38
FLUORESCENCE AS A TOOL FOR THE CHARACTERIZATION OF WATER AquaLife 2010 Martin Wagn Technologiezentrum Wasser (T Außenstelle Dres

FLUORESCENCE AS A TOOL FOR THE CHARACTERIZATION OF WATER AquaLife 2010 Martin Wagner, Technologiezentrum Wasser (TZW) Außenstelle Dresden

Embed Size (px)

Citation preview

Page 1: FLUORESCENCE AS A TOOL FOR THE CHARACTERIZATION OF WATER AquaLife 2010 Martin Wagner, Technologiezentrum Wasser (TZW) Außenstelle Dresden

FLUORESCENCE AS A TOOL FOR THE CHARACTERIZATION OF WATER

AquaLife 2010Martin Wagner,

Technologiezentrum Wasser (TZW)Außenstelle Dresden

Page 2: FLUORESCENCE AS A TOOL FOR THE CHARACTERIZATION OF WATER AquaLife 2010 Martin Wagner, Technologiezentrum Wasser (TZW) Außenstelle Dresden

Technologiezentrum Wasser (TZW) – Außenstelle Dresden

Outline

Principles of fluorescence spectroscopy

Characterization of DOC

Problems in quantification of fluorescence signals

Page 3: FLUORESCENCE AS A TOOL FOR THE CHARACTERIZATION OF WATER AquaLife 2010 Martin Wagner, Technologiezentrum Wasser (TZW) Außenstelle Dresden

Technologiezentrum Wasser (TZW) – Außenstelle Dresden

Measurement of fluorescence

Design of a fluorescence spectrometer

I. Principles of fluorescence spectroscopy

Page 4: FLUORESCENCE AS A TOOL FOR THE CHARACTERIZATION OF WATER AquaLife 2010 Martin Wagner, Technologiezentrum Wasser (TZW) Außenstelle Dresden

Technologiezentrum Wasser (TZW) – Außenstelle Dresden

Measurement of fluorescence

Emission spectrum: λEx = const., λEm

I. Principles of fluorescence spectroscopy

0

50

100

150

200

250

240 340 440 540 640

Flu

ores

cenc

e in

tens

ity [

a.u.

]

Emission wavelength [nm]

Page 5: FLUORESCENCE AS A TOOL FOR THE CHARACTERIZATION OF WATER AquaLife 2010 Martin Wagner, Technologiezentrum Wasser (TZW) Außenstelle Dresden

Technologiezentrum Wasser (TZW) – Außenstelle Dresden

Measurement of fluorescence

Variation of λEx produces an excitation-emission-

matrix, called EEM

I. Principles of fluorescence spectroscopy

λEmission λExcitation

Intensity

Page 6: FLUORESCENCE AS A TOOL FOR THE CHARACTERIZATION OF WATER AquaLife 2010 Martin Wagner, Technologiezentrum Wasser (TZW) Außenstelle Dresden

Technologiezentrum Wasser (TZW) – Außenstelle Dresden

Characterization of water

II. Characterization of DOC

Chl A Chlorophyll APC PhycocyaninPE PhycoerythrinFC FucoxanthinTyr TyrosineTrp TryptophanePhe PhenylalanineEPS extracellular

polymericsubstances

FS fulvic acidlike

HS humic acidlike

Q-o Quinone (oxidized)Q-s SemiquinoneQ-h HydroquinoneBak bacteria like

fluorescence

HS

Chl a

Chl a

Chl a

PC

PE

Tyr

Tyr

Trp

Trp

EPS

EPSQ-oQ-o

Q-s

Q-s

Q-s

Q-s/h

Q-s/hFS

FC

FC

Bak

Biopolymers

Humic substances

Algae pigments

Phe

Page 7: FLUORESCENCE AS A TOOL FOR THE CHARACTERIZATION OF WATER AquaLife 2010 Martin Wagner, Technologiezentrum Wasser (TZW) Außenstelle Dresden

Technologiezentrum Wasser (TZW) – Außenstelle Dresden

Characterization by LC-OCD

Most parameters used to describe DOC are sum parameters (like BOD, COD, UV254, UV436)

LC-OCD (Liquid chromatography – Organic carbon detection) and fluorescence allow the characterization of DOC LC-OCD separates DOC by molecular weight Fluorescence separates DOC by chemical structure or rather chemical

properties

II. Characterization of DOC

0

20

40

60

80

100

120

10 30 50 70 90Retention time [min]

