48
Forces and Motion Physics 1 Velocity and Acceleration ●The velocity of an object is its speed in a given direction ●The acceleration of an object is given by the equation: = a is the acceleration in metres per second squared, m/s 2 . v is the final velocity in metres per second, m/s. u is the final velocity in metres per second, m/s. t is the time taken in seconds, s. Physics 2 Motion Graphs ●Interpret data from tables and graphs relating to speed, velocity and acceleration. ●The gradient of a distance-time graph represents speed. Candidates should be able to construct distance-time graphs for an object moving in a straight line when the body is stationary or moving with a constant speed. ●Calculation of the speed of an object from the gradient of a distance-time graph ●The gradient of a velocity-time graph represents acceleration ●Calculation of the acceleration of an object from the gradient of a velocity-time graph ●Calculation of the distance travelled by an object from the area under a velocity-time graph Physics 3 Resultant Force ●Whenever two objects interact, the forces they exert on each other are equal and opposite. ●A number of forces acting at a point may be replaced by a single force that has the same effect on the motion as the original forces all acting together. This single force is called the resultant force. ●A resultant force acting on an object may cause a change in its state of rest or motion. Candidates should be able to determine the resultant of opposite or parallel forces acting in a straight line. ●If the resultant force acting on a stationary object it: ■zero, the object will remain stationary ■non-zero, the object will accelerate in the direction of the resultant force. ●If the resultant force acting in a moving object is: ■zero, the object will continue to move at the same speed and in the same direction. ■not zero, the object will accelerate in the direction of the resultant force. ●The acceleration of an object is determined by the resultant force acting on the object and the mass of the object. F is the resultant force in newtons, N. m is the mass in kilograms, kg. a is the acceleration in metres per second squared, m/s 2 . Physics 4 Terminal Velocity ●Evaluate how the shape and power of a vehicle can be altered to increase the vehicle’s top speed ●Draw and interpret velocity-time graphs for objects that reach terminal velocity, including a consideration of the forces acting on the object. ●The faster an object moves through a fluid the greater the frictional forces that act on it. ●An object falling through a fluid will initially accelerate due to the force of gravity. Eventually the resultant force will be zero and the object will move at its terminal velocity (steady speed). Candidates should understand why the use of a parachute reduces the parachutist’s terminal velocity ●Draw and interpret velocity-time graphs for objects that reach terminal velocity, including a consideration of the forces acting o the object. ●Calculate the weight of an object using the force exerted on it by a gravitational force. W is the weight in newtons, N. m is the mass in kilograms, kg. g is the gravitational field strength in newtons per kilogram, N/kg.

Forces and Motion - Learning Together (KS4 Science)reviseright.weebly.com/uploads/3/8/5/8/38587987/physics_2_workbook… · Sketch what the distance-time graph ... If two forces are

  • Upload
    vuthuan

  • View
    218

  • Download
    1

Embed Size (px)

Citation preview

Page 1: Forces and Motion - Learning Together (KS4 Science)reviseright.weebly.com/uploads/3/8/5/8/38587987/physics_2_workbook… · Sketch what the distance-time graph ... If two forces are

Forces and Motion

Physics 1 Velocity and Acceleration ●The velocity of an object is its speed in a given direction ●The acceleration of an object is given by the equation:

𝑎 =𝑣 − 𝑢

𝑡

a is the acceleration in metres per second squared, m/s2. v is the final velocity in metres per second, m/s. u is the final velocity in metres per second, m/s. t is the time taken in seconds, s.

Physics 2 Motion Graphs ●Interpret data from tables and graphs relating to speed, velocity and acceleration. ●The gradient of a distance-time graph represents speed. Candidates should be able to construct distance-time graphs for an object moving in a straight line when the body is stationary or moving with a constant speed. ●Calculation of the speed of an object from the gradient of a distance-time graph ●The gradient of a velocity-time graph represents acceleration ●Calculation of the acceleration of an object from the gradient of a velocity-time graph ●Calculation of the distance travelled by an object from the area under a velocity-time graph

Physics 3 Resultant Force ●Whenever two objects interact, the forces they exert on each other are equal and opposite. ●A number of forces acting at a point may be replaced by a single force that has the same effect on the motion as the original forces all acting together. This single force is called the resultant force. ●A resultant force acting on an object may cause a change in its state of rest or motion. Candidates should be able to determine the resultant of opposite or parallel forces acting in a straight line. ●If the resultant force acting on a stationary object it:

■zero, the object will remain stationary ■non-zero, the object will accelerate in the direction of the resultant force.

