26

fontana ams slides AR OPERA TIONS AND PULLBA CKS Ma rco F ontana Mi Hee P a rk AMS Meeting, T allahassee, Ma rch 12-13, 2004 Rob ert Gilmer and Jo e Mott: F o rt yY ea rs of Commutative

Embed Size (px)

Citation preview

STAR

O

PERAT

IO

NS

AND

PULLBACKS

MarcoFontana

MiHeePark

AMS

Meeting,Tallahassee,March12-13,2004

RobertGilmerandJoeMott:

FortyYearsofCommutativeRingTheoryatFloridaStateUniversity

InthistalkIwillstudythestaroperationsonapullbackofintegral

domains.

In

particular,Iwillcharacterizethestaroperationsofa

domain

arising

from

a

pullback

of�a

generaltype�by

introducing

new

techniquesfor�projecting�and

�lifting�

staroperationsunder

surjectivehomomorphismsofintegraldomains.

Iwillapplypartofthetheorydevelopedheretogiveacompleteposi-

tiveanswertoaproblem

posedbyD.F.Andersonin1992concerning

thestaroperationsonthe�D+

M�constructions.

1

NOTATION

LetD

beanintegraldomainwithquotient�eldL.

LetF(D)denotethesetofallnonzeroD-submodulesofL,

F(D)thesetofallnonzerofractionalidealsofD,

f(D)bethesetofallnonzero�nitelygeneratedD-submodulesofL.

Obviously,f(D)�F(D)�F(D):

2

InthistalkIwillmainlyconsiderthefollowingsituations:

(þ)T

representsan

integraldom

ain,M

an

idealof

T,kthe

factor

ring

T=M,D

an

integraldom

ain

subring

ofkand

':T!

T=M

=:k

the

canonicalprojection.

SetR:=

'�

1(D)=:T�kD

thepullback

ofD

inside

T

with

respectto

',

hence

R

is

an

integraldom

ain

(subring

ofT).LetK

denote

the

�eld

ofquotientsofR.

(þ+)LetL

be

the

�eld

ofquotients

ofD.

In

the

situation

(þ),we

assum

e,m

oreover,thatL�k,and

denotebyS:=

'�

1(L)=:T�kL

thepullbackofLinsideTwithrespectto'.Then

Sisan

integral

dom

ain

with

�eld

ofquotients

equalto

K.

In

this

situation,M,

which

is

a

prim

e

idealin

R,is

a

m

axim

alidealin

S.

M

oreover,if

M

6=

(0)and

D

(

k,

then

M

is

a

divisorialidealof

R,

actually,

M

=

(R:T).

3

R:=

'�

1(D)

'jR

�!

D

(�L:=

qf(D))

???y

???y

T

'�!

k:=

T=M

(�qf(k))

\

K

:=

qf(R)=

qf(T)

(þ)

R:=

'�

1(D)

'jR

�!

D

???y

???y

S:=

'�

1(L)

'jS

�!

L:=

qf(D)

???y

???y

T

'�!

k:=

T=M

\

K

:=

qf(R)=

qf(T)

(þ+)

Recallthatamapping?:F(D)!

F(D);E7!

E?,iscalleda

sem

istar

operation

on

D

forall06=

x2LandE;F2F(D):

(?1)

(xE)?=

xE?;

(?2)

E�F)

E?�F?;

(?3)

E�E?andE?=

(E?)?=:E??:

A

staroperation

on

D

isamap?:F(D)!

F(D),

E

7!

E?;that

satis�estheproperties(?2);(?3)

forallE;F

2F(D);moreover,for

each06=

x2L

andE2F(D):

(??1)(xD)?=

xD;

(xE)?=

xE?:

4

Let?D

[respectively,?T]beastaroperationontheintegraldomain

D

[respectively,T].Our�rstgoalistode�neinanaturalwayastar

operationonR,whichwewilldenoteby3,associatedtothegiven

staroperationsonD

andT.Moreprecisely,ifwedenotebyStar(A)

thesetofallthestaroperationsonanintegraldomainA,thenwe

wanttode�neamap

:Star(D)�

Star(T)!

