23
Force density method for simultaneous optimization of geometry and topology of trusses Makoto Ohsaki and Kazuki Hayashi Kyoto University 1

Force density method for simultaneous optimization of geometry and … · 2017-06-21 · Conclusions 1.Difficulty in simultaneous optimization of geometry and topology can be successfully

  • Upload
    others

  • View
    7

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Force density method for simultaneous optimization of geometry and … · 2017-06-21 · Conclusions 1.Difficulty in simultaneous optimization of geometry and topology can be successfully

Force density method for simultaneous optimization of geometry and topology of 

trusses

Makoto Ohsaki and Kazuki HayashiKyoto University

1

Page 2: Force density method for simultaneous optimization of geometry and … · 2017-06-21 · Conclusions 1.Difficulty in simultaneous optimization of geometry and topology can be successfully

Optimization of trusses

• Cross‐sectionstiffness

• Topologyconnectivity of nodes and members

• Geometrynodal locations

2

Page 3: Force density method for simultaneous optimization of geometry and … · 2017-06-21 · Conclusions 1.Difficulty in simultaneous optimization of geometry and topology can be successfully

Topology Optimization

• Ground Structure (GS) MethodObtain an optimized sparse truss topology from an initial highly connected truss called GS

→ Nodal locations are fixed Dense initial GS to optimize nodal locations

3

Page 4: Force density method for simultaneous optimization of geometry and … · 2017-06-21 · Conclusions 1.Difficulty in simultaneous optimization of geometry and topology can be successfully

Geometry Optimization• Design variables: Nodal coordinatesAdd cross‐sectional area as design variables

→ Remove thin members to optimize topology→ Simultaneous optimization of geometry and topology

• Melting nodes exist if wide variation of nodes is allowed→ Axial stiffness of short member is very large

Sensitivity coefficients are very large and discontinuous

4

Simultaneous optimization of topology and geometry is very difficult

Page 5: Force density method for simultaneous optimization of geometry and … · 2017-06-21 · Conclusions 1.Difficulty in simultaneous optimization of geometry and topology can be successfully

Existing methods of simultaneous optimization• Ohsaki (1998):

Investigate melting nodes for regular grid trussSigmoid function and frame element for smoothing

• Guo, Liu and Li (2003):Investigate singularity due to melting nodes for regular truss

• Achtziger (2007):Alternating approach of optimization of nodes and cross sectionConstraint to prevent melting nodesNo melting nodes in numerical examples

• Descamps and Coelho (2014):Consider instability constraints using SAND formulationForce density is used in intermediate problem but not used in the final formulation

5

Page 6: Force density method for simultaneous optimization of geometry and … · 2017-06-21 · Conclusions 1.Difficulty in simultaneous optimization of geometry and topology can be successfully

Existing method: Growing method

• Ohsaki and Hagishita (2005)• Starting from simple GS, adding nodes and members by heuristics 

• Optimal solutions with sparse topology and geometry can be obtained

• Cannot satisfy any theoretical optimality criteria

6

optimization optimization

Page 7: Force density method for simultaneous optimization of geometry and … · 2017-06-21 · Conclusions 1.Difficulty in simultaneous optimization of geometry and topology can be successfully

FDM for truss optimization• Force density:FD = (axial force) / (member length)Used for equilibrium analysis of tension structures (cable net, tensegrity, membrane structure)

• Easy to avoid problems caused by melting nodes• Constraint on member length is assigned w.r.t. force density

• Number of variable decrease = number of members(do not include nodal locations)

• Various optimal solutions of geometry and topology can be obtained

7

Page 8: Force density method for simultaneous optimization of geometry and … · 2017-06-21 · Conclusions 1.Difficulty in simultaneous optimization of geometry and topology can be successfully

Connectivity matrix: connectivity matrix・・・express topology of a truss

If member i connects nodes j and k (j < k) Cij = -1Cik = 1

=

8

Node    1           2             3         4 Member1

2

3

4

5

6

Page 9: Force density method for simultaneous optimization of geometry and … · 2017-06-21 · Conclusions 1.Difficulty in simultaneous optimization of geometry and topology can be successfully

Force density matrix

: force density = (axial force)/(member length): force density matrix

= diag( )

: equilibrium equation w,r,t, nodal coordinates

: nodal coordinates: nodal load vectors including reactions

9

Page 10: Force density method for simultaneous optimization of geometry and … · 2017-06-21 · Conclusions 1.Difficulty in simultaneous optimization of geometry and topology can be successfully

Force density matrix

=

.

