37
SBC 200.0 kN/m2 250 kN/m2 Load Case Joint No Load Case No P MX MZ P/A Mx/Zx My/Zy Net Up. Pre. Load Factor Design Pressure Critical Design Pressure DL+LL 1 14 416.67 0.21 0.83 1.6 1.6 162.8 0.31 1.22 164 200 Ok 1.5 246 15 312.09 0.23 28.28 1.6 1.6 121.9 0.34 41.43 164 250 Ok 1.5 246 16 452.77 0.63 29.58 1.6 1.6 176.9 0.92 43.33 221 250 Ok 1.5 332 17 306.05 29.45 0.36 1.6 1.6 119.6 43.14 0.53 163 250 Ok 1.5 245 18 458.81 29.84 0.94 1.6 1.6 179.2 43.71 1.38 224 250 Ok 1.5 336 19 346.33 0.22 28.1 1.6 1.6 135.3 0.32 41.16 177 250 Ok 1.2 212 20 487 0.64 29.76 1.6 1.6 190.2 0.94 43.59 235 250 Ok 1.2 282 21 340.29 29.44 0.54 1.6 1.6 132.9 43.13 0.79 177 250 Ok 1.2 212 22 493.04 29.85 1.12 1.6 1.6 192.6 43.73 1.64 238 250 Ok 1.2 286 DL CASE EQ/WL CASE FOOTING GROUPING Check for ' SBC ' 336 Size of Footing DL+EQ/WL DL+LL+EQ /WL

Footing Design

Embed Size (px)

DESCRIPTION

Footing Grouping

Citation preview

Page 1: Footing Design

SBC

200.0 kN/m2

250 kN/m2

Load

Case

Joint

No

Load

Case

No P MX MZ P/A Mx/Zx My/Zy

Net Up.

Pre.

Load

Factor

Design

Pressure

Critical

Design

Pressure

DL+LL 1 14 416.67 0.21 0.83 1.6 1.6 162.8 0.31 1.22 164 200 Ok 1.5 246

15 312.09 0.23 28.28 1.6 1.6 121.9 0.34 41.43 164 250 Ok 1.5 246

16 452.77 0.63 29.58 1.6 1.6 176.9 0.92 43.33 221 250 Ok 1.5 332

17 306.05 29.45 0.36 1.6 1.6 119.6 43.14 0.53 163 250 Ok 1.5 245

18 458.81 29.84 0.94 1.6 1.6 179.2 43.71 1.38 224 250 Ok 1.5 336

19 346.33 0.22 28.1 1.6 1.6 135.3 0.32 41.16 177 250 Ok 1.2 212

20 487 0.64 29.76 1.6 1.6 190.2 0.94 43.59 235 250 Ok 1.2 282

21 340.29 29.44 0.54 1.6 1.6 132.9 43.13 0.79 177 250 Ok 1.2 212

22 493.04 29.85 1.12 1.6 1.6 192.6 43.73 1.64 238 250 Ok 1.2 286

DL CASE

EQ/WL CASE

FOOTING GROUPING

Check for

' SBC '

336

Size of

Footing

DL

+E

Q/W

LD

L+

LL

+E

Q

/WL

Page 2: Footing Design

S.No Group GridsCritical

Grid

Load

Case

No

DL

or

EQ-WL

SIZEP

kN

Mx

kNm

My

kNm

Factored

Design Pr

KN/m2

1 F1 1,21,24 24 17 EQ 1.7x1.7

2 F2 2,4,5,8,12,17,23, 12 15 EQ 1.9x1.9

3 F3 3,9,13,16,22 9 16 EQ 2.0 x 2.0

4 F4 20,18,19 19 16 EQ 2.2 x 2.2

5 F5 6,7,11,15 15 18 EQ 2.4 x 2.4

6 F6 14,10, 10 14 DL 2.6x2.6

ABSTRACT

Page 3: Footing Design

DATA:

Safe bearing capacity of soil Sbc 312.5 kn/sqm

Grade of concrete in footing Fcki 25 N/sqmm

Grade of concrete in pedestal Fckii 25 N/sqmm

Yield strength of steel Fe 500 N/sqmm

Size of pedestal(square) Lii 530 mm

Size of footing Li 1400 mm

Overall depth of footing D 300 mm

Eff. cover to main steel Ec 50 mm

Dia. of main steel bar dsi 10 mm

Spacing of main steel bars Si 150 mm

Loading case

Load on the column Wi 190.00 kn

Moment on major axis Mxi 11.00 Knm

Moment on minor axis Myi 43.00 Knm

Modulus of section (li/100)^3/6 Zx 0.46 m3

Zy 0.46 m3

DESIGN :

Design max upward pressure Qu 321.0 Kn/sqm

Bending moment at the face of pedestal

qu*(li/100*(li/100-lii/100)^2)/8 Mi 43 Knm

Length/Width of footing bi 1400 mm

Approximate Depth required from Shear Consideration 14.51 0.33 274 mm

Provided Total Depth D 300

Provided Eff. depth D-Ec di 250 mm

Area of steel required

(bi*10*di*10*50/100)*(1-@sqrt(1-(4.6*mi*10^6)/(fcki*bi*10*di*di*100)))/(fe/fcki)

Ast 400 sqmm

Minimum Steel : 0.2%ofArea Minimum Ast 700 sqmm

Area of steel Required 700 sqmm

Spacing of bars (@pi*dsi^2/4*li*10/ast)/10 157 mm c/c

Provide 10 mm bars Si 150 mm c/c

Check for one way shear:

Critical section for oneway shear is at a distance of "di" from face of the pedestal

Shear force at critical section

qu*li/100*((li-lii)/200-di/100) Vi 83 Kn

Footing Width at critical section Li bii 1400 mm

Depth at critical section di 250 mm

Shear stress Vi*1000/(bii*10*dc*10) towu 0.24 n/sqmm

Percentage of steel at critical section

bii*10*@pi*dsi^2/4*100/(si*10*bii*10*dc*10) pt 0.21

@max((0.8*fcki)/(6.89*pt),1.0) beeta 13.86

Permisible shear stress

(0.85*@sqrt(0.8*fcki)*(@sqrt(1+5*beeta)-1.0))/(6*beeta)

towc 0.34 N/sqmm

CHECK: @if(towu<towc,"safe","Not safe") SAFE

Design for two way shear:

The critical section for two way shear is at di/2 from the face of the pedastal

Shear force

qu*((Li/100)^2-(Lii/100+(D-Ec)/100)^2) vii 434 kn

Depth of footing at critical section

di-((0.5*di)/((Li-Lii)*0.5))*(D-de) di 250 mm

Nominal shear stress

vii*1000/((Lii*10+di*10)*4*dci*10) towui 0.56 N/sqmm

Shear strength of Concrete

0.25*@sqrt(fcki) towci 1.25 N/sqmm

CHECK @if(towci>towui,"safe","Not safe") SAFE

Load transfer from Column to Footing:

Nominal bearing stress in column concrete

1.5*Wi*1000/(Lii*Lii*) 1.01 N/sqmm

Allowable bearing stress

0.45*Fckii 11.25 N/sqmm

SAFE

DESIGN OF FOOTING - F1

Page 4: Footing Design

DATA:

Safe bearing capacity of soil Sbc 312.5 kn/sqm

Grade of concrete in footing Fcki 25 N/sqmm

Grade of concrete in pedestal Fckii 25 N/sqmm

Yield strength of steel Fe 500 N/sqmm

Size of pedestal(square) Lii 530 mm

Size of footing Li 1800 mm

Overall depth of footing D 400 mm

Eff. cover to main steel Ec 50 mm

Dia. of main steel bar dsi 12 mm

Spacing of main steel bars Si 125 mm

Loading case

Load on the column Wi 670.00 kn

Moment on major axis Mxi 11.00 Knm

Moment on minor axis Myi 61.00 Knm

Modulus of section (li/100)^3/6 Zx 0.97 m3

Zy 0.97 m3

DESIGN :

Design max upward pressure Qu 421.0 Kn/sqm

Bending moment at the face of pedestal

qu*(li/100*(li/100-lii/100)^2)/8 Mi 153 Knm

Length/Width of footing bi 1800 mm

Approximate Depth required from Shear Consideration 14.51 0.33 416 mm

Provided Total Depth D 400

Provided Eff. depth D-Ec di 350 mm

Area of steel required

(bi*10*di*10*50/100)*(1-@sqrt(1-(4.6*mi*10^6)/(fcki*bi*10*di*di*100)))/(fe/fcki)

Ast 1038 sqmm

Minimum Steel : 0.2%ofArea Minimum Ast 1260 sqmm

Area of steel Required 1260 sqmm

Spacing of bars (@pi*dsi^2/4*li*10/ast)/10 162 mm c/c

Provide 12 mm bars Si 125 mm c/c

Check for one way shear:

Critical section for oneway shear is at a distance of "di" from face of the pedestal

Shear force at critical section

qu*li/100*((li-lii)/200-di/100) Vi 216 Kn

Footing Width at critical section Li bii 1800 mm

Depth at critical section di 350 mm

Shear stress Vi*1000/(bii*10*dc*10) towu 0.3428 n/sqmm

Percentage of steel at critical section

bii*10*@pi*dsi^2/4*100/(si*10*bii*10*dc*10) pt 0.2585

@max((0.8*fcki)/(6.89*pt),1.0) beeta 11.2289

Permisible shear stress

(0.85*@sqrt(0.8*fcki)*(@sqrt(1+5*beeta)-1.0))/(6*beeta)

towc 0.3701 N/sqmm

CHECK: @if(towu<towc,"safe","Not safe") SAFE

Design for two way shear:

The critical section for two way shear is at di/2 from the face of the pedastal

Shear force

qu*((Li/100)^2-(Lii/100+(D-Ec)/100)^2) vii 1038 kn

Depth of footing at critical section

di-((0.5*di)/((Li-Lii)*0.5))*(D-de) di 350 mm

Nominal shear stress

vii*1000/((Lii*10+di*10)*4*dci*10) towui 0.84 N/sqmm

Shear strength of Concrete

0.25*@sqrt(fcki) towci 1.25 N/sqmm

CHECK @if(towci>towui,"safe","Not safe") SAFE

Load transfer from Column to Footing:

Nominal bearing stress in column concrete

1.5*Wi*1000/(Lii*Lii*) 3.58 N/sqmm

Allowable bearing stress

0.45*Fckii 11.25 N/sqmm

SAFE

DESIGN OF FOOTING - F2

Page 5: Footing Design

DATA:

Safe bearing capacity of soil Sbc 312.5 kn/sqm

Grade of concrete in footing Fcki 25 N/sqmm

Grade of concrete in pedestal Fckii 25 N/sqmm

Yield strength of steel Fe 500 N/sqmm

Size of pedestal(square) Lii 750 mm

Size of footing Li 2000 mm

Overall depth of footing D 500 mm

Eff. cover to main steel Ec 50 mm

Dia. of main steel bar dsi 12 mm

Spacing of main steel bars Si 150 mm

Loading case

Load on the column Wi 604.00 kn

Moment on major axis Mxi 11.00 Knm

Moment on minor axis Myi 175.00 Knm

Modulus of section (li/100)^3/6 Zx 1.33 m3

Zy 1.33 m3

DESIGN :

Design max upward pressure Qu 436.0 Kn/sqm

Bending moment at the face of pedestal

qu*(li/100*(li/100-lii/100)^2)/8 Mi 170 Knm

Length/Width of footing bi 2000 mm

Approximate Depth required from Shear Consideration 14.51 0.33 415 mm

Provided Total Depth D 500

Provided Eff. depth D-Ec di 450 mm

Area of steel required

(bi*10*di*10*50/100)*(1-@sqrt(1-(4.6*mi*10^6)/(fcki*bi*10*di*di*100)))/(fe/fcki)

Ast 888 sqmm

Minimum Steel : 0.2%ofArea Minimum Ast 1800 sqmm

Area of steel Required 1800 sqmm

Spacing of bars (@pi*dsi^2/4*li*10/ast)/10 126 mm c/c

Provide 12 mm bars Si 125 mm c/c

Check for one way shear:

Critical section for oneway shear is at a distance of "di" from face of the pedestal

Shear force at critical section

qu*li/100*((li-lii)/200-di/100) Vi 153 Kn

Footing Width at critical section Li bii 2000 mm

Depth at critical section di 450 mm

Shear stress Vi*1000/(bii*10*dc*10) towu 0.17 n/sqmm

Percentage of steel at critical section

bii*10*@pi*dsi^2/4*100/(si*10*bii*10*dc*10) pt 0.17

@max((0.8*fcki)/(6.89*pt),1.0) beeta 17.32

Permisible shear stress

(0.85*@sqrt(0.8*fcki)*(@sqrt(1+5*beeta)-1.0))/(6*beeta)

towc 0.31 N/sqmm

CHECK: @if(towu<towc,"safe","Not safe") SAFE

Design for two way shear:

The critical section for two way shear is at di/2 from the face of the pedastal

Shear force

qu*((Li/100)^2-(Lii/100+(D-Ec)/100)^2) vii 1116 kn

Depth of footing at critical section

di-((0.5*di)/((Li-Lii)*0.5))*(D-de) di 450 mm

Nominal shear stress

vii*1000/((Lii*10+di*10)*4*dci*10) towui 0.52 N/sqmm

Shear strength of Concrete

0.25*@sqrt(fcki) towci 1.25 N/sqmm

CHECK @if(towci>towui,"safe","Not safe") SAFE

Load transfer from Column to Footing:

Nominal bearing stress in column concrete

1.5*Wi*1000/(Lii*Lii*) 1.61 N/sqmm

Allowable bearing stress

0.45*Fckii 11.25 N/sqmm

SAFE

DESIGN OF FOOTING - F3

Page 6: Footing Design

DATA:

Safe bearing capacity of soil Sbc 312.5 kn/sqm

Grade of concrete in footing Fcki 25 N/sqmm

Grade of concrete in pedestal Fckii 25 N/sqmm

Yield strength of steel Fe 500 N/sqmm

Size of pedestal(square) Lii 750 mm

Size of footing Li 2200 mm

Overall depth of footing D 500 mm

Eff. cover to main steel Ec 50 mm

Dia. of main steel bar dsi 12 mm

Spacing of main steel bars Si 150 mm

Loading case

Load on the column Wi ####### kn

Moment on major axis Mxi 101.00 Knm

Moment on minor axis Myi 16.00 Knm

Modulus of section (li/100)^3/6 Zx 1.77 m3

Zy 1.77 m3

DESIGN :

Design max upward pressure Qu 413.0 Kn/sqm

Bending moment at the face of pedestal

qu*(li/100*(li/100-lii/100)^2)/8 Mi 239 Knm

Length/Width of footing bi 2200 mm

Approximate Depth required from Shear Consideration 14.51 0.33 463 mm

Provided Total Depth D 500

Provided Eff. depth D-Ec di 450 mm

Area of steel required

(bi*10*di*10*50/100)*(1-@sqrt(1-(4.6*mi*10^6)/(fcki*bi*10*di*di*100)))/(fe/fcki)

Ast 1252 sqmm

Minimum Steel : 0.2%ofArea Minimum Ast 1980 sqmm

Area of steel Required 1980 sqmm

Spacing of bars (@pi*dsi^2/4*li*10/ast)/10 126 mm c/c

Provide 12 mm bars Si 125 mm c/c

Check for one way shear:

Critical section for oneway shear is at a distance of "di" from face of the pedestal

Shear force at critical section

qu*li/100*((li-lii)/200-di/100) Vi 250 Kn

Footing Width at critical section Li bii 2200 mm

Depth at critical section di 450 mm

Shear stress Vi*1000/(bii*10*dc*10) towu 0.25 n/sqmm

Percentage of steel at critical section

bii*10*@pi*dsi^2/4*100/(si*10*bii*10*dc*10) pt 0.17

@max((0.8*fcki)/(6.89*pt),1.0) beeta 17.32

Permisible shear stress

(0.85*@sqrt(0.8*fcki)*(@sqrt(1+5*beeta)-1.0))/(6*beeta)

towc 0.31 N/sqmm

CHECK: @if(towu<towc,"safe","Not safe") SAFE

Design for two way shear:

The critical section for two way shear is at di/2 from the face of the pedastal

Shear force

qu*((Li/100)^2-(Lii/100+(D-Ec)/100)^2) vii 1404 kn

Depth of footing at critical section

di-((0.5*di)/((Li-Lii)*0.5))*(D-de) di 450 mm

DESIGN OF FOOTING - F3

Page 7: Footing Design

Nominal shear stress

vii*1000/((Lii*10+di*10)*4*dci*10) towui 0.65 N/sqmm

Shear strength of Concrete

0.25*@sqrt(fcki) towci 1.25 N/sqmm

CHECK @if(towci>towui,"safe","Not safe") SAFE

Load transfer from Column to Footing:

Nominal bearing stress in column concrete

1.5*Wi*1000/(Lii*Lii*) 2.70 N/sqmm

Allowable bearing stress

0.45*Fckii 11.25 N/sqmm

SAFE

Page 8: Footing Design

DESIGN OF FOOTING - F3

Page 9: Footing Design

DATA:

Safe bearing capacity of soil Sbc 312.5 kn/sqm

Grade of concrete in footing Fcki 25 N/sqmm

Grade of concrete in pedestal Fckii 25 N/sqmm

Yield strength of steel Fe 500 N/sqmm

Size of pedestal(square) Lii 750 mm

Size of footing Li 2400 mm

Overall depth of footing D 550 mm

Eff. cover to main steel Ec 50 mm

Dia. of main steel bar dsi 12 mm

Spacing of main steel bars Si 100 mm

Loading case

Load on the column Wi ####### kn

Moment on major axis Mxi 195.00 Knm

Moment on minor axis Myi 19.00 Knm

Modulus of section (li/100)^3/6 Zx 2.30 m3

Zy 2.30 m3

DESIGN :

Design max upward pressure Qu 442.0 Kn/sqm

Bending moment at the face of pedestal

qu*(li/100*(li/100-lii/100)^2)/8 Mi 361 Knm

Length/Width of footing bi 2400 mm

Approximate Depth required from Shear Consideration 14.51 0.33 532 mm

Provided Total Depth D 550

Provided Eff. depth D-Ec di 500 mm

Area of steel required

(bi*10*di*10*50/100)*(1-@sqrt(1-(4.6*mi*10^6)/(fcki*bi*10*di*di*100)))/(fe/fcki)

Ast 1709 sqmm

Minimum Steel : 0.2%ofArea Minimum Ast 2400 sqmm

Area of steel Required 2400 sqmm

Spacing of bars (@pi*dsi^2/4*li*10/ast)/10 113 mm c/c

Provide 12 mm bars Si 100 mm c/c

Check for one way shear:

Critical section for oneway shear is at a distance of "di" from face of the pedestal