Star(R),

(?D;?T)7!

3

.

ForeachnonzerofractionalidealIofR,set

I3

:=

\ (x�

1'�

1 �xI+

M

M

�?D !

jx2I�

1;x6=

0 )\(IT)?T

;

whereifx

I+M

M

isthezeroidealofD

(i.e.,ifxI�

M

),thenweset'�

1 ��x

I+M

M �?D �:=

M

.

5

Proposition1Keeping

the

notation

and

hypotheses

introduced

in

(þ),

then

3

de�nes

a

star

operation

on

the

integraldom

ain

R

(=

T�kD).

Thepreviousconstructionofthestaroperation3

givestheideafor

�liftingastaroperation�withrespecttoasurjectiveringhomomor-

phim

betweentwointegraldomains.

Corollary2LetRbean

integraldom

ain

with

�eld

ofquotientsK,M

a

prim

eidealofR,D

:=

R=M

and

':R!

D

thecanonicalprojection.

Assum

e

that?isa

staroperation

on

D.Foreach

I2F(R),set:

I?'

:=

\ nx�

1'�

1 ��xI+M

M

�? �jx2I�

1;x6=

0 o

=

\ �x'�

1 ��x�1

I+M

M

�? �

jx2K;I�xR �;

Then

?'

isa

staroperation

on

R.

6

Let�:R

,!

T

beanembeddingofintegraldomainswith

thesame

�eldofquotientsK

andlet�beasemistaroperationonR.De�ne

��:F(T)!

F(T)bysetting:

E��:=

E�

;

foreach

E2F(T)(�F(R)):

Thenitiseasytoseethat:

(a)If�isnottheidentitym

ap,then��isasem

istar,possiblynon�star,

operation

on

T,even

if�isa

staroperation

on

R.

Notethat,when

�isastaroperation

on

R

and

(R

:K

T)=

(0),a

fractionalidealE

ofTisnotnecessarilyafractionalidealofR,hence

��isnotde�nedasastaroperationonT.

(b)W

hen

T:=

R�,then

��de�nesa

staroperation

on

R�

:

7

Conversely,let?be

a

semistaroperation

on

the

overring

T

ofR.

De�ne

?�:F(R)!

F(R)bysetting

E?�

:=

(ET)?

foreach

E2F(R):

Thenitiseasytoseethat

(c)?�isa

sem

istaroperation

on

R.

(d)Foreach

sem

istaroperation

?on

T,we

have

(?�)�=

?.

(e)For

each

sem

istar

operation

�on

R,

we

have

(�� )��

�(since

E(�� )�

=

(ET)��=

(ET)�

�E�

foreachE2F(R)).

8

Using

thenotation

introduced

above,weimmediatelyhavethefol-

lowing:

Corollary3W

ith

thenotation

and

hypothesesintroduced

in

(þ)and

Proposition

1,ifwe

use

the

de�nition

given

in

Corollary

2,we

have

3

=

(?D)'^(?T)�:

9

Wenextexaminetheproblem

of�projecting

astaroperation�with

respecttoasurjectivehomomorphism

ofintegraldomains.

Proposition4LetR,K,M,D,'be

asin

Corollary

2

and

letLbe

the

�eld

ofquotients

ofD.

Let

�be

a

given

staroperation

on

the

integraldom

ain

R.Foreach

nonzero

fractionalidealF

ofD,set

F�'

:=

\ ny�

1' ��'�

1(yF) �� �jy2F�

1=

(D

:LF);y6=

0 o:

Then

�'

isa

staroperation

on

D.

10

Incaseofapullbackoftype(þ+)thede�nitionofthestaroperation

�'

givenaboveissimpli�edasfollows:

Proposition5Let

T,K,M,k,D,',L,S

and

R

be

as

in

(þ+).

Let�be

a

given

staroperation

on

the

integraldom

ain

R.

