006 179

    Fig. 10-10 STATCOM.

    busV

    convVconvI

    + convjXI

    +

    dV

    +

    busV

    +

    convV

    convI

    + convjXI

    ( )a ( )b

    STATCOM

    Copyright Ned Mohan 2006 180

    Fig. 10-11 STATCOM VI characteristic. convI0 inductivecapacitive

    LinearRange

    busV

    STATCOM V-I Characteristic

  • Copyright Ned Mohan 2006 181

    Fig. 10-12 Thyristor-Controlled Series Capacitors (TCSC) [source: Siemens Corp.]. ( )a ( )c( )b

    Thyristor-Controlled Series Capacitor (TCSC)

    Copyright Ned Mohan 2006 182

    CHAPTER 11

    TRANSIENT AND DYNAMIC STABILITY OF POWER SYSTEMS

    Copyright Ned Mohan 2006 183

    Fig. 11-1 Simple one-generator system connected to an infinite bus.

    1V 0B BV V=

    ( )amP

    LX

    LX

    ( )b

    1VE 0BV +

    +

    +

    I'( )d trj X X+ / 2LjX

    eP

    One-Machine Infinite-Bus System

    Copyright Ned Mohan 2006 184

    Fig. 11-2 Power-angle characteristics.

    post-faultPre-fault

    LX

    LX

    Bus 1 0B BV V=

    0

    eP

    mP

    0 1( )a ( )b

    mP ePduring-fault

    Power-Angle Characteristic in One-Machine Infinite-Bus System

    Copyright Ned Mohan 2006 185

    Fig. 11-3 Rotor-angle swing in Example 11-1. 0 0 . 2 0 . 4 0 . 6 0 . 8 1 1 . 2 1 . 4

    2 0

    2 5

    3 0

    3 5

    4 0

    4 5

    5 0

    5 5

    Rotor-Angle Swing Following a Fault and a Line Taken Out

    Copyright Ned Mohan 2006 186

    Fig. 11-4 Fault on one of the transmission lines.

    ( )b

    eP

    e mP P=

    00 c A m

    A

    B

    Pre-fault

    during fault

    post-fault

    max( )a

    LX

    LX

    Bus 1 0B BV V=

    mP eP

    Power-Angle Characteristics

  • Copyright Ned Mohan 2006 187

    Fig. 11-5 Rotor oscillations after the fault is cleared.

    eP

    e mP P=

    01 m

    2

    C

    D

    Pre-fault

    post-fault

    Rotor Oscillations After the Fault is Cleared

    Copyright Ned Mohan 2006 188

    Fig. 11-6 Critical clearing angle.

    eP

    e mP P=

    00 crit

    A

    B

    Pre-fault

    post-fault

    max1

    Critical Clearing Angle using Equal-Area Criterion

    Copyright Ned Mohan 2006 189

    Fig. 11-7 Power angle curves and equal-area criterion in Example 11-2.

    0 20 40 60 80 100 120 140 160 1800

    5

    10

    15

    20

    25

    30

    35

    40( )eP pu

    e mP P=

    Pre-fault

    during fault

    post-fault

    00 22.47 = 0115.28m =075c =A

    A

    B

    Example using Equal-Area Criterion

    Copyright Ned Mohan 2006 190

    Fig. 11-8 Block diagram of transient stability program for an n-generator case.

    Initial Power Flow'Calculate and eP E

    for each generator

    , ,m k e kP P=

    ', and held constantm k kP E

    Electro-dynamicdifferentialEquations

    for 1,2,3....k =

    and k k ,e kP

    Phasor Calculations'using k kE

    (load may be assumedas a constant impedance)

    Transient Stability Calculations in Large Networks

    Copyright Ned Mohan 2006 191

    Fig. 11-9 A 345-kV test example system.