Shear force at critical section

qu*li/100*((li-lii)/200-di/100) Vi 345 Kn

Footing Width at critical section Li bii 2400 mm

Depth at critical section di 500 mm

Shear stress Vi*1000/(bii*10*dc*10) towu 0.29 n/sqmm

Percentage of steel at critical section

bii*10*@pi*dsi^2/4*100/(si*10*bii*10*dc*10) pt 0.23

@max((0.8*fcki)/(6.89*pt),1.0) beeta 12.83

Permisible shear stress

(0.85*@sqrt(0.8*fcki)*(@sqrt(1+5*beeta)-1.0))/(6*beeta)

towc 0.35 N/sqmm

CHECK: @if(towu<towc,"safe","Not safe") SAFE

Design for two way shear:

The critical section for two way shear is at di/2 from the face of the pedastal

Shear force

qu*((Li/100)^2-(Lii/100+(D-Ec)/100)^2) vii 1855 kn

Depth of footing at critical section

di-((0.5*di)/((Li-Lii)*0.5))*(D-de) di 500 mm

Nominal shear stress

vii*1000/((Lii*10+di*10)*4*dci*10) towui 0.74 N/sqmm

Shear strength of Concrete

0.25*@sqrt(fcki) towci 1.25 N/sqmm

CHECK @if(towci>towui,"safe","Not safe") SAFE

Load transfer from Column to Footing:

Nominal bearing stress in column concrete

1.5*Wi*1000/(Lii*Lii*) 3.11 N/sqmm

Allowable bearing stress

0.45*Fckii 11.25 N/sqmm

SAFE

DESIGN OF FOOTING - F4

Page 10: Footing Design

DATA:

Safe bearing capacity of soil Sbc 312.5 kn/sqm

Grade of concrete in footing Fcki 25 N/sqmm

Grade of concrete in pedestal Fckii 25 N/sqmm

Yield strength of steel Fe 500 N/sqmm

Size of pedestal(square) Lii 750 mm

Size of footing Li 2700 mm

Overall depth of footing D 600 mm

Eff. cover to main steel Ec 50 mm

Dia. of main steel bar dsi 12 mm

Spacing of main steel bars Si 100 mm

Loading case

Load on the column Wi ####### kn

Moment on major axis Mxi 240.00 Knm

Moment on minor axis Myi 14.00 Knm

Modulus of section (li/100)^3/6 Zx 3.28 m3

Zy 3.28 m3

DESIGN :

Design max upward pressure Qu 403.0 Kn/sqm

Bending moment at the face of pedestal

qu*(li/100*(li/100-lii/100)^2)/8 Mi 517 Knm

Length/Width of footing bi 2700 mm

Approximate Depth required from Shear Consideration 14.51 0.33 595 mm

Provided Total Depth D 600

Provided Eff. depth D-Ec di 550 mm

Area of steel required

(bi*10*di*10*50/100)*(1-@sqrt(1-(4.6*mi*10^6)/(fcki*bi*10*di*di*100)))/(fe/fcki)

Ast 2230 sqmm

Minimum Steel : 0.2%ofArea Minimum Ast 2970 sqmm

Area of steel Required 2970 sqmm

Spacing of bars (@pi*dsi^2/4*li*10/ast)/10 103 mm c/c

Provide 12 mm bars Si 100 mm c/c

Check for one way shear:

Critical section for oneway shear is at a distance of "di" from face of the pedestal

Shear force at critical section

qu*li/100*((li-lii)/200-di/100) Vi 462 Kn

Footing Width at critical section Li bii 2700 mm

Depth at critical section di 550 mm

Shear stress Vi*1000/(bii*10*dc*10) towu 0.311 n/sqmm

Percentage of steel at critical section

bii*10*@pi*dsi^2/4*100/(si*10*bii*10*dc*10) pt 0.21

@max((0.8*fcki)/(6.89*pt),1.0) beeta 14.12

Permisible shear stress

(0.85*@sqrt(0.8*fcki)*(@sqrt(1+5*beeta)-1.0))/(6*beeta)

towc 0.335 N/sqmm

CHECK: @if(towu<towc,"safe","Not safe") SAFE

Design for two way shear:

The critical section for two way shear is at di/2 from the face of the pedastal

Shear force

qu*((Li/100)^2-(Lii/100+(D-Ec)/100)^2) vii 2257 kn

Depth of footing at critical section

di-((0.5*di)/((Li-Lii)*0.5))*(D-de) di 550 mm

Nominal shear stress

vii*1000/((Lii*10+di*10)*4*dci*10) towui 0.79 N/sqmm

Shear strength of Concrete

0.25*@sqrt(fcki) towci 1.25 N/sqmm

CHECK @if(towci>towui,"safe","Not safe") SAFE

Load transfer from Column to Footing:

Nominal bearing stress in column concrete

1.5*Wi*1000/(Lii*Lii*) 3.72 N/sqmm

Allowable bearing stress

0.45*Fckii 11.25 N/sqmm

SAFE

DESIGN OF FOOTING - F5

Page 11: Footing Design

Safe bearing capacity of soil Sbc 312.50 kn/sqm

Grade of concrete in footing Fcki 25 N/sqmm

Grade of concrete in pedestal Fckii 25 N/sqmm

Yield strength of steel Fe 500 N/sqmm

Size of pedestal, Length Lp 600 mm

Breadth Bp 450 mm

Size of footing, LENGTH L 2000 mm

BREADTH B 1500 mm

Overall depth of footing D 500 mm

Eff. cover to main steel Ec 60 mm

Dia. of main steel bar Dsi 12 mm

Dia. of main steel bar Dsii 12 mm

Spacing parellel to Long span Si 125 mm

Spacing parellel to Short span Sii 125 mm

Loading case I (DL+LL)

Load on the column Wi 626 kn

Moment on major axis Mxi 66.00 Knm

Moment on minor axis Myi 5.00 Knm

Design max upward pressure Qu 420.00 Kn/sqm

Steel Parellel to long span Direction:

Bending moment @ face of pedestal Parellel to long span Direction.

qu*(bf/100*(li/100-lii/100)^2)/8 Mi 154 Knm

B 1500 mm

Provided Total D 500 mm

Provided Eff. depth D-Ec DI 440 mm

Area of steel required

(bi*10*di*10*50/100)*(1-@sqrt(1-(4.6*mi*10^6)/(fcki*bi*10*di*di*100)))/(fe/fcki)

Asti 828 sqmm

Mimum Ast 1320 sqmm

Ast-long 1320 sqmm

Spacing of bars parellel to long span direction (@pi*dsi^2/4*li*10/asti)/10 129 mm