OC

D [

rela

tive

hei

gh

t o

f si

gn

al]

low molecular compounds

Polysaccharides

Humic Substances

Building Blocks

Page 8: FLUORESCENCE AS A TOOL FOR THE CHARACTERIZATION OF WATER AquaLife 2010 Martin Wagner, Technologiezentrum Wasser (TZW) Außenstelle Dresden

Technologiezentrum Wasser (TZW) – Außenstelle Dresden

Quantification of fluorescence

Fluorescence is easy to use and is appropriated for the

characterization of the DOC

The quantification isn’t easy, because of Influence of stray light

Inner – Filter - Effects

Quenching of fluorescence signals

Portability: standardization between different

spectrometers

Spectral overlapping of signals

III. Problems in quantification of fluorescence signals

Page 9: FLUORESCENCE AS A TOOL FOR THE CHARACTERIZATION OF WATER AquaLife 2010 Martin Wagner, Technologiezentrum Wasser (TZW) Außenstelle Dresden

Technologiezentrum Wasser (TZW) – Außenstelle Dresden

Stray light

Caused by scattering of exciting light in sample

Differentiation between Rayleigh- and

Ramanscattering

Rayleigh: elastic scattering without loss of energy

Appears at excitation wavelength

Raman: inelastic scattering with loss of energy

Appears at longer wavelengths

III. Problems in quantification of fluorescence signals

Page 10: FLUORESCENCE AS A TOOL FOR THE CHARACTERIZATION OF WATER AquaLife 2010 Martin Wagner, Technologiezentrum Wasser (TZW) Außenstelle Dresden

Technologiezentrum Wasser (TZW) – Außenstelle Dresden

Stray light

III. Problems in quantification of fluorescence signals

stray light in pure water

0

50

100

150

200

250

300

260 360 460 560 660

emission wavelength [nm]

fluor

esce

nce

inte

nsity

[a.u

.]

Rayleigh peaks

Raman peaks

Page 11: FLUORESCENCE AS A TOOL FOR THE CHARACTERIZATION OF WATER AquaLife 2010 Martin Wagner, Technologiezentrum Wasser (TZW) Außenstelle Dresden

Technologiezentrum Wasser (TZW) – Außenstelle Dresden

Stray light

III. Problems in quantification of fluorescence signals

Page 12: FLUORESCENCE AS A TOOL FOR THE CHARACTERIZATION OF WATER AquaLife 2010 Martin Wagner, Technologiezentrum Wasser (TZW) Außenstelle Dresden

Technologiezentrum Wasser (TZW) – Außenstelle Dresden

Solution of stray light problem

Best method is the use of cutoff filters

III. Problems in quantification of fluorescence signals

0

20

40

60

80

100

120

200 300 400 500 600 700

T [%

]

wavelength [nm]

Cutoff filter

Page 13: FLUORESCENCE AS A TOOL FOR THE CHARACTERIZATION OF WATER AquaLife 2010 Martin Wagner, Technologiezentrum Wasser (TZW) Außenstelle Dresden

Technologiezentrum Wasser (TZW) – Außenstelle Dresden

Solution of stray light problem

Best method is the use of cutoff filters

III. Problems in quantification of fluorescence signals

0

0,2

0,4

0,6

0,8

1

1,2

300 350 400 450 500

norm

aliz

ed in

tens

ity [-

]

emission wavelength

Quinine sulfate without filterQuninine sulfate with cutoff filter (290 nm)

Page 14: FLUORESCENCE AS A TOOL FOR THE CHARACTERIZATION OF WATER AquaLife 2010 Martin Wagner, Technologiezentrum Wasser (TZW) Außenstelle Dresden

Technologiezentrum Wasser (TZW) – Außenstelle Dresden

Inner – Filter – Effects (IFE)

Primary IFE: absorption of excitating light by

sample

Secondary IFE: absorption of emitted light

III. Problems in quantification of fluorescence signals

Calibration

020406080

100120140160180

0 2 4 6 8 10 12

Concentration [mg/L]

fluor

esce

nce

inte

nsity

[a.u

.]