Foreach

nonzero

fractionalidealF

ofD,we

have

F�'

=

' ��'�

1(F) �� �

=

�'�

1(F) ��

M

:

11

Proposition6LetT,K,M,k,D,',L,Sand

R

be

asin

(þ+).Let

?be

a

given

staroperation

on

the

integraldom

ain

D,let�:=

?'

be

the

staroperation

on

R

associated

to

?(which

isde�ned

in

Corollary

2)

and

let

�'

(=

(?')')be

the

staroperation

on

D

associated

to

(which

isde�ned

in

Proposition

4).Then

?=

�'

(=

(?')').

Remark7W

ith

the

notation

and

hypothesesofProposition

6,

for

each

nonzero

fractionalidealF

ofD,we

have

F?=

' �'�

1(F)?' �

:

Asamatteroffact,bythepreviousproofandProposition5,wehave

thatF?=

F�'

=

'�

1(F)?'

=M.

12

Corollary8LetT,K,M,k,D,',L,Sand

R

be

asin

(þ+).

(a)Them

ap

(�)':Star(R)!

Star(D),�7!

�',isorder�preserving

and

surjective.

(b)Them

ap

(�)':Star(D)!

Star(R),?7!

?',isorder�preserving

and

injective.

(c)Let?be

a

staroperation

on

D.Then

foreach

nonzero

idealIof

R

with

M

�I�R,

I?'

=

'�

1 �('(I))? �:

13

Thenextresultshowshow

thecompositionmap

(�)'Æ

(�)':Star(R)!

Star(R)

compareswiththeidentitymap.

Theorem

9LetT,K,M,k,D,',L,Sand

Rbeasin

(þ+).Assum

e

thatD

(k.Then

foreach

staroperation

�on

R,

��((�)')'

:

Wewillshow

thatingeneral��((�)')'.However,insomerelevant

cases,theinequalityis,infact,anequality:

Corollary10LetT,K,M,k,D,',L,Sand

R

be

asin

Theorem

9.

Then

vR

=

((vR)')';

(vD)'=

vR;

(vR)'=

vD

:

14

Ournextgoalisto

applythepreviousresultsforgiving

a

compo-

nentwisedescriptionofthe�pullback�staroperation�consideredin

Proposition1.

Proposition11Let

T,K,M,k,D,',L,S

and

R

be

as

in

(þ+).

Assum

e

thatM

6=

(0)and

D

(k.Let

:Star(D)�Star(T)!

Star(R),

(?D;?T)7!

�:=

(?D)'^(?T)�,

bethem

apconsideredin

Proposition

1andCorollary3.Thefollowing

propertieshold:

(a)�'=

?D.

(b)��=

(vR)�^?T

(2Star(T)).

(c)�=

(�')'^(�� )�.

15

Example12W

ith

the

sam

e

notation

and

hypothesesofProposition

11,we

show

that,in

general,��6=

?T

(even

ifL=

k).

LetD

be

any

integraldomain

(nota

�eld)with

quotient�eld

L.

LetT

:=

L[X;Y](X;Y)

and

letM

:=

(X;Y)T.

NotethatT

isa

2-

dimensionallocalUFD,thusMvT

=

T.Set�:=

(vD)'^(vT)�(thus

?T

=

vT).ThenM��=

M�

=

M(vD)'

\M(vT)�

=

MvR

\M(vT)�

=

M,

becauseMvR

=

M

andM(vT)�

=

(MT)vT

=

MvT

=

T.

16

Remark13(a)Notethat,withthesamenotationandhypotheses

ofProposition11,the

m

ap

isnotone-to-one

in

general.

Thisfactimmediatelyfollowsfrom

Example12andProposition

11

(b)and(c),since

(?D)'^(?T)�=

�=

(�')'^(�� )�.

(b)Inthesamesettingasabove,the

m

ap

isnotonto

in

general.

Anexample,evenincaseL=

k,isgivennext.

17

Example14LetD

bea1-dim

ensionaldiscretevaluationdom

ainwith

quotient�eld

L.

SetT:=

L[X2;X3],M

:=

(X2;X3)T=

XL[X]\T

and

K

:=

L(X).Let'and

R

be

asin

(þ+).Then

vR

=2Im(�).

Notethat,foreach�2Im(�),��(vD)'^(vT)��vR.Inordertoshow

thatvR

62

Im(�),itsu�cesto

provethat(vD)'^(vT)�6=

vR.