    Bus-1 Bus-3

    Bus-2

    1mP 1eP

    2mP

    2eP

    Example Power System for Transient Stability Analysis

    Copyright Ned Mohan 2006 192

    Fig. 11-10 Rotor-angle swings of 1 and 2 in Example 11-3. 0 0 . 2 0 . 4 0 . 6 0 . 8 1 1 . 2 1 . 4 1 . 6

    0

    1 0 0

    2 0 0

    3 0 0

    4 0 0

    5 0 0

    6 0 0

    7 0 0

    8 0 0

    12

    Rotor Angle Swings in the Example Power System Following a Fault

  • Copyright Ned Mohan 2006 193

    Fig. 11-11 Growing Power Oscillations: Western USA/Canada system, Aug 10, 1996 [4].

    Importance of Dynamic Stability

    Copyright Ned Mohan 2006 194

    CHAPTER 12

    CONTROL OF INTERCONNECTED POWER SYSTEM AND ECONOMIC DISPATCH

    Copyright Ned Mohan 2006 195

    Fig. 12-1 Field exciter for automatic voltage regulation (AVR).

    ac input

    phase-controlledrectifier

    slip rings

    field winding

    Generator

    ac regulator

    output

    Automatic Voltage Regulation (AVR)

    Copyright Ned Mohan 2006 196

    Fig. 12-2 (a) The Interconnections in North America, (b) Control Areas [Source: 2]

    ( )a ( )b

    Control Areas (Balancing Authorities)

    Copyright Ned Mohan 2006 197

    Fig. 12-3 Load-Frequency Control (ignore the supplementary control at present).

    mP eP LoadP( )a

    Regulator

    Turbine

    TurbineGovernor

    Frequency

    -SupplementaryControl

    ( )b mP

    f

    f

    ab

    mP

    0

    0f

    G

    G

    Steam-ValvePosition

    mP

    1R

    slope R=

    Load-Frequency Control and Regulation

    Copyright Ned Mohan 2006 198

    Fig. 12-4 Response of two generators to load-frequency control.

    1mP 1eP

    2mP 2eP

    LoadP( )a ( )b

    mP1mP 2mP

    f

    f

    1 2( )m mP P +

    unit1 unit 2

    ac d

    1mP2mP

    be

    unit 2

    unit 1

    0

    0f

    1G

    1G 2G

    2G1G

    1G

    Load Sharing

  • Copyright Ned Mohan 2006 199

    Fig. 12-5 Two control areas.

    Area 1 Area 212P 21P

    12jX

    Synchronizing Torque between Two Control Areas

    Copyright Ned Mohan 2006 200

    Fig. 12-6 Area Control Error (ACE) for Automatic Generation Control (AGC).

    ++

    B

    1R

    SupplementaryController

    Governor

    (frequency deviation)f

    (tie-line flow deviation)P

    (Area Control Error)ACE

    Change in Steam Valve Positionks

    Automatic Generation Control (AGC) and Area Control Error (ACE)

    Copyright Ned Mohan 2006 201

    Fig. 12-7 Two control areas in the example power system with 3 buses.

    1mP 1eP

    2mP

    2eP

    1 2P

    1 3PBus-1 Bus-3

    Bus-2M

    M

    Area 2Area 1Load

    Two Control Areas in the Example Power System

    Copyright Ned Mohan 2006 202

    Fig. 12-8 Line flows in Example 12-2.

    5LoadP pu=

    2 2mP pu=

    2 3mP pu=

    1 3 2.35P pu =

    1 2 0.65P pu =

    Bus-1Bus-3

    Bus-2

    Area 1 Area 2

    2 3 3.65P pu =6LoadP pu=

    2 3mP pu=

    2 3mP pu=

    1 3 2.64P pu =

    1 2 0.36P pu =

    Bus-1Bus-3

    Bus-2

    Area 1 Area 2

    2 3 3.36P pu =6LoadP pu=

    2 3mP pu=

    2 3mP pu=

    1 3 2.64P pu =

    1 2 0.36P pu =

    Bus-1Bus-3

    Bus-2

    Area 1 Area 2

    2 3 3.36P pu =

    ( )a ( )b

    Power Flow on Tie-Lines between Two Control Areas Following a Load Change

    Copyright Ned Mohan 2006 203

    Fig. 12-9 Electrical equivalent of two area interconnection.