Page 15: FLUORESCENCE AS A TOOL FOR THE CHARACTERIZATION OF WATER AquaLife 2010 Martin Wagner, Technologiezentrum Wasser (TZW) Außenstelle Dresden

Technologiezentrum Wasser (TZW) – Außenstelle Dresden

Solution of the IFE-Problem

Generally there are two methods: Additionally measurement of absorption spectrum of sample

Correction via stray light peaks of the sample (Raman peak)

Absorption

0

0.5

1

1.5

2

2.5

3

200 300 400 500 600 700

wavelength [nm]

ab

sorp

tion

III. Problems in quantification of fluorescence signals

LAKOWICZ (2006):

Page 16: FLUORESCENCE AS A TOOL FOR THE CHARACTERIZATION OF WATER AquaLife 2010 Martin Wagner, Technologiezentrum Wasser (TZW) Außenstelle Dresden

Technologiezentrum Wasser (TZW) – Außenstelle Dresden

Solution of the IFE-Problem

III. Problems in quantification of fluorescence signals

correction of Inner-Filter-Effects by ratio between raman peak of pure water and sample

0

100

200

300

400

500

600

240 290 340 390 440 490 540 590 640 690

emission wavelength [nm]

flu

ore

scen

ce in

ten

sity

[a.

u.]

pure water sample

Page 17: FLUORESCENCE AS A TOOL FOR THE CHARACTERIZATION OF WATER AquaLife 2010 Martin Wagner, Technologiezentrum Wasser (TZW) Außenstelle Dresden

Technologiezentrum Wasser (TZW) – Außenstelle Dresden

Solution of the IFE-Problem

Result of IFE-correction is a linear relationship

III. Problems in quantification of fluorescence signals

Calibration

0

100

200

300

400

500

0 2 4 6 8 10 12

Concentration [mg/L]

fluor

esce

nce

inte

nsit

y [a

.u.]

Page 18: FLUORESCENCE AS A TOOL FOR THE CHARACTERIZATION OF WATER AquaLife 2010 Martin Wagner, Technologiezentrum Wasser (TZW) Außenstelle Dresden

Technologiezentrum Wasser (TZW) – Außenstelle Dresden

Quenching

Is also a decrease of fluorescence intensity

Results from contact between fluorophor and quenching

molecule Dynamic Quenching: collision between molecules in excited

state High temperatures and high concentrations increase the probability

of collisions

Static Quenching: formation of complex between fluorophore

and quencher Fluorophore isn‘t able to fluoresce any more

III. Problems in quantification of fluorescence signals

Page 19: FLUORESCENCE AS A TOOL FOR THE CHARACTERIZATION OF WATER AquaLife 2010 Martin Wagner, Technologiezentrum Wasser (TZW) Außenstelle Dresden

Technologiezentrum Wasser (TZW) – Außenstelle Dresden

Quenching: an example

III. Problems in quantification of fluorescence signals

Page 20: FLUORESCENCE AS A TOOL FOR THE CHARACTERIZATION OF WATER AquaLife 2010 Martin Wagner, Technologiezentrum Wasser (TZW) Außenstelle Dresden

Technologiezentrum Wasser (TZW) – Außenstelle Dresden

Solution of Quenching-Problem

Relationship between fluorophore and Quencher

can be described by the Stern-Volmer-Law

III. Problems in quantification of fluorescence signals

Page 21: FLUORESCENCE AS A TOOL FOR THE CHARACTERIZATION OF WATER AquaLife 2010 Martin Wagner, Technologiezentrum Wasser (TZW) Außenstelle Dresden

Technologiezentrum Wasser (TZW) – Außenstelle Dresden

Solution of Quenching-Problem

Definition of the most important Quenchers in respect

of raw and drinking water

O2, Cl-, NO3- (surface- and groundwater)

Fulvic acid

Humic acid

Methodical laboratory tests to derive the single

quenchingconstants for every fluorophore-quencher-

pair

III. Problems in quantification of fluorescence signals

Page 22: FLUORESCENCE AS A TOOL FOR THE CHARACTERIZATION OF WATER AquaLife 2010 Martin Wagner, Technologiezentrum Wasser (TZW) Außenstelle Dresden

Technologiezentrum Wasser (TZW) – Außenstelle Dresden

Portability

III. Problems in quantification of fluorescence signals

Proteinfluorescence at two spectrometers

0

50

100

150

200

250

300

350

400

240 340 440 540 640emission wavelength [nm]

fluore

scence

inte

nsi

ty [

a.u

.]

