23
Speaker & Reporter: 洪洪洪 Adviser Prof. An-Weu Wu Date 2006/12/11 1

Fixed-pointed FFT model

  • Upload
    phila

  • View
    38

  • Download
    0

Embed Size (px)

DESCRIPTION

Speaker & Reporter: 洪聖揚 Adviser : Prof. An-Weu Wu Date : 2006/12/11. Fixed-pointed FFT model. Floating point simulation Fixed point model with truncation SQNR with input, output and twiddle factor Optimize the choice of bits Conclusion. Outline. Use MATLAB compile BFI 、 BFII as module - PowerPoint PPT Presentation

Citation preview

Page 1: Fixed-pointed FFT model

Speaker & Reporter: 洪聖揚Adviser : Prof. An-Weu Wu

Date : 2006/12/11

1

Page 2: Fixed-pointed FFT model

Floating point simulation Fixed point model with truncation SQNR with input, output and twiddle

factor Optimize the choice of bits Conclusion

2

Page 3: Fixed-pointed FFT model

Use MATLAB compile BFI 、 BFII as module For loop as counter

BF I

N/2 N/4

BF II

s t

Out of BFIOut of BFII

Input : (1)data input (2)Out of BFI (3)Register

Output : (1)Output of BFI (2)Output of BFII (3)Output as Register input

Data input

Register

Function : BFI BFII

Control by for loop

3

Page 4: Fixed-pointed FFT model

Use fft function in MATLAB for verification

0 10 20 30 40 50 60 70-2

0

2x 10

-15 Output difference

point

Rea

l P

art

0 10 20 30 40 50 60 70-2

0

2x 10

-15 Output difference

point

Ima

g P

art

0 10 20 30 40 50 60 700

1

2x 10

-15 Out difference

point

Abs

Par

t

4

Page 5: Fixed-pointed FFT model

Floating point simulation Fixed point model with

truncation SQNR with input, output and twiddle

factor Optimize the choice of bits Conclusion

5

Page 6: Fixed-pointed FFT model

Separate total bits into two parts : integer part and fraction part Inverse the digits to the

decimation ;construct the truncated data Use the truncated data during the calculation

6

Page 7: Fixed-pointed FFT model

Recovery the fraction data

Recovery the signed data

Truncate data of abs(real(x)) and abs(imag(x))

7

Page 8: Fixed-pointed FFT model

Dynamic range for input data:[-4 4] Number of bits for input data:10~14 Number of bits for output data:16~20 Number of bits for twiddle factor:

Designer-defined SQNR>=50dB

8

Page 9: Fixed-pointed FFT model

Defined as Output of previous stage

Defined as Input

9

Page 10: Fixed-pointed FFT model

Floating point simulation Fixed point model with truncation SQNR with input, output and

twiddle factor Optimize the choice of bits Conclusion

10

Page 11: Fixed-pointed FFT model

The input integer part should increasing 1 bit through the adder

The integer part of twiddle factors can be reduced to 1 bits

Input integer bits reduced to 3 bits ,as the final output integer bits reduced to 9 bits

11

Page 12: Fixed-pointed FFT model

Output integer and total bit of input fixed, add input integer

Input integer and total output bit fixed, add output integer

68

1012

3

4

5

6

7

30

40

50

60

twiddle factor fraction

SQNR different with output integer fixed

input integer part

SQ

NR

25

30

35

40

45

50

55

60

65

68

1012

9

10

11

12

13

30

40

50

60

twiddle factor fraction

SQNR different with input integer fixed

output integer part

SQ

NR

25

30

35

40

45

50

55

60

65

Fixed integer output and total bit of input

Fixed integer input and total bit of output

12

Page 13: Fixed-pointed FFT model

There is much room for fraction bits decision

Just compare output bit and twiddle factor to optimize the minimum bits.

The fraction part dominates the precision of output

13

Page 14: Fixed-pointed FFT model

Fixed twiddle factor total : 13 bit and 14 bit Use 1 bit to store integer data

At total bits=12At total bits=14

78

910

11

7

8

9

10

11

55

60

65

70

output fraction part

SQNR different with twiddle factor fraction fixed

input fraction part

SQNR

52

54

56

58

60

62

64

66

68

70

78

910

11

7

8

9

10

11

52

54

56

58

60

62

64

output fraction part

SQNR different with twiddle factor fraction fixed

input fraction part

SQ

NR

52

54

56

58

60

62

64

14

Page 15: Fixed-pointed FFT model

78

910

11

7

8

9

10

11

55

60

65

70

output fraction part

SQNR different with twiddle factor fraction fixed

input fraction part

SQ

NR

52

54

56

58

60

62

64

66

68

70

Fixed twiddle factor total : 13 bit and 14 bit Use 1bit to store integer part

At total bits=14 At total bits=13

78

910

11

7

8

9

10

11

55

60

65

70

output fraction part

SQNR different with twiddle factor fraction fixed

input fraction part

SQNR

52

54

56

58

60

62

64

66

68

70

15

Page 16: Fixed-pointed FFT model

810

1214

7

8

9

10

1140

45

50

55

60

65

twiddle factor fraction

SQNR different with output fraction fixed

input fraction part

SQ

NR

40

45

50

55

60

65

810

1214

7

8

9

10

1140

45

50

55

twiddle factor fraction

SQNR different with input fraction fixed

output fraction part

SQ

NR

40

42

44

46

48

50

52

54

56

58

total input bits:12bits , total output bits:18bits Integer fixed at 3 bit in input,9 bit in output ,1 bit in

twiddle Twiddle factor fraction : 8~16 bit

At input total bits=12

At output total bits=18

16

Page 17: Fixed-pointed FFT model

When twiddle factor increasing, SQNR is more higher, but saturation at total bit=16

When output fraction bit increasing - bits of twiddle is small, not obviously

change in SQNR - bits of twiddle is large, SQNR is more

higher

17

Page 18: Fixed-pointed FFT model

Floating point simulation Fixed point model with truncation SQNR with input, output and twiddle

factor Optimize the choice of bits Conclusion

18

Page 19: Fixed-pointed FFT model

Requirement SQNR over than 50dB Better reducing bits of output than twiddle Choose fraction bits of output and input be

equal or more Fixed twiddle factor at maximum to choose

output minimum, then reduce twiddle factor.

19

Page 20: Fixed-pointed FFT model

78

910

11

7

8

9

10

11

55

60

65

70

output fraction part

SQNR different with twiddle factor fraction fixed

input fraction part

SQ

NR

52

54

56

58

60

62

64

66

68

70

First, fixed twiddle factor at total bit=13

At total bits=13

Possible output

min

Over than 50dB

20

Page 21: Fixed-pointed FFT model

810

1214

7

8

9

10

1140

45

50

55

twiddle factor fraction

SQNR different with input fraction fixed

output fraction part

SQ

NR

40

42

44

46

48

50

52

54

56

58

Second, fixed output and input at possible minimum region, find out the twiddle factor minimum.

Ex. Fixed output at 8 fraction

At fraction output=8

Input min

twiddle min

21

Page 22: Fixed-pointed FFT model

Result :Input Output Twiddle SQNR

10 16 10 48.3921

10 16 11 50.2602

11 17 10 51.4667

11 17 11 54.6418

11 18 10 51.8127

11 18 11 55.1741

12 17 10 51.8890

12 17 11 55.3209

Best Solutio

n!

22

Page 23: Fixed-pointed FFT model

Conclusion : 1.Finished floating and fixed point FFT model

2.Analyzed and optimize the bits for truncate input, output, and twiddle factor

In future : --RTL code before 12/27 --synthesis as soon as possible…

23