●If the resultant force acting in a moving object is: ■zero, the object will continue to move at the same speed and in the same direction. ■not zero, the object will accelerate in the direction of the resultant force.

●The acceleration of an object is determined by the resultant force acting on the object and the mass of the object. 𝐹 = 𝑚 × 𝑎

F is the resultant force in newtons, N. m is the mass in kilograms, kg. a is the acceleration in metres per second squared, m/s2.

Physics 4 Terminal Velocity ●Evaluate how the shape and power of a vehicle can be altered to increase the vehicle’s top speed ●Draw and interpret velocity-time graphs for objects that reach terminal velocity, including a consideration of the forces acting on the object. ●The faster an object moves through a fluid the greater the frictional forces that act on it. ●An object falling through a fluid will initially accelerate due to the force of gravity. Eventually the resultant force will be zero and the object will move at its terminal velocity (steady speed). Candidates should understand why the use of a parachute reduces the parachutist’s terminal velocity ●Draw and interpret velocity-time graphs for objects that reach terminal velocity, including a consideration of the forces acting o the object. ●Calculate the weight of an object using the force exerted on it by a gravitational force.

𝑊 = 𝑚 × 𝑔 W is the weight in newtons, N. m is the mass in kilograms, kg. g is the gravitational field strength in newtons per kilogram, N/kg.

Page 2: Forces and Motion - Learning Together (KS4 Science)reviseright.weebly.com/uploads/3/8/5/8/38587987/physics_2_workbook… · Sketch what the distance-time graph ... If two forces are

Physics 5 Stopping Distance ●Evaluate the effects of alcohol and drugs on stopping distance. ●When a vehicle travels at a steady speed the resistive forces balance the driving force. Candidates should realise that most of the resistive forces are caused by air resistance. ●The greater the speed of a vehicle the greater the braking force needed to stop it in a certain distance. Candidates should understand that for a given braking force the greater the speed the greater the stopping distance. ●The stopping distance of a vehicle is the sum of the distance the vehicle travels during the driver’s reaction time (thinking distance) and the distance it travels under the braking force (braking distance) ●A driver’s reaction time can be affected by tiredness, drugs and alcohol. Candidates should appreciate that distractions may affect a driver’s ability to react. ●When the brakes of a vehicle are applied, work done by the friction force between the brakes and the wheel reduces the kinetic energy of the vehicle and the temperature of the brakes increase. ●A vehicle’s braking distance can be affected by adverse road and weather conditions and poor condition of the vehicle. Candidates should understand that ‘adverse road conditions’ includes wet or icy conditions. Poor condition of the car is limited to the car’s brakes or tyres.

Physics 6 Hooke’s Law ●A force acting on an object may cause a change in shape of the object ●A force applied to an elastic object such as a spring will result in the object stretching and storing elastic potential energy. Calculations of the energy stored when stretching an elastic materials is not required. ●For an object that is able to recover its original shape, elastic potential energy is stored in the object when work is done on the object to change its shape ●The extension of an elastic object is directly proportional to the force applied, provided that the limit of proportionality is not exceeded:

𝐹 = 𝑘 × 𝑒 F is the force in newtons, N. k is the spring constant in newtons per metre, N/m. e is the extension in metres, m.

Page 3: Forces and Motion - Learning Together (KS4 Science)reviseright.weebly.com/uploads/3/8/5/8/38587987/physics_2_workbook… · Sketch what the distance-time graph ... If two forces are

Physics 1 Velocity and Acceleration If something is described as ‘fast’ it means that __________________________________________________________________

________________________________________________________________________________________________________ If something is described as ‘slow’ it means that _________________________________________________________________

________________________________________________________________________________________________________

𝑣 =𝑑

𝑡

Symbol Quantity Units Unit Symbol

v

d

t

Rearrange the equation to make d and then t the subject What is the difference between speed and velocity?

________________________________________________________________________________________________________

________________________________________________________________________________________________________ What does the word ‘accelerate’ mean?