12 mm bars Si 125 mm

Steel Parellel to short span Direction:

Bending moment @ face of pedestal Parellel to short span Direction.

qu*(li/100*(bf/100-bp/100)^2)/8 Mii 116 Kn/sqm

L 2000 mm

D 500 mm

Provided Eff. depth D-Ec-dsi/2 DII 434 mm

Area of steel required

(li*10*dii*10*50/100)*(1-@sqrt(1-(4.6*mii*10^6)/(fcki*Li*10*dii*dii*100)))/(fe/fcki)

Astii 622 sqmm

Mimum Ast 1736 sqmm

Ast-short 1736 sqmm

Spacing of bars parellel short long span direction (@pi*dsi^2/4*bfi*10/astii)/10 130 cm

12 mm bars Sii 125 mm

DESIGN OF RECTANGULAR FOOTING -RF1

Page 12: Footing Design

Check for one way shear

A)Critical section for oneway shear is at a

distance of "di" from face of the pedestal parellel to short span direction:

Shear force at critical section

qu*bf/100*((li-lii)/200-di/100) Vi 164 Kn

Footing Width at critical section B 1500 mm

Depth at critical section DI 440 mm

Shear stress Vi*1000/(bii*10*dc*10) TOWU1 0.25 N/sqmm

Percentage of steel at critical section

bii*10*@pi*dsi^2/4*100/(si*10*bii*10*di*10) PT1 0.21

@max((0.8*fcki)/(6.89*pt),1.0) Beeta1 14.12

Permisible shear stress

(0.85*@sqrt(0.8*fcki)*(@sqrt(1+5*beeta)-1.0))/(6*beeta)

TOWC1 0.33 N/sqmm

CHECK: @if(towu<towc,"safe","Not safe") SAFE

B)Critical section for oneway shear is at a

distance of "di" from face of the pedestal parellel to long span direction:

Shear force at critical section

qu*Li/100*((bf-bp)/200-dii/100) Vii 76 kn

Footing Width at critical section L 2000 mm

Depth at critical section DII 434 mm

Shear stress Vi*1000/(lii*10*dc*10) TOWU2 0.09 N/sqmm

Percentage of steel at critical section

bii*10*@pi*dsi^2/4*100/(si*10*bii*10*dii*10) PT2 0.21

@max((0.8*fcki)/(6.89*pt),1.0) Beeta2 13.92

Permisible shear stress

(0.85*@sqrt(0.8*fcki)*(@sqrt(1+5*beeta)-1.0))/(6*beeta)

TOWC2 0.34 N/sqmm

CHECK: if(towuii<towcii,"safe","Not safe") SAFE

Design for two way shear :

The critical section for two way shear is at di/2 from facs of the pedastal

Shear force

qu*((li/100*bf/100)-((Lii/100+(D-Ec)/100)*(Bp/100+(D-Ec)/100))) V 918 kn

Depth of footing at critical section DI 440 mm

Nominal shear stress

vii*1000/(((Lii*10+di*10)*2+(Bp*10+di*10)*2)*dci*10) TOWU3 0.54 N/sqmm

Shear strength of Concrete

x=0.5+(Bp/Lii) x 1.25

if(x<1, "ks=x","ks=1) ks 1.00

ks*0.25*Sqrt(fcki)

@if(towci>towui,"safe","Not safe") TOWC3 1.25 N/sqmm

CHECK: SAFE

Load transfer from Column to Footing:

Nominal bearing stress in column concrete 1.5*Wi*1000/(Lii*10*Lii*10) 0.31 N/sqmm

Allowable bearing stress0.45*Fckii 11.25 N/sqmm

SAFE

Page 13: Footing Design

Safe bearing capacity of soil Sbc 312.50 kn/sqm

Grade of concrete in footing Fcki 25 N/sqmm

Grade of concrete in pedestal Fckii 25 N/sqmm

Yield strength of steel Fe 500 N/sqmm

Size of pedestal, Length Lp 600 mm

Breadth Bp 450 mm

Size of footing, LENGTH L 2400 mm

BREADTH B 1500 mm

Overall depth of footing D 500 mm

Eff. cover to main steel Ec 60 mm

Dia. of main steel bar Dsi 12 mm

Dia. of main steel bar Dsii 12 mm

Spacing parellel to Long span Si 120 mm

Spacing parellel to Short span Sii 120 mm

Loading case I (DL+LL)

Load on the column Wi 767 kn

Moment on major axis Mxi 95.00 Knm

Moment on minor axis Myi 5.00 Knm

Design max upward pressure Qu 426.00 Kn/sqm

Steel Parellel to long span Direction:

Bending moment @ face of pedestal Parellel to long span Direction.

qu*(bf/100*(li/100-lii/100)^2)/8 Mi 259

B 1500

Provided Total D 500

Provided Eff. depth D-Ec DI 440

Area of steel required

(bi*10*di*10*50/100)*(1-@sqrt(1-(4.6*mi*10^6)/(fcki*bi*10*di*di*100)))/(fe/fcki)

Asti 1413

Mimum Ast 1320

Ast-long 1413

Spacing of bars parellel to long span direction (@pi*dsi^2/4*li*10/asti)/10 120

12 mm bars Si 120

Steel Parellel to short span Direction:

Bending moment @ face of pedestal Parellel to short span Direction.

qu*(li/100*(bf/100-bp/100)^2)/8 Mii 141

L 2400

D 500

Provided Eff. depth D-Ec-dsi/2 DII 434

Area of steel required

(li*10*dii*10*50/100)*(1-@sqrt(1-(4.6*mii*10^6)/(fcki*Li*10*dii*dii*100)))/(fe/fcki)

Astii 758

Mimum Ast 2083

Ast-short 2083

Spacing of bars parellel short long span direction (@pi*dsi^2/4*bfi*10/astii)/10 130

12 mm bars Sii 120

DESIGN OF RECTANGULAR FOOTING -RF2

Page 14: Footing Design

Check for one way shear

A)Critical section for oneway shear is at a

distance of "di" from face of the pedestal parellel to short span direction:

Shear force at critical section

qu*bf/100*((li-lii)/200-di/100) Vi 294

Footing Width at critical section B 1500

Depth at critical section DI 440

Shear stress Vi*1000/(bii*10*dc*10) TOWU1 0.45

Percentage of steel at critical section

bii*10*@pi*dsi^2/4*100/(si*10*bii*10*di*10) PT1 0.21

@max((0.8*fcki)/(6.89*pt),1.0) Beeta1 13.55

Permisible shear stress

(0.85*@sqrt(0.8*fcki)*(@sqrt(1+5*beeta)-1.0))/(6*beeta)