10

node 1 node 2 node 3 node 4

node 1

node 2

node 3

node 4

Page 11: Force density method for simultaneous optimization of geometry and … · 2017-06-21 · Conclusions 1.Difficulty in simultaneous optimization of geometry and topology can be successfully

Assemblage of Q in 3‐directions

: force density matrix decomposedinto fixed and free elements

free

fix

11Loaded nodes are included in fixed nodes

Page 12: Force density method for simultaneous optimization of geometry and … · 2017-06-21 · Conclusions 1.Difficulty in simultaneous optimization of geometry and topology can be successfully

Nodal coordinatesfree :   for free components

link :   for link components

free : free nodal coordinates

fix : fixed nodal coordinates

Equilibrium equation 

free free =  link fix

Solve for  free

→ free is a function of force density

12

free link

Equilibrium equation is almost always regular

Page 13: Force density method for simultaneous optimization of geometry and … · 2017-06-21 · Conclusions 1.Difficulty in simultaneous optimization of geometry and topology can be successfully

Structural volume

i

i

13

Page 14: Force density method for simultaneous optimization of geometry and … · 2017-06-21 · Conclusions 1.Difficulty in simultaneous optimization of geometry and topology can be successfully

Compliance

i

i

,

:

14

Page 15: Force density method for simultaneous optimization of geometry and … · 2017-06-21 · Conclusions 1.Difficulty in simultaneous optimization of geometry and topology can be successfully

Constraint function(V)×Objective function(F)

⇒ total volume can be calculated after minimizing compliance for 

15

V=10F=1

V=1F=10

Page 16: Force density method for simultaneous optimization of geometry and … · 2017-06-21 · Conclusions 1.Difficulty in simultaneous optimization of geometry and topology can be successfully

Optimization problem,

16

No. of variables = No. of membersNo. of constraints = No. of load components

Page 17: Force density method for simultaneous optimization of geometry and … · 2017-06-21 · Conclusions 1.Difficulty in simultaneous optimization of geometry and topology can be successfully

Smoothing approximation

17

Page 18: Force density method for simultaneous optimization of geometry and … · 2017-06-21 · Conclusions 1.Difficulty in simultaneous optimization of geometry and topology can be successfully

Refinement of optimal solution

Solution may include overlapped nodes and unnecessary members→ Geometry and cross‐sectional areas are refined

,s.t.

18

re‐optimization

Page 19: Force density method for simultaneous optimization of geometry and … · 2017-06-21 · Conclusions 1.Difficulty in simultaneous optimization of geometry and topology can be successfully

Numerical examples• = ,  ,  =• Randomly generate 100 sets of initial values of force density

• Range:  ( force density of regular truss with uniform cross‐sectional areas)

• SNOPT Ver.7.2 is used for solving NLP problems

19

Page 20: Force density method for simultaneous optimization of geometry and … · 2017-06-21 · Conclusions 1.Difficulty in simultaneous optimization of geometry and topology can be successfully

3 x 2 truss

20

8.316

optimize

re‐optimize

8.312

Achtziger(2007)

8.307

Max median min Ave. std. dev.F 10.227 9.095 8.316 9.218 0.549

n = 8 n = 7 n = 12

Page 21: Force density method for simultaneous optimization of geometry and … · 2017-06-21 · Conclusions 1.Difficulty in simultaneous optimization of geometry and topology can be successfully

6 x 1 truss

21

118.994

optimize

refine

122.411

Achtziger(2009) 122.447

max median min average std. dev.F 7.850 10 640.150 118.994 9.271 10 7.875 10

Page 22: Force density method for simultaneous optimization of geometry and … · 2017-06-21 · Conclusions 1.Difficulty in simultaneous optimization of geometry and topology can be successfully

L‐shaped truss

22

optimize refine

54.27654.54454.098

(Descamps and Coelho (2014))

max median min average std. dev.

V 4015.431 54.927 54.544 125.171 435.744

Page 23: Force density method for simultaneous optimization of geometry and … · 2017-06-21 · Conclusions 1.Difficulty in simultaneous optimization of geometry and topology can be successfully

Conclusions1. Difficulty in simultaneous optimization of 

geometry and topology can be successfully avoided using force density as design variable.

2. Compliance and structural volume are expressed as functions of force density only.→ number of design variables is equal to number of members

3. Discontinuity of the objective function and the sensitivity coefficients w.r.t. force density can be successfully avoided using smoothing function.

Ohsaki and Hayashi, SMO Journal, published online23