The

fractionaloverringT

ofR

isnotadivisorialidealofR,sinceTvR

=

(R

:K

(R

:K

T))=

(R

:K

M)�

L[X])

T.Therefore,T(vD)'^

(vT)�

=

TvR^

(vT)�

=

TvR

\T(vT)�

=

TvR

\TvT

=

TvR

\T=

T(TvR.

18

Theorem

15W

ith

the

notation

and

hypotheses

ofProposition

11,

set

Star(T;vR):=

f?T

2Star(T)j?T

�(vR)� g.

Then

(a)Star(T;vR)=

f?T

2Star(T)j(vR^(?T)�)

�=

?T

g

=

f��j�2Star(R)g

\

Star(T)

=

f��j�2Star(R)and

T�

=

Tg:

(b)The

restriction

�0

:=

�jStar(D)�

Star(T;vR)isone-to-one.

(c)Im(�0)=

Star(R;(þ+)):=

f�2

Star(R)jT�

=

Tand

�=

(�')'^(�� )�g.

19

Wenextapplysomeofthetheorydevelopedaboveforansweringa

problem

posedbyD.F.Andersonin1992[A-1992].

Example16(�D

+

M

��constructions).

LetTbeanintegraldomainofthetypek+M,whereM

isamaximal

idealofT

andkisasubringofT

canonicallyisomorphictothe�eld

T=M,andletD

beasubringofkwith�eldofquotientsL(�k).Set

R:=

D+

M.NotethatR

isafaithfully�atD�module.

Given

a

staroperation

�on

R,D.F.Anderson

[A-1988,page835]

de�nedastaroperationonD

inthefollowingway:foreachnonzero

fractionalidealF

ofD,setF

�D

:=

(FR)�

\L:

20

From

[A-1988,Proposition5.4(b)]itisknownthat:

ForeachnonzerofractionalidealF

ofD,

(a)F�D

+

M

=

(F+

M)�

;

(b)F�D

=

(F+

M)�

\L=

(F+

M)�

\k.

DavidF.Andersonin[A-1992]observedthatthepreviousconstruc-

tion

givesrise

to

a

map

:Star(D

+

M)!

Star(D),

�7!

�D

,

which

isorder-preserving

butnotinjective.

Heposesthequestion

whether�

maybesurjectiveor,moreprecisely,whether�

mayhave

arightinverse�:Star(D)!

Star(D+

M),whichisan(injective)

order-preserving

map.

Hegavean

answerin

aparticularsituation,

consideringjustthestaroperationsde�nedbyfamiliesofoverrings.

21

Thetheorydevelopedabovegivesacompleteanswertotheseques-

tions.

Westartbycomparingtheoperation�D

de�nedin[A-1988]withthe

�projection�,

�',

consideredaboveinageneralpullbacksetting.

Claim.If':R!

D

is

the

canonicalprojection

and

if�'

is

the

star

operation

de�ned

in

Proposition

4,then

�D

=

�'

(i.e.

the

m

ap

coincideswith

the

m

ap

(�)':Star(R)!

Star(D)).

Inparticular,by[A-1992,Proposition2(a),(c)],we

deduce

that

(1)(dR)'=

dD

;

(tR)'=

tD

;

(vR)'=

vD

;

and

(2)(�f)'=

(�')f.

22

ByapplyingProposition6andCorollary8(a)totheparticularcase

ofR=

D+

M

(specialcaseof(þ+)),weknow

thatthemap

(�)':Star(D+

M)!

Star(D),

�7!

�'=

�D

,

issurjectiveandorder-preservingandithastheinjectiveorder-preserving

map

(�)'

:Star(D)!

Star(D+

M),

?7!

?'

,

asarightinverse.

Thisfactgivesacompletepositiveanswertotheproblem

posedby

D.F.Anderson.

23

[A-1988]David

F.Anderson,

A

general

theory

of

class

groups.

Comm.Algebra16(1988),805�847.

[A-1992]David

F.Anderson,

Staroperations

and

the

D+

M

con-

structions.

Rend.Circ.Mat.Palermo41IISerie(1992),221�230.

24