TOWC1 0.34

CHECK: @if(towu<towc,"safe","Not safe") INCREASE THE DEPTH

B)Critical section for oneway shear is at a

distance of "di" from face of the pedestal parellel to long span direction:

Shear force at critical section

qu*Li/100*((bf-bp)/200-dii/100) Vii 93

Footing Width at critical section L 2400

Depth at critical section DII 434

Shear stress Vi*1000/(lii*10*dc*10) TOWU2 0.09

Percentage of steel at critical section

bii*10*@pi*dsi^2/4*100/(si*10*bii*10*dii*10) PT2 0.22

@max((0.8*fcki)/(6.89*pt),1.0) Beeta2 13.37

Permisible shear stress

(0.85*@sqrt(0.8*fcki)*(@sqrt(1+5*beeta)-1.0))/(6*beeta)

TOWC2 0.34

CHECK: if(towuii<towcii,"safe","Not safe") SAFE

Design for two way shear :

The critical section for two way shear is at di/2 from facs of the pedastal

Shear force

qu*((li/100*bf/100)-((Lii/100+(D-Ec)/100)*(Bp/100+(D-Ec)/100))) V 1187

Depth of footing at critical section DI 440

Nominal shear stress

vii*1000/(((Lii*10+di*10)*2+(Bp*10+di*10)*2)*dci*10) TOWU3 0.70

Shear strength of Concrete

x=0.5+(Bp/Lii) x 1.13

if(x<1, "ks=x","ks=1) ks 1.00

ks*0.25*Sqrt(fcki)

@if(towci>towui,"safe","Not safe") TOWC3 1.25

CHECK: SAFE

Load transfer from Column to Footing:

Page 15: Footing Design

Nominal bearing stress in column concrete 1.5*Wi*1000/(Lii*10*Lii*10) 0.32

Allowable bearing stress0.45*Fckii 11.25

SAFE

Page 16: Footing Design

Knm

mm

mm

mm

sqmm

sqmm

sqmm

mm

mm

Kn/sqm

mm

mm

mm

sqmm

sqmm

sqmm

cm

mm

DESIGN OF RECTANGULAR FOOTING -RF2

Page 17: Footing Design

Kn

mm

mm

N/sqmm

N/sqmm

INCREASE THE DEPTH

kn

mm

mm

N/sqmm

N/sqmm

kn

mm

N/sqmm

N/sqmm

Page 18: Footing Design

N/sqmm

N/sqmm

Page 19: Footing Design

Safe bearing capacity of soil Sbc 312.50 kn/sqm

Grade of concrete in footing Fcki 25 N/sqmm

Grade of concrete in pedestal Fckii 25 N/sqmm

Yield strength of steel Fe 500 N/sqmm

Size of pedestal, Length Lp 750 mm

Breadth Bp 450 mm

Size of footing, LENGTH L 2600 mm

BREADTH B 1900 mm

Overall depth of footing D 500 mm

Eff. cover to main steel Ec 60 mm

Dia. of main steel bar Dsi 12 mm

Dia. of main steel bar Dsii 12 mm

Spacing parellel to Long span Si 100 mm

Spacing parellel to Short span Sii 100 mm

Loading case I (DL+LL)

Load on the column Wi 9880 kn

Moment on major axis Mxi 179.00 Knm

Moment on minor axis Myi 9.00 Knm

Design max upward pressure Qu 434.00 Kn/sqm

Steel Parellel to long span Direction:

Bending moment @ face of pedestal Parellel to long span Direction.

qu*(bf/100*(li/100-lii/100)^2)/8 Mi 353 Knm

B 1900 mm

Provided Total D 500 mm

Provided Eff. depth D-Ec DI 440 mm

Area of steel required

(bi*10*di*10*50/100)*(1-@sqrt(1-(4.6*mi*10^6)/(fcki*bi*10*di*di*100)))/(fe/fcki)

Asti 1933 sqmm

Mimum Ast 1672 sqmm

Ast-long 1933 sqmm

Spacing of bars parellel to long span direction (@pi*dsi^2/4*li*10/asti)/10 111 mm

12 mm bars Si 100 mm

Steel Parellel to short span Direction:

Bending moment @ face of pedestal Parellel to short span Direction.

qu*(li/100*(bf/100-bp/100)^2)/8 Mii 297 Kn/sqm

L 2600 mm

D 500 mm

Provided Eff. depth D-Ec-dsi/2 DII 434 mm

Area of steel required

(li*10*dii*10*50/100)*(1-@sqrt(1-(4.6*mii*10^6)/(fcki*Li*10*dii*dii*100)))/(fe/fcki)

Astii 1618 sqmm

Mimum Ast 2257 sqmm

Ast-short 2257 sqmm

Spacing of bars parellel short long span direction (@pi*dsi^2/4*bfi*10/astii)/10 130 cm

12 mm bars Sii 100 mm

DESIGN OF RECTANGULAR FOOTING -RF3

Page 20: Footing Design

Check for one way shear

A)Critical section for oneway shear is at a

distance of "di" from face of the pedestal parellel to short span direction:

Shear force at critical section

qu*bf/100*((li-lii)/200-di/100) Vi 400 Kn

Footing Width at critical section B 1900 mm

Depth at critical section DI 440 mm

Shear stress Vi*1000/(bii*10*dc*10) TOWU1 0.48 N/sqmm

Percentage of steel at critical section

bii*10*@pi*dsi^2/4*100/(si*10*bii*10*di*10) PT1 0.26

@max((0.8*fcki)/(6.89*pt),1.0) Beeta1 11.29

Permisible shear stress

(0.85*@sqrt(0.8*fcki)*(@sqrt(1+5*beeta)-1.0))/(6*beeta)

TOWC1 0.37 N/sqmm

CHECK: @if(towu<towc,"safe","Not safe") INCREASE THE DEPTH

B)Critical section for oneway shear is at a

distance of "di" from face of the pedestal parellel to long span direction:

Shear force at critical section

qu*Li/100*((bf-bp)/200-dii/100) Vii 328 kn

Footing Width at critical section L 2600 mm

Depth at critical section DII 434 mm

Shear stress Vi*1000/(lii*10*dc*10) TOWU2 0.29 N/sqmm

Percentage of steel at critical section

bii*10*@pi*dsi^2/4*100/(si*10*bii*10*dii*10) PT2 0.26

@max((0.8*fcki)/(6.89*pt),1.0) Beeta2 11.14

Permisible shear stress

(0.85*@sqrt(0.8*fcki)*(@sqrt(1+5*beeta)-1.0))/(6*beeta)

TOWC2 0.37 N/sqmm

CHECK: if(towuii<towcii,"safe","Not safe") SAFE

Design for two way shear :

The critical section for two way shear is at di/2 from facs of the pedastal

Shear force

qu*((li/100*bf/100)-((Lii/100+(D-Ec)/100)*(Bp/100+(D-Ec)/100))) V 1737 kn

Depth of footing at critical section DI 440 mm

Nominal shear stress

vii*1000/(((Lii*10+di*10)*2+(Bp*10+di*10)*2)*dci*10) TOWU3 0.95 N/sqmm

Shear strength of Concrete

x=0.5+(Bp/Lii) x 1.23

if(x<1, "ks=x","ks=1) ks 1.00

ks*0.25*Sqrt(fcki)

@if(towci>towui,"safe","Not safe") TOWC3 1.25 N/sqmm

CHECK: SAFE

Load transfer from Column to Footing:

Nominal bearing stress in column concrete 1.5*Wi*1000/(Lii*10*Lii*10) 3.00 N/sqmm

Allowable bearing stress0.45*Fckii 11.25 N/sqmm

SAFE

Page 21: Footing Design

DATA

SBC of soil = 312 kN/sq.m

Design Load Factor 1.2

Column load, P1 = 854 kN

Column load, P2 = 395 kN

Spacing of Loads, P1 & P2 = 1.65 m

Moment along Length dir Mx1 = 71 kN-m

Moment along Width dir My = 205 kN-m

Moment along Length dir Mx2 = 2 kN-m

Moment along Width dir My = 49 kN-m

Pedastal Width a1 = 750 mm

Pedastal Width b1 = 750 mm

Pedastal Width a2 = 750 mm

Pedastal Width b2 = 750 mm

Concrete Strength Fck = 25 N/sq.mm

Steel Fy = 500 N/sq.mm

Length of footing = 3.60 m

Breadthof footing = 2.10 m

= 16 mm

= 16 mm

= 16 mm

Depth of Footing = 500 mm

Effective Depth ( d1) 460 mm

Effective Depth ( d2) 452 mm

DESIGN

Total load, P = 1249 kN

Netupward Pressure = 277.3 kN/sq.m

Gross Pressure = 293.8 kN/sq.m

< 312 KN/sq.m

OK

CG of load from P1 395 * 1.7 / 1249 = 0.52 m

CG of load from P1 395 * 1.7 / 1249 = 0.52 m

Cantilever from P1 3.60 / 2.0 - 0.522 = 1.28 m

Cantilever from P1 3.60 / 2.0 - 0.522 = 1.28 m

Cantilever from P2 3.60 - 1.65 = 0.67 m

Load per metre run = 582 kN/m

Reaction at P2 = 663 kN

Reaction at P1 = 1433 kN

Combined Footing Design- CF1

Dia of Main bars for BM 1

Dia of Main bars for BM 2

Dia of Transverse Reinforcement

Page 22: Footing Design

1.28 1.65 0.67

582 kN/m

SF is zero at 2.46 m

582 * 2.461 * 2.461 /

- 1433 * ( 2.461 - 1.28

= 68 kN-m TENSION AT BOTTOM

= 582 *( 1.3 - 0.375 )**2 / 2

= 238

= 582 *( 0.7 - 0.375 )**2 / 2

= 26

= 238 kN-m "TENSION AT BOTTOM"

Mu/bd2 = 0.18

pt = 0.043

Minimum pt 0.200

= 0.200

Area of Steel = 920 sq.mm

Using 16 mm = 218 c/c

= 150 c/c

0.29 %

Mu/bd2 0.64

pt 0.152

Pt Provided

Reinforcement For BM 2

P1 P2

1433 663

Sagging/Hogging Moment between Columns BM1

Sagging Moment

Cantilever Moments

Cantelever BM at face of P1

Cantelever BM at face of P2

Max Cantilever BM 2

Reinforcement For BM 1

Actual Pt

Spacing Requred

Spacing Provided

Page 23: Footing Design

Minimum pt 0.200

= 0.200

Area of Steel 920 sq.mm

Using 16 mm = 218 c/c

= 150 c/c

0.29 %

Shear Force at Left Edge 258 kN

Shear Force at Right Edge -95 kN

Maximum S.F 258 kN

Shear Stress 0.321 N/mm^2

Tc (Permissible Stress) 0.390 N/mm^2 OK

Under Column Load P1

= 1.65 m

413 kN/sq.m

Cantilever = 0.68 m

Bending Moment = 94.01 kN-m

Mu/bd2 = 0.55

pt = 0.20

Area of Steel = 1495 sq.mm

Using 16 mm = 222 c/c

= 200 c/c

0.22 %

Shear Force 1043 kN

Shear Stress 0.300 N/mm^2 < 0.34 N/mm^2 (Permissible Stress)

Under Column Load P2

= 1.65 m

191 kN/sq.m

Cantilever = 0.68 m

Bending Moment = 43.48 kN-m

Mu/bd2 = 0.26

pt = 0.20

Area of Steel = 1495 sq.mm

Using 16 mm = 222 c/c

= 200 c/c

0.218 %

Effective Width

Actual Pt

Spacing Requred

Spacing Provided

Pt Provided

Check For One Way Shear

Design of Transeverse Reinforcement

Effective Width

Net Upward Pressure

Spacing Requred

Spacing Provided

Pt Provided

Check For One Way Shear

Check For One Way Shear

Net Upward Pressure

Spacing Requred

Spacing Provided

Pt Provided

Page 24: Footing Design

Shear Force 482 kN

Shear Stress 0.139 N/mm^2 < 0.34 N/mm^2 (Permissible Stress)