LS50 LS55

Page 23: FLUORESCENCE AS A TOOL FOR THE CHARACTERIZATION OF WATER AquaLife 2010 Martin Wagner, Technologiezentrum Wasser (TZW) Außenstelle Dresden

Technologiezentrum Wasser (TZW) – Außenstelle Dresden

Portability

The reason for the differences is the missing

reference photomultiplier for the emission channel

III. Problems in quantification of fluorescence signals

Page 24: FLUORESCENCE AS A TOOL FOR THE CHARACTERIZATION OF WATER AquaLife 2010 Martin Wagner, Technologiezentrum Wasser (TZW) Außenstelle Dresden

Technologiezentrum Wasser (TZW) – Außenstelle Dresden

Solution of Portability-Problem

Standardization in three steps:

Correction of exciting light: is included in all

spectrometers (reference photomultiplier)

Correction of deformed peaks: via derivation of

correction-function with the use of reference dyes

Normalization of signals via external standard (sealed

pure water cuvette)

III. Problems in quantification of fluorescence signals

Page 25: FLUORESCENCE AS A TOOL FOR THE CHARACTERIZATION OF WATER AquaLife 2010 Martin Wagner, Technologiezentrum Wasser (TZW) Außenstelle Dresden

Technologiezentrum Wasser (TZW) – Außenstelle Dresden

Solution of Portability-Problem

Correction of deformed peaks via reference dyes

III. Problems in quantification of fluorescence signals

LAKOWICZ (2006)

Page 26: FLUORESCENCE AS A TOOL FOR THE CHARACTERIZATION OF WATER AquaLife 2010 Martin Wagner, Technologiezentrum Wasser (TZW) Außenstelle Dresden

Technologiezentrum Wasser (TZW) – Außenstelle Dresden

Solution of Portability-Problem

III. Problems in quantification of fluorescence signals

before standardization after standardization

LS50

LS55

Page 27: FLUORESCENCE AS A TOOL FOR THE CHARACTERIZATION OF WATER AquaLife 2010 Martin Wagner, Technologiezentrum Wasser (TZW) Außenstelle Dresden

Technologiezentrum Wasser (TZW) – Außenstelle Dresden

Short summary

We have learned How a spectrometer does work

How the DOC is characterized by Fluorescence

LC-OCD method

How a quantification is complicated by Stray light

Inner – Filter – Effects

Quenching

Portability

III. Problems in quantification of fluorescence signals

Page 28: FLUORESCENCE AS A TOOL FOR THE CHARACTERIZATION OF WATER AquaLife 2010 Martin Wagner, Technologiezentrum Wasser (TZW) Außenstelle Dresden

Technologiezentrum Wasser (TZW) – Außenstelle Dresden

Spectral overlapping

III. Problems in quantification of fluorescence signals

Component I

0.00

50.00

100.00

150.00

200.00

250.00

220.0 320.0 420.0 520.0 620.0

emission wavelength [nm]

fluor

esce

nce

inte

nsity

[a.

u.]

Component II

0.00

50.00

100.00

150.00

200.00

250.00

220.0 320.0 420.0 520.0 620.0

emission wavelength [nm]

fluor

esce

nce

inte

nsity

[a.u

.]

Mix of both Components

0.00

50.00

100.00

150.00

200.00

250.00

220.0 320.0 420.0 520.0 620.0

emission wavelength [nm]

fluor

esce

nce

inte

nsity

[a.

u.] Component I Component II Mix

Page 29: FLUORESCENCE AS A TOOL FOR THE CHARACTERIZATION OF WATER AquaLife 2010 Martin Wagner, Technologiezentrum Wasser (TZW) Außenstelle Dresden

Technologiezentrum Wasser (TZW) – Außenstelle Dresden

Spectral overlapping

Existing multivariate methods are:

Principal components regression (PCR)

Parallel factor analysis (PARAFAC)

III. Problems in quantification of fluorescence signals

Page 30: FLUORESCENCE AS A TOOL FOR THE CHARACTERIZATION OF WATER AquaLife 2010 Martin Wagner, Technologiezentrum Wasser (TZW) Außenstelle Dresden