    12jX 2jX1jX+1 1E

    + 2 2E

    Electrical Equivalent of Two Areas

    Copyright Ned Mohan 2006 204Fig. 12-10 Two-area system with AGC. Source: adapted from [6].

    ++

    +

    +

    +

    +

    1B1

    1R

    1sP 11

    1GT s + 11

    1ST s + 1 11

    M s D+1s

    1mP

    1LoadP

    Regulator Governor Steam Turbine Area 1

    1s

    1

    2B2

    1R

    2sP 2mP

    Regulator Governor Steam Turbine Area 22s

    2LoadP

    2

    2

    11GT s + 2

    11ST s + 2 2

    1M s D+

    1s

    1 2( ) 12T

    12 12 1 2( )P T =

    1Ks

    2Ks

    1ACE

    2ACE

    1vP

    2vP

    1

    11sT s +

    2

    11sT s +

    Modeling of Two Control Areas with AGC

  • Copyright Ned Mohan 2006 205

    Fig. 12-11 Simulink results of the two-area system with AGC in Example 12-3.

    0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000-1

    -0.5

    0

    0.5

    1

    1.5

    1mP2mP

    12P

    Results of SimulinkModeling Following a Step Load Change in Control Area 1

    Copyright Ned Mohan 2006 206

    Fig. 12-12 Heat Rate at various generated power levels. [ ]P MW0 20 40 60 80 100

    9.0

    10.0

    11.0

    MBTU-per-HourMW

    At this point, to produce 40 MWFuel Consumption = 400 MTU-per-Hour

    Heat Rate

    Economic Dispatch: Heat Rate of a Power Plant

    Copyright Ned Mohan 2006 207

    Fig. 12-13 Marginal cost as function of the power output.

    ( )[$ / ]

    i iC Phour

    [ ]iP MW0

    iCiP

    ( )

    [$ / ]

    i i

    i

    C PPMWh

    [ ]iP MW0

    ( )a ( )b

    Cost Curve and Marginal Cost of a Power Plant

    Copyright Ned Mohan 2006 208

    Fig. 12-14 Marginal costs for the three generators.

    0 0 0P P P

    1( )C PP

    2

    ( )C PP

    3( )C PP

    1P 2P 3P

    Load Sharing between Three Power Plants

    Copyright Ned Mohan 2006 209

    CHAPTER 13

    TRANSMISSION LINE FAULTS, RELAYING AND CIRCUIT BREAKERS

    Copyright Ned Mohan 2006 210

    Fig. 13-1 Fault in power system.

    a

    bc

    g

    ai

    f

    bi

    ci

    a

    bc

    g

    aI

    f

    bI

    cI

    ( )a ( )b

    Fault (Symmetric or Unsymmetric) on a Balanced Network

  • Copyright Ned Mohan 2006 211

    Fig. 13-2 Sequence components.

    2cI

    1aI

    1bI

    1cI2aI

    2bI

    aI

    bI

    cI0cI

    0aI0bI

    Symmetrical Components

    Copyright Ned Mohan 2006 212

    Fig. 13-3 Sequence networks.

    1aE+

    1Z

    +

    +

    +

    1aV 2aV 0aV1aI 2aI 0aI

    2Z 0Z

    Sequence Networks: Per-Phase Representation of a Balanced Three-phase representation

    Copyright Ned Mohan 2006 213

    Fig. 13-4 Three-phase symmetrical fault.

    a

    bc

    g

    aI

    f

    bI

    cI

    ( )a

    1aE +

    1Z

    +

    1 0aV =

    1aI

    ( )b

    Three-Phase Symmetrical Fault (ground may or may no be involved)

    Copyright Ned Mohan 2006 214

    Fig. 13-5 Single line to ground fault.

