Flow_control Blasius Eq Lam Turb

Embed Size (px)

Citation preview

  • 8/13/2019 Flow_control Blasius Eq Lam Turb

    1/42

    1

    Linn Flow CentreKTH Mechanics Dan Henningson

    collaborators

    Onofrio Semeraro, Shervin Bagheri,

    Luca Brandt

    Model reduction for flow control:input-output analysis and flow control applied to transition

    in the Blasius boundary layer on a flat plate

  • 8/13/2019 Flow_control Blasius Eq Lam Turb

    2/42

    2

    Linn Flow CentreKTH Mechanics

    Flow on an Airplane Wing

    Friction Drag on surface smaller for laminar thanturbulent flows

    Delay the transition to turbulence to save fuel

  • 8/13/2019 Flow_control Blasius Eq Lam Turb

    3/42

    5

    Linn Flow CentreKTH Mechanics

    Drag breakdown

    G. Schrauf, AIAA 2008

  • 8/13/2019 Flow_control Blasius Eq Lam Turb

    4/42

    6

    Linn Flow CentreKTH Mechanics

    Friction drag reduction

    Possible area for Laminar Flow Control:

    Laminar wings, tail, fin and nacelles -> 15% lower fuelconsumption

  • 8/13/2019 Flow_control Blasius Eq Lam Turb

    5/42

    7

    Linn Flow CentreKTH Mechanics

    Transition control

    Transition is caused by

    breakdown of growing

    disturbances inside the

    boundary layer.

    Prevent/delay transition by

    suppressing the growth

    of small perturbations.

  • 8/13/2019 Flow_control Blasius Eq Lam Turb

    6/42

    8

    Linn Flow CentreKTH Mechanics

    exponentialgrowth of 2D TS

    waves

    turbulence

    Low levels of free-streamturbulence (

  • 8/13/2019 Flow_control Blasius Eq Lam Turb

    7/42

    9

    Linn Flow CentreKTH Mechanics

    Localized disturbance undergoingtransition in Blasius flow

    Linear TS-wavepacket

    Nonlinear wavepacket

    Turbulent spot

  • 8/13/2019 Flow_control Blasius Eq Lam Turb

    8/4210

    Linn Flow CentreKTH Mechanics

    Control of transition in the Blasiusboundary layer

    Aim is to extend the laminar region byeliminating boundary layer disturbances

    Control based on linear theory sincetransitional disturbances usually smallinitially use linearized Navier-Stokes

    Target control at typical disturbances foundin the boundary layer so called TS-waves

    Use model reduction based on balancedtruncation to obtain low order controller

  • 8/13/2019 Flow_control Blasius Eq Lam Turb

    9/4211

    Linn Flow CentreKTH Mechanics

    Linearized Navier-Stokes for Blasius flow

    Discrete formulation:state space form

    Continuous formulation

  • 8/13/2019 Flow_control Blasius Eq Lam Turb

    10/42

    12

    Linn Flow CentreKTH Mechanics

    The discretized linearizedNavier-Stokes equations

    Disturbances around the laminar velocity i.e. U(x,y) + u(x,y,z,t)

    The disturbance flow velocities are in the vector field u(x,y,z,t)

    Horizontal directions (x,z) expanded in Fourier series

    Normal direction yin Chebychev series

    Discretization in time Runge-Kutta/Crank-Nicolson

    Fringe region with volume force to make flow periodic inx

  • 8/13/2019 Flow_control Blasius Eq Lam Turb

    11/42

    13

    Linn Flow CentreKTH Mechanics

    Dont store matrixA too large dimension

    Matrix A very large for complex flows

    Time-stepper technique:

    Never store matricesSimulation code to steps velocity fields forward in time

    Work only with series of snapshots

  • 8/13/2019 Flow_control Blasius Eq Lam Turb

    12/42

    14

    Linn Flow CentreKTH Mechanics

    Input-output configuration for linearized N-S

  • 8/13/2019 Flow_control Blasius Eq Lam Turb

    13/42

    15

    Linn Flow CentreKTH Mechanics

    Solution to the complete input-output problem

    Initial value problem: flow stability

    Forced problem: input-output analysis

  • 8/13/2019 Flow_control Blasius Eq Lam Turb

    14/42

    16

    Linn Flow CentreKTH Mechanics

    Ginzburg-Landau example

    Entire dynamics vs. input-output time signals

  • 8/13/2019 Flow_control Blasius Eq Lam Turb

    15/42

    17

    Linn Flow CentreKTH Mechanics

    State-spaceformulation:

    Solution:

    Input-output behavior on the flat plate

    w

    B C

    timetime

  • 8/13/2019 Flow_control Blasius Eq Lam Turb

    16/42

    18

    Linn Flow CentreKTH Mechanics

    Traditional Model Reduction forLinear Systems

    Obtain a set of functions and project the stateon this basis:

    Insert into the plant to obtain reduced model:

    T can be Balanced modesobtained by solving two Lyapunovequations related to controllability and observability Gramain.

    Standard balanced truncation algorithm only computationallyfeasible for moderate-size systems (with less 10000 d.o.f)

    m 5

  • 8/13/2019 Flow_control Blasius Eq Lam Turb

    17/42

    19

    Linn Flow CentreKTH Mechanics

    Input-output operators

    Past inputs to initial state: class ofinitial conditions possible to generatethrough chosen forcing

    Initial state to future outputs:possible outputs from initialcondition

    Past inputs to future outputs:

  • 8/13/2019 Flow_control Blasius Eq Lam Turb

    18/42

    20

    Linn Flow CentreKTH Mechanics

    Most dangerous inputs, creating the largest outputs

    Singular vectors of the Hankel operator balanced modes

    Observability Gramian

    Controllability Gramian

  • 8/13/2019 Flow_control Blasius Eq Lam Turb

    19/42

    21

    Linn Flow CentreKTH Mechanics

    Controllability Gramian for GL-equation

    Correlation of actuatorimpulse response in

    forward solution

    POD modes:

    Ranks states most easilyinfluenced by input

    Provides a means tomeasure controllability

    Input

  • 8/13/2019 Flow_control Blasius Eq Lam Turb

    20/42

  • 8/13/2019 Flow_control Blasius Eq Lam Turb

    21/42

    23

    Linn Flow CentreKTH Mechanics

    Controllability & Observability

    Largest flow structures created by input forcing?

    Which flow structures generate largest output energy?

    Strong

    controllability

    Strong

    observability

    Large

    response

    to inputInput

    Output

    Give rise to

    large output

  • 8/13/2019 Flow_control Blasius Eq Lam Turb

    22/42

    24

    Linn Flow CentreKTH Mechanics

    Balanced modes:singular vectors of the Hankel operator

    Combine snapshots of direct and adjoint simulation

    Expand modes in snapshots to obtain smaller eigenvalue problem

    Balanced modes

  • 8/13/2019 Flow_control Blasius Eq Lam Turb

    23/42

    25

    Linn Flow CentreKTH Mechanics

    Properties of balanced modes

    Balanced modes diagonalize observability Gramian

    Adjoint balanced modes diagonalize controllability Gramian

    Ginzburg-Landau example revisited

  • 8/13/2019 Flow_control Blasius Eq Lam Turb

    24/42

    26

    Linn Flow CentreKTH Mechanics

    Input-Output system for 3D Blasius

  • 8/13/2019 Flow_control Blasius Eq Lam Turb

    25/42

    27

    Linn Flow CentreKTH Mechanics

    Disturbance, TS wavepacket B1

  • 8/13/2019 Flow_control Blasius Eq Lam Turb

    26/42

    28

    Linn Flow CentreKTH Mechanics

    Actuators and Sensors- B2 and C2

    Actuators represented by localized volume forcing close to the wallSensors flow variables weighted with localized Gaussian function

  • 8/13/2019 Flow_control Blasius Eq Lam Turb

    27/42

    29

    Linn Flow CentreKTH Mechanics

    Objective function C1

    POD1 - TS

    Projection of flow on first 10 POD modes of wavepacket,targeting the 10 most energetic structures

  • 8/13/2019 Flow_control Blasius Eq Lam Turb

    28/42

    30

    Linn Flow CentreKTH Mechanics

    Snapshots of direct and adjoint solution in Blasius flow

    Direct simulation: Adjoint simulation:

  • 8/13/2019 Flow_control Blasius Eq Lam Turb

    29/42

    31

    Linn Flow CentreKTH Mechanics

    Balanced and adjoint balanced modes

    Leading balanced mode: wave-packet structure mainly located

    downstream

    Leading adjoint balanced mode: tilted structure located upstream

  • 8/13/2019 Flow_control Blasius Eq Lam Turb

    30/42

    32

    Linn Flow CentreKTH Mechanics

    Model reduction

    Project dynamics on balanced modes using theirbiorthogonal adjoints

    Reduced representation of input-output relation,useful in control design

  • 8/13/2019 Flow_control Blasius Eq Lam Turb

    31/42

    33

    Linn Flow CentreKTH Mechanics

    Performance of the reduced order model

    Disturbance Sensor

    Actuator Output

    Disturbance Output

    System degrees offreedom: n>107

    Reduced ordermodel: r=60

  • 8/13/2019 Flow_control Blasius Eq Lam Turb

    32/42

    34

    Linn Flow CentreKTH Mechanics

    Optimal Feedback Control LQG

    controller

    Find an optimal control signal (t) based on themeasurements (t) such that in the presence ofexternal disturbances w(t) and measurement noise g(t)the outputz(t) is minimized.

    Solution: LQG/H2

    cost function

    =KLw zg

    (noise)

  • 8/13/2019 Flow_control Blasius Eq Lam Turb

    33/42

    35

    Linn Flow CentreKTH Mechanics

    LQG controller formulation with DNS

    Apply in Navier-Stokes simulation

  • 8/13/2019 Flow_control Blasius Eq Lam Turb

    34/42

    37

    Linn Flow CentreKTH Mechanics

    TS-packet evolution with and without control

  • 8/13/2019 Flow_control Blasius Eq Lam Turb

    35/42

    38

    Linn Flow CentreKTH Mechanics

    Sensor and actuator signals for controlled flow on thecenterline

    Wave-packet in sensor and resulting control signal

    Input output signals

  • 8/13/2019 Flow_control Blasius Eq Lam Turb

    36/42

  • 8/13/2019 Flow_control Blasius Eq Lam Turb

    37/42

    40

    Linn Flow CentreKTH Mechanics

    Energy of the controlled and non-controlled cases

    Three cases considered: cheap controller (l=100),intermediate controller (l=250), expensive controller (l=500).

    9 actuators, 9 sensors, 1 compensator/controller.

  • 8/13/2019 Flow_control Blasius Eq Lam Turb

    38/42

    41

    Linn Flow CentreKTH Mechanics

    Parametric analysis - actuators

    7 actuators, 7 sensors, 1 compensator/controller

    Reference case: full setup, 9 actuators, 9 sensors

  • 8/13/2019 Flow_control Blasius Eq Lam Turb

    39/42

    42

    Linn Flow CentreKTH Mechanics

    Parametric analysis - actuators

    5 actuators, 5 sensors, 1 compensator/controller

    Reference case: full setup, 9 actuators, 9 sensors

  • 8/13/2019 Flow_control Blasius Eq Lam Turb

    40/42

    43

    Linn Flow CentreKTH Mechanics

    Parametric analysis - actuators

    3 actuators, 3 sensors, 1 compensator/controller

    Reference case: full setup, 9 actuators, 9 sensors

  • 8/13/2019 Flow_control Blasius Eq Lam Turb

    41/42

    44

    Linn Flow CentreKTH Mechanics

    Input stochastic forcing

  • 8/13/2019 Flow_control Blasius Eq Lam Turb

    42/42

    Linn Flow CentreKTH Mechanics

    Conclusions

    Input-output formulation ideal for analysis and design offeedback control systems applied in Blasius flow, a modelof an airplane wing

    Balanced modes

    Obtained from snapshots of forward and adjoint solutionsGive low order models preserving input-output relationshipbetween sensors and actuators

    Feedback control of Blasius flow

    Reduced order models with balanced modes used in LQG control

    Controller based on small number of modes works well in DNS

    Outlook: incorporate realistic sensors and actuators in 3Dproblem and test controllers experimentally