Technologiezentrum Wasser (TZW) – Außenstelle Dresden

Principal components regression (PCR)

Need for set of EEM‘s for decomposition

DOC: 1,2 mg/LDOC: 0,4 mg/LDOC: 0,6 mg/L

… … …

training dataset

Collection of samples about one year

New matrix

Quantification of the new matrix

III. Problems in quantification of fluorescence signals

Page 31: FLUORESCENCE AS A TOOL FOR THE CHARACTERIZATION OF WATER AquaLife 2010 Martin Wagner, Technologiezentrum Wasser (TZW) Außenstelle Dresden

Technologiezentrum Wasser (TZW) – Außenstelle Dresden

Principal components regression (PCR)

Comparison between „classical“ calibration and calibration using principal components

Principal components are difficult to interpret

Appropriate for quantification of well known waters, not for characterization

III. Problems in quantification of fluorescence signals

LC-OCD-fraction

(classical)

R²(PC-Regression)

Number of principal

components

TOC 0,86 0,95 4

Biopolymers 0,00 0,73 10

Humic Substances

0,78 0,91 4

Page 32: FLUORESCENCE AS A TOOL FOR THE CHARACTERIZATION OF WATER AquaLife 2010 Martin Wagner, Technologiezentrum Wasser (TZW) Außenstelle Dresden

Technologiezentrum Wasser (TZW) – Außenstelle Dresden

Parallel factor analysis (PARAFAC)

Some kind of „extended“ principal components analysis

III. Problems in quantification of fluorescence signals

20 to ~ 200

Page 33: FLUORESCENCE AS A TOOL FOR THE CHARACTERIZATION OF WATER AquaLife 2010 Martin Wagner, Technologiezentrum Wasser (TZW) Außenstelle Dresden

Technologiezentrum Wasser (TZW) – Außenstelle Dresden

Multivariate analysis

Lack of interpretation (PCA/PCR)

No universal application possible

New calibration for every location or water necessary

High number of samples necessary

PCR mainly applied in process-monitoring (e.g. brewery), where water

always has the same defined composition and may only exhibits

fluctuation of concentration

III. Problems in quantification of fluorescence signals

Page 34: FLUORESCENCE AS A TOOL FOR THE CHARACTERIZATION OF WATER AquaLife 2010 Martin Wagner, Technologiezentrum Wasser (TZW) Außenstelle Dresden

Technologiezentrum Wasser (TZW) – Außenstelle Dresden

Approach of TZW to solve the problem

Target is decomposition based on one EEM

Extended curve fitting approach is used

Allows to remove stray light, if cutoff filters weren‘t able to

remove them

III. Problems in quantification of fluorescence signalsTryptophan fitted with an asymmetric curve and stray light with symmetric curves

Page 35: FLUORESCENCE AS A TOOL FOR THE CHARACTERIZATION OF WATER AquaLife 2010 Martin Wagner, Technologiezentrum Wasser (TZW) Außenstelle Dresden

Technologiezentrum Wasser (TZW) – Außenstelle Dresden

Approach of TZW to solve the problem

Main problem is finding the truth, because several

solutions are possible

III. Problems in quantification of fluorescence signals

Page 36: FLUORESCENCE AS A TOOL FOR THE CHARACTERIZATION OF WATER AquaLife 2010 Martin Wagner, Technologiezentrum Wasser (TZW) Außenstelle Dresden

Technologiezentrum Wasser (TZW) – Außenstelle Dresden

Approach of TZW to solve the problem

Principle of fluoresence: λem = constant

Usage of pattern recognition (DTW)

III. Problems in quantification of fluorescence signals

Page 37: FLUORESCENCE AS A TOOL FOR THE CHARACTERIZATION OF WATER AquaLife 2010 Martin Wagner, Technologiezentrum Wasser (TZW) Außenstelle Dresden

Technologiezentrum Wasser (TZW) – Außenstelle Dresden

Summary

Advantages

Quick

Little sample preparation

Very sensitive

Disadvantages

Complexity of data evaluation and interpretation

Page 38: FLUORESCENCE AS A TOOL FOR THE CHARACTERIZATION OF WATER AquaLife 2010 Martin Wagner, Technologiezentrum Wasser (TZW) Außenstelle Dresden

Technologiezentrum Wasser (TZW) – Außenstelle Dresden

The End

Thank you for your attention