    ( )a

    ( )b

    1aE +

    +

    +

    +

    2aV

    0aV

    a

    b

    c

    g

    aI

    f

    fZ

    1Z

    2Z

    0Z

    1aI

    2aI

    0aI

    3 fZ

    1aV

    Single-Line to Ground (SLF) Fault through a Fault Impedance

    Copyright Ned Mohan 2006 215

    Fig. 13-6 Double line to ground fault. ( )a ( )b

    1aE +

    +

    abc

    gbI

    f

    1Z1aI

    1aVcI

    +2Z2aI

    2aV +0Z0aI

    0aV

    Double-Line to Ground Fault

    Copyright Ned Mohan 2006 216

    Fig. 13-7 Double line fault (ground not involved).

    ( )a

    abc

    g

    bI

    f

    cI

    ( )b

    1aE +

    +1Z

    1aI

    1aV +2Z

    2aI

    2aV

    + 1f aZ I

    Double-Line Fault (ground not involved)

  • Copyright Ned Mohan 2006 217

    Fig. 13-8 Path for zero-sequence currents in transformers. ( )a ( )b ( )c

    Path for Zero-Sequence Currents

    Copyright Ned Mohan 2006 218

    Fig. 13-9 Neutral grounded through an impedance. ( )a

    nZ

    ( )b

    +

    0aV

    0Z0aI

    3 nZ

    Neutral Grounded through an Neutral Impedance)

    Copyright Ned Mohan 2006 219

    Fig. 13-10 (a) One-line diagram of a simple power system and bus voltages.

    1LoadP pu=0LoadQ =

    Bus-1

    Bus-2

    Bus-31 0.12genX pu =2 0.12genX pu=0 0.06genX pu=

    1 0.10trX pu=2 0.10trX pu=0 0.10trX pu=

    1 0.10LineX pu=2 0.10LineX pu=0 0.20LineX pu=

    1 1.0 0V pu= 03 0.98 11.79V pu=

    One-Line Diagram of a Simple System)

    Copyright Ned Mohan 2006 220

    Fig. 13-11 Positive-sequence circuit for calculating a 3-phase fault on bus-2.

    0.12j pu

    1 1.0 0V pu=

    +

    +

    LoadIfaultI

    0.10j pu 0.10j pu

    E 0.9604LoadR pu=

    Thee-phase Fault on Bus-2 in the Simple System

    Copyright Ned Mohan 2006 221 Fig. 13-12 Sequence networks for calculating fault current due to SLG fault on bus-2.

    1 1.0 0V pu= +

    +

    0.10j pu

    E 0.9604LoadR pu=0.12j pu 0.10j pu

    0.9604LoadR pu=

    0.9604LoadR pu=

    1aV

    +

    2aV

    +

    0aV

    +

    0.10j pu0.12j pu 0.10j pu

    0.10j pu0.06j pu 0.20j pu

    1aV

    1aI

    2aI

    0aI

    0aV =

    +

    Single-Line to Ground (SLG) Fault in the Simple System

    Copyright Ned Mohan 2006 222

    Fig. 13-13 A SLG fault in the example 3-bus power system.

    1mP 1eP

    2eP

    Bus-1Bus-3

    Bus-2

    2mP

    An SLG Fault in the Example 3-Bus System

  • Copyright Ned Mohan 2006 223

    Fig. 13-14 Protection equipment.

    CB

    R

    CT

    PT

    Protection in Power System

    Copyright Ned Mohan 2006 224

    Fig. 13-15 Current Transformer (CT) [5]. (a)

    (b)

    CT

    Burden

    Current Transformers (CT)

    Copyright Ned Mohan 2006 225

    Fig. 13-16 Capacitor-Coupled Voltage Transformer (CCVT) [5].

    (a) (b)

    Capacitor-Coupled Voltage Transformers (CCVT)

    Copyright Ned Mohan 2006 226

    Fig. 13-17 Differential relay.

    CT

    CT

    CT

    Relay

    Differential Relays

    Copyright Ned Mohan 2006 227

    Fig. 13-18 Directional over-current Relay.