Check For Two Way Shear Under Column P1

Size of Critical Plane around Column 1.21 x 1.21

Perimeter = 4.84 m

Punching Shear Force = 1027 kN

Shear stress = 0.55 N/mm2

Permissible Shaer Stress = 1.25 N/mm2 OK

Check For Two Way Shear Under Column P2

Size of Critical Plane around Column 1.21 x 1.21

Perimeter = 4.84 m

Punching Shear Force = 257 kN

Shear stress = 0.20 N/mm2

Permissible Shaer Stress = 1.25 N/mm2 OK

Page 25: Footing Design
Page 26: Footing Design

2

)

kN-m

kN-m

1339.73

Page 27: Footing Design

1339.73

1662

OK

1662

Page 28: Footing Design

OK

Page 29: Footing Design

DATA

SBC of soil = 312 kN/sq.m

Design Load Factor 1.2

Column load, P1 = 1040 kN

Column load, P2 = 1031 kN

Spacing of Loads, P1 & P2 = 2.1 m

Moment along Length dir Mx1 = 14 kN-m

Moment along Width dir My = 183 kN-m

Moment along Length dir Mx2 = 15 kN-m

Moment along Width dir My = 181 kN-m

Pedastal Width a1 = 750 mm

Pedastal Width b1 = 750 mm

Pedastal Width a2 = 750 mm

Pedastal Width b2 = 750 mm

Concrete Strength Fck = 25 N/sq.mm

Steel Fy = 500 N/sq.mm

Length of footing = 4.40 m

Breadthof footing = 2.40 m

= 16 mm

= 16 mm

= 16 mm

Depth of Footing = 550 mm

Effective Depth ( d1) 510 mm

Effective Depth ( d2) 502 mm

DESIGN

Total load, P = 2071 kN

Netupward Pressure = 286.0 kN/sq.m

Gross Pressure = 305.6 kN/sq.m

< 312 KN/sq.m

OK

CG of load from P1 1031 * 2.1 / 2071 = 1.05 m

CG of load from P1 1031 * 2.1 / 2071 = 1.05 m

Cantilever from P1 4.40 / 2.0 - 1.045 = 1.15 m

Cantilever from P1 4.40 / 2.0 - 1.045 = 1.15 m

Cantilever from P2 4.40 - 2.1 = 1.15 m

Load per metre run = 686 kN/m

Reaction at P2 = 1504 kN

Reaction at P1 = 1517 kN

Combined Footing Design -CF4

Dia of Main bars for BM 1

Dia of Main bars for BM 2

Dia of Transverse Reinforcement

Page 30: Footing Design

1.15 2.1 1.15

686 kN/m

SF is zero at 2.21 m

686 * 2.210 * 2.210 /

- 1517 * ( 2.210 - 1.15

= 76 kN-m TENSION AT BOTTOM

= 686 *( 1.2 - 0.375 )**2 / 2

= 209

= 686 *( 1.1 - 0.375 )**2 / 2

= 204

= 209 kN-m "TENSION AT BOTTOM"

Mu/bd2 = 0.15

pt = 0.034

Minimum pt 0.200

= 0.200

Area of Steel = 1020 sq.mm

Using 16 mm = 197 c/c

= 150 c/c

0.26 %

Mu/bd2 0.40

pt 0.094

Pt Provided

Reinforcement For BM 2

P1 P2

1517 1504

Sagging/Hogging Moment between Columns BM1

Sagging Moment

Cantilever Moments

Cantelever BM at face of P1

Cantelever BM at face of P2

Max Cantilever BM 2

Reinforcement For BM 1

Actual Pt

Spacing Requred

Spacing Provided

Page 31: Footing Design

Minimum pt 0.200

= 0.200

Area of Steel 1020 sq.mm

Using 16 mm = 197 c/c

= 150 c/c

0.26 %

Shear Force at Left Edge 185 kN

Shear Force at Right Edge 179 kN

Maximum S.F 185 kN

Shear Stress 0.181 N/mm^2

Tc (Permissible Stress) 0.373 N/mm^2 OK

Under Column Load P1

= 1.75 m

360 kN/sq.m

Cantilever = 0.83 m

Bending Moment = 122.62 kN-m

Mu/bd2 = 0.58

pt = 0.20

Area of Steel = 1761 sq.mm

Using 16 mm = 200 c/c

= 150 c/c

0.26 %

Shear Force 1155 kN

Shear Stress 0.274 N/mm^2 < 0.37 N/mm^2 (Permissible Stress)

Under Column Load P2

= 1.75 m

357 kN/sq.m

Cantilever = 0.83 m

Bending Moment = 121.56 kN-m

Mu/bd2 = 0.58

pt = 0.20

Area of Steel = 1761 sq.mm

Using 16 mm = 200 c/c

= 150 c/c

0.263 %

Effective Width

Actual Pt

Spacing Requred

Spacing Provided

Pt Provided

Check For One Way Shear

Design of Transeverse Reinforcement

Effective Width

Net Upward Pressure

Spacing Requred

Spacing Provided

Pt Provided

Check For One Way Shear

Check For One Way Shear

Net Upward Pressure

Spacing Requred

Spacing Provided

Pt Provided

Page 32: Footing Design

Shear Force 1145 kN

Shear Stress 0.272 N/mm^2 < 0.37 N/mm^2 (Permissible Stress)

Check For Two Way Shear Under Column P1

Size of Critical Plane around Column 1.26 x 1.26

Perimeter = 5.04 m

Punching Shear Force = 1063 kN

Shear stress = 0.50 N/mm2

Permissible Shaer Stress = 1.25 N/mm2 OK

Check For Two Way Shear Under Column P2

Size of Critical Plane around Column 1.26 x 1.26

Perimeter = 5.04 m

Punching Shear Force = 1050 kN

Shear stress = 0.80 N/mm2

Permissible Shaer Stress = 1.25 N/mm2 OK

Page 33: Footing Design
Page 34: Footing Design

2

)

kN-m

kN-m

1339.73

Page 35: Footing Design

1339.73

2350

OK

2350

Page 36: Footing Design

OK

Page 37: Footing Design

1 1.6 1.6 336

21 1.7 1.7 329

24 1.7 1.7 329

2 1.8 1.8 339

4 1.8 1.8 300

5 1.9 1.9 320

8 1.9 1.9 327

12 1.9 1.9 339

17 1.9 1.9 333

23 1.9 1.9 332

3 2.0 2.0 289

9 2.0 2.0 329

13 2.0 2.0 321

16 2.0 2.0 325

22 2.0 2.0 307

20 2.1 2.1 319

18 2.2 2.2 286

19 2.2 2.2 303

6 2.3 2.3 280

7 2.4 2.4 293

11 2.4 2.4 300

15 2.4 2.4 300

14 2.5 2.5 283

10 2.6 2.6 279