________________________________________________________________________________________________________

________________________________________________________________________________________________________

𝑎 =∆𝑣

𝑡

Symbol Quantity Units Unit Symbol

a

Δv

t

Rearrange the equation to make Δv and then t the subject

Page 4: Forces and Motion - Learning Together (KS4 Science)reviseright.weebly.com/uploads/3/8/5/8/38587987/physics_2_workbook… · Sketch what the distance-time graph ... If two forces are

Physics 2 Motion Graphs

Sketch what the distance-time graph and speed-time graph would look like for: 1 An object moving at a constant speed

2 An object that is speeding up

3 An object that is slowing down

What does the word gradient mean?

________________________________________________________________________________________________________

________________________________________________________________________________________________________

Gradients can be calculated using the equation: 𝑔𝑟𝑎𝑑𝑖𝑒𝑛𝑡 =∆𝑦

∆𝑥

Page 5: Forces and Motion - Learning Together (KS4 Science)reviseright.weebly.com/uploads/3/8/5/8/38587987/physics_2_workbook… · Sketch what the distance-time graph ... If two forces are

The gradient of a distance-time graph gives us __________________________________________________________________ The gradient of a speed-time graph gives us ____________________________________________________________________ The area under a speed-time graph gives us ____________________________________________________________________

Here are six graphs representing the motion of different objects.

Graph 1

Graph 2

Page 6: Forces and Motion - Learning Together (KS4 Science)reviseright.weebly.com/uploads/3/8/5/8/38587987/physics_2_workbook… · Sketch what the distance-time graph ... If two forces are

Graph 3

Graph 4

Graph 1 Which sections of the graph show that the object is…

Stationary? _________________________________________________________________________

Moving at a constant speed? _________________________________________________________________________

Moving with increasing speed? _________________________________________________________________________

Moving with decreasing speed? _________________________________________________________________________

Moving with the greatest speed? _________________________________________________________________________

Page 7: Forces and Motion - Learning Together (KS4 Science)reviseright.weebly.com/uploads/3/8/5/8/38587987/physics_2_workbook… · Sketch what the distance-time graph ... If two forces are

Calculate the gradient of the line AB ____________________________________________

Calculate the gradient of the line CD ____________________________________________

Calculate the gradient of the line DE ____________________________________________

Graph 2 Which sections of the graph show that the object is…

Stationary? _________________________________________________________________________

Moving at a constant speed? _________________________________________________________________________

Moving with increasing speed? _________________________________________________________________________

Moving with decreasing speed? _________________________________________________________________________

Moving with the greatest speed? _________________________________________________________________________

Calculate the gradient of the line 0A ____________________________________________

Calculate the gradient of the line AB ____________________________________________

Calculate the gradient of the line CD ____________________________________________

Calculate the gradient of the line DE ____________________________________________

Graph 3 Which sections of the graph show that the object is…

Stationary? _________________________________________________________________________

Moving at a constant speed? _________________________________________________________________________

Moving with increasing speed? _________________________________________________________________________

Moving with decreasing speed? _________________________________________________________________________

Calculate the gradient of BC ____________________________________________

Calculate the area under the graph ____________________________________________

Graph 4 Which sections of the graph show that the object is…

Stationary? _________________________________________________________________________

Moving at a constant speed? _________________________________________________________________________

Moving with increasing speed? _________________________________________________________________________

Moving with decreasing speed? _________________________________________________________________________

Calculate the gradient of line W ____________________________________________

Calculate the gradient of line X ____________________________________________

Calculate the gradient of line Z ____________________________________________

Calculate the area under Y ____________________________________________

Page 8: Forces and Motion - Learning Together (KS4 Science)reviseright.weebly.com/uploads/3/8/5/8/38587987/physics_2_workbook… · Sketch what the distance-time graph ... If two forces are

Physics 3 Resultant Force

If two forces are described as balanced what does this mean? ______________________________________________________

________________________________________________________________________________________________________

If two forces are described as unbalanced what does this mean? ____________________________________________________

________________________________________________________________________________________________________

What does the term ‘resultant force’ mean? _____________________________________________________________________

________________________________________________________________________________________________________

𝐹 = 𝑚 × 𝑎

Symbol Quantity Units Unit Symbol

F

m

a

Rearrange the equation to make m and then a the subject

For each of the following situations calculate the resultant force and describe what would happen to the object:

A) The object is initially stationary

Resultant Force: Size _____________________ Direction ___________________________________________

________________________________________________________________________________________________________

________________________________________________________________________________________________________

B) The object is initially stationary

Resultant Force: Size _____________________ Direction ___________________________________________

________________________________________________________________________________________________________

________________________________________________________________________________________________________

Page 9: Forces and Motion - Learning Together (KS4 Science)reviseright.weebly.com/uploads/3/8/5/8/38587987/physics_2_workbook… · Sketch what the distance-time graph ... If two forces are

C) The object is initially stationary

Resultant Force: Size _____________________ Direction ___________________________________________

________________________________________________________________________________________________________

________________________________________________________________________________________________________

D) The object is initially moving to the right

Resultant Force: Size _____________________ Direction ___________________________________________

________________________________________________________________________________________________________

________________________________________________________________________________________________________

E) The object is initially moving to the right

Resultant Force: Size _____________________ Direction ___________________________________________

________________________________________________________________________________________________________

________________________________________________________________________________________________________

F) The object is initially moving to the right

Resultant Force: Size _____________________ Direction ___________________________________________

________________________________________________________________________________________________________

________________________________________________________________________________________________________

G) The object is initially moving to the left

Resultant Force: Size _____________________ Direction ___________________________________________

________________________________________________________________________________________________________

________________________________________________________________________________________________________

Page 10: Forces and Motion - Learning Together (KS4 Science)reviseright.weebly.com/uploads/3/8/5/8/38587987/physics_2_workbook… · Sketch what the distance-time graph ... If two forces are

Physics 4 Terminal Velocity

As an object speeds up the air resistance will __________________________________________________________

𝑊 = 𝑚 × 𝑔

Symbol Quantity Units Unit Symbol

W

m

g

Rearrange the equation to make m and then g the subject Below are stages of a parachutist as they travel from plane to ground. For each stage describe how the weight and air resitance compare to each other.

A) A parachutist as they stand in the plane, ready to jump

________________________________________________________________________________________________________

B) Immediately after they have left the plane

________________________________________________________________________________________________________

C) 20 seconds after they have left the plane and are falling through the air

________________________________________________________________________________________________________

D) When the parachutist stops accelerating and travels at a constant speed

________________________________________________________________________________________________________

E) When the parachute first opens

________________________________________________________________________________________________________

F) When the parachutist reaches terminal velocity again

________________________________________________________________________________________________________

G) When the parachutist is stood on the ground.

________________________________________________________________________________________________________

Sketch a velocity-time graph for the parachute jump. Add labels for the stages A to G.

Page 11: Forces and Motion - Learning Together (KS4 Science)reviseright.weebly.com/uploads/3/8/5/8/38587987/physics_2_workbook… · Sketch what the distance-time graph ... If two forces are

Physics 5 Stopping Distances

When the brakes of a vehicle are applied and it comes to rest where does the energy go and what effect does it have?

________________________________________________________________________________________________________

________________________________________________________________________________________________________ The overall stopping distance of a vehicle is given by the equation:

𝑠𝑡𝑜𝑝𝑝𝑖𝑛𝑔 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 = 𝑡ℎ𝑖𝑛𝑘𝑖𝑛𝑔 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 + 𝑏𝑟𝑎𝑘𝑖𝑛𝑔 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒

Explain what is meant by thinking distance

________________________________________________________________________________________________________

________________________________________________________________________________________________________

Explain what is meant by braking distance

________________________________________________________________________________________________________

________________________________________________________________________________________________________ If the driver’s reaction time was reduced what effect would this have on the stopping distance?

________________________________________________________________________________________________________

________________________________________________________________________________________________________ List the factors that can affect the thinking distance and for each one explain how it affects it (e.g. increases distance).

________________________________________________________________________________________________________

________________________________________________________________________________________________________

________________________________________________________________________________________________________

________________________________________________________________________________________________________

________________________________________________________________________________________________________

________________________________________________________________________________________________________ List the factors that can affect the braking distance and for each one explain how it affects it (e.g. increases distance).

________________________________________________________________________________________________________

________________________________________________________________________________________________________

________________________________________________________________________________________________________

________________________________________________________________________________________________________

________________________________________________________________________________________________________

________________________________________________________________________________________________________ What can affect both the thinking and braking distance?