    CB

    R

    CT

    PT

    Directional Over-Current Relays

    Copyright Ned Mohan 2006 228

    Fig. 13-19 Ground directional over-current Relay.

    Time

    instantaneous

    Ground Directional Over-Current Relays for Ground Faults

  • Copyright Ned Mohan 2006 229

    Fig. 13-20 Impedance (distance) relay.

    X

    R

    Impedance (Distance) Relays

    Copyright Ned Mohan 2006 230

    Fig. 13-21 Microwave terminal [5].

    Microwave Terminal for Pilot Relays

    Copyright Ned Mohan 2006 231

    Fig. 13-22 Zones of protection.

    Time

    A B C

    Zone 1: instantaneousZone 2: 20-25 cycles

    Zone 3: 1-1.5 sec

    Zones of Protection

    Copyright Ned Mohan 2006 232

    Fig. 13-23 Protection of generator and the step-up transformer.

    Gen

    Relay RelayRelay

    CT CT CTTransformer F1 F2

    Protection of Generator and its Step-up Transformer

    Copyright Ned Mohan 2006 233

    Fig. 13-24 Relying in the example 3-bus power system.

    AB

    P jQ+

    Zone1Zone2

    Zone2

    Relaying in the 3-Bus Example Power System

    Copyright Ned Mohan 2006 234

    Fig. 13-25 6SF circuit breaker [5].

    Circuit Breakers

  • Copyright Ned Mohan 2006 235

    Fig. 13-26 Current in an RL circuit.

    0 0 . 0 5 0 . 1 0 . 1 5 0 . 2- 1

    - 0 . 5

    0

    0 . 5

    1

    1 . 5

    2 asymmetricsymmetric offset

    +

    ( )sv t

    +

    ( )v t

    ( )i t

    R L

    ( )a ( )b

    0

    Illustration of Current Offset in R-L Circuits

    Copyright Ned Mohan 2006 236

    CHAPTER 14

    TRANSIENT OVER-VOLTAGES, SURGE PROTECTION AND INSULATION COORDINATION

    Copyright Ned Mohan 2006 237

    Fig. 14-1 Lightening current impulse.

    [ ]t s

    0.5 peakI

    peakIi

    1t 2t

    Lightning Current Impulse

    Copyright Ned Mohan 2006 238

    Fig. 14-2 Lightening strike to the shield wire. ( )a ( )b

    Lightening Strike to Shield Wire and Backflash

    Copyright Ned Mohan 2006 239

    Fig. 14-3 Over-voltages due to switching of transmission lines. ( )b

    avbv

    cv

    L

    ( )a

    L

    L

    AB

    C

    500kV Line100 miles (open)

    Switching Surges

    Copyright Ned Mohan 2006 240

    Fig. 14-4 Frequency dependence of the transmission line parameters [Source: 2].

    Frequency Dependence of Transmission Line Parameters

  • Copyright Ned Mohan 2006 241

    Fig. 14-5 Calculation of switching over-voltages on a transmission line.

    Bus-1 Bus-3

    Calculation of Switching Over-Voltages on Line 1-3 in the Example 3-Bus Power System

    Copyright Ned Mohan 2006 242

    Fig. 14-6 Standard Voltage Impulse Wave to define BIL.

    i

    0 t

    peakV

    0.5 peakV

    1 .2 s 40 s

    Standard Voltage Impulse to Define Basic Insulation Level (BIL)

    Copyright Ned Mohan 2006 243

    Fig. 14-7 A 345-kV transformer voltage insulation levels.

    1500

    1300

    1100

    900

    700

    1 10 100 1000 10000

    Line-to-ground(Peak kV)

    time in s

    1175kVBIL

    BSL

    choppedwave Transformer Insulation

    Withstand Capability Curve

    Arrester Voltage, subjected to a 8 20 Lightning Current Impulsewith a peak of 20 kA

    s

    Transformer Insulation Protected by a ZnOArrester