17
Fluid, Electrolyte and pH Balance Biology 2122 Chapter 26

Fluid, Electrolyte and pH Balance Biology 2122 Chapter 26

Embed Size (px)

Citation preview

Fluid, Electrolyte and pH Balance

Biology 2122 Chapter 26

Introduction – Body Fluids

1. Males (60%); Females (50%) Water

2. Fluid compartments – ICF vs ECF – Electrolytes

3. Fluid Movement – Moves through IF and plasma – Figure 26.3

Electrolyte Comparison ECF vs. ICFFigure 26.2

Water Intake and Output 1. Intake – 2500 ml/day

2. Output – Insensible Water Loss

– Osmolarity Changes • Thirst

• ADH released from posterior pituitary

3. Hypothalamus – Thirst Center – Osmoreceptors – lose water

– Figure 26.5

4. Sensible Water Loss

Thirst Mechanism

Water Balance Problems 1. Dehydration – Hypovolemic Shock

2. Hypotonic Hydration – Overhydration – ECF dilution

3. Hyponatremia – Low Na+ concentration; high water concentration

4. Edema – Interstitial space around tissue

– Volume increase – IF only!

5. Hypoproteinemia

Electrolyte Balance – Importance of Sodium

1. Level – 142 mEq/L – Sodium bicarbonate and sodium chloride

2. ECF stability 3. Changes in plasma Na+ levels – Plasma volume; BP; ICF and IF

4. Regulation of Na+ balance – No specific sodium receptors

– Aldosterone

– Angiotensin II

– ANP

– Sex Hormones (Estrogen; progesterone; glucocorticoids)

Regulation of Sodium

Regulating Potassium 1. Main ICF ion

2. ECF balance

3. Buffer

4. Regulation – PCT (reabsorb 60-80%)

– Loop of Henle (10-20%)

– Collecting ducts (primary secretion)

5. Blood Plasma Concentration – Diets

6. Aldosterone – Enhances K+ secretion

Acid – Base Balance 1. Arterial Blood = 7.4– IF = 7.35

– ICF = 7.0

2. Alkalosis or Alkalemia

3. Acidosis or acidemia

4. Where do the Hydrogen ions come from?– Protein catabolism; lactic acid; lipid metabolism; carbon dioxide

transport

5. Regulation of pH– Chemical buffering; brain stem; kidneys

Bicarbonate Buffering System • (1). Only important buffer in the ECF

• (2). Composed of:– Carbonic acid (H2CO3) and (NaHCO3) in solution – buffering substances

• (3). Reaction – HCl + NaHCO3 ------------ H2CO3 + NaCl

(SA) (WB) (WA) (SALT)– NaOH + H2CO3 ----------- NaHCO3 + H2O

(SB) (WA) (WB)

• (4). Alkaline reserve – Bicarbonate = 25 mE/L and carbonic acid = 1 mE/L

Phosphate Buffering System • (1). Components

– Sodium hihydrogen phosphate and hydrogen phosphate ion

• (2). Reactions – HCl + NaHPO4 -------------- NaH2PO4 + NaCl

(SA) (WB) (WA) (Salt)

– NaOH + NaH2PO4 ------------ Na2HPO4 + H2O

(SB) (WA) (WB)

• (3). Low concentrations phosphate – ECF – Blood plasma buffer – not as important; Important in urine and ICF

Respiratory Regulation [H+]• (1). General Characteristics – 2x buffering power compared to chemical buffering systems – Slower

• (2). During cell respiration – carbon dioxide and transport – CO2 + H2O ----------- H2CO3 ----------- H+ + HCO3 –

----------- ----------

During carbon dioxide unloading: reaction shifts left and H+ produced from carbonic acid is reincorporated into water!

Renal Mechanisms • (1). Lungs can dispose of CO2 , chemical buffers do not

dispose of excess acids and bases. – Acids generated by metabolism – metabolic ‘fixed’ acids

• (2). Kidneys can eliminate excess acids and bases

• (3). Renal mechanisms – regulating acid-base blood balance – Conservation- reabsorption of bicarbonate– Excretion of bicarbonate

Reabsorption of filtered bicarbonate – H+ secretion

New bicarbonate via excretion of H+ by HPO42-

Abnormalities • 1. Respiratory Acidosis

– CO2 in blood; pH

• 2. Respiratory alkalosis

– CO2; pH

• 3. Metabolic acidosis

– HCO3- ; pH

• 4. Metabolic alkalosis

– HCO3- ; pH