________________________________________________________________________________________________________

Page 12: Forces and Motion - Learning Together (KS4 Science)reviseright.weebly.com/uploads/3/8/5/8/38587987/physics_2_workbook… · Sketch what the distance-time graph ... If two forces are

Physics 6 Hooke’s Law

When a force acts on a spring (because a mass is hung on it) it will stretch. Which type of energy will it now have?

________________________________________________________________________________________________________ The extension is directly proportional to the force applied. What does directly proportional mean?

________________________________________________________________________________________________________

________________________________________________________________________________________________________ How could you tell that an object follows Hooke’s law from a graph of force (y axis) against extension (x axis)?

________________________________________________________________________________________________________

________________________________________________________________________________________________________ What would the graph look like if you replaced the original spring with a spring of larger spring constant?

________________________________________________________________________________________________________

________________________________________________________________________________________________________ How can you find the spring constant from the graph?

________________________________________________________________________________________________________ What is the point called when the force and extension are no longer directly proportional?

________________________________________________________________________________________________________ Describe the energy changes that happen as a bungee jumper travels from their highest to lowest point.

________________________________________________________________________________________________________

________________________________________________________________________________________________________ Why doesn’t the bungee jumper reach the same higher as they jumped from?

________________________________________________________________________________________________________

________________________________________________________________________________________________________

𝐹 = 𝑘 × 𝑒

Symbol Quantity Units Unit Symbol

F

k

e

Rearrange the equation to make k and then e the subject

Page 13: Forces and Motion - Learning Together (KS4 Science)reviseright.weebly.com/uploads/3/8/5/8/38587987/physics_2_workbook… · Sketch what the distance-time graph ... If two forces are

Energy and Momentum

Physics 7 Work Done and Power ●When a force causes an object to move through a distance work is done. ●Work done, force and distance moved are related by the equation:

𝑊 = 𝐹 × 𝑑 W is the work done in joules, J. F is the force applied in newtons, N. d is the distance moved in the direction of the force in metres, m.

●Energy is transferred when work is done. Candidates should be able to discuss the transfer of kinetic energy in particular situations. Examples might include shuttle re-entry or meteorites burning up in the atmosphere. ●Work done against frictional forces. ●Power is the work done or energy transformed in a given time:

𝑃 =𝐸

𝑡

P is the power in watts, W. E is the energy transferred in joules, J. t is the time taken in seconds, s.

Physics 8 Kinetic and Potential Energy ●Gravitational potential energy is the energy that an object has by virtue of its position in a gravitational field.

𝐸𝑃 = 𝑚 × 𝑔 × ℎ Ep is the change in gravitational potential energy in joules, J. m is the mass in kilograms, kg. g is the gravitational field strength in newtons per kilogram, N/kg. h is the change in height in metres, m.

Candidates should understand that when an object is raised vertically work is done against gravitational force and the object gains gravitational potential energy. ●The kinetic energy of an object depends on its mass and its speed

𝐸𝐾 =1

2× 𝑚 × 𝑣2

EK is the kinetic energy in joules, J. m is the mass in kilograms, kg. v is the speed in metres per second, m/s.

Physics 9 Momentum ●Momentum is a property of moving objects:

𝑝 = 𝑚 × 𝑣 p is the momentum in kilograms metres per second, kg m/s. m is the mass in kilograms, kg. v is the velocity in metres per second, m/s.

Physics 10 Collisions and Explosions ●In a closed system the total momentum before an event is equal to the total momentum after the event. This is called the conservation of momentum. Candidates may be required to complete calculation involving two objects. Examples of events are collisions and explosions.

Physics 11 Car Safety Features ●Evaluate the benefits of air bags, crumple zones, seat belts and side impact bars in cars. This should include ideas of both energy changes and momentum changes ●Evaluate the benefits of different types of braking systems, such as regenerative braking

Page 14: Forces and Motion - Learning Together (KS4 Science)reviseright.weebly.com/uploads/3/8/5/8/38587987/physics_2_workbook… · Sketch what the distance-time graph ... If two forces are

Physics 7 Work Done and Power

Work is done when a force causes an object to __________________________________________________________________

What affects the energy that I use whilst moving a trolley across a floor?

________________________________________________________________________________________________________

________________________________________________________________________________________________________

When work done is ______________________________________________________________________________

𝑊 = 𝐹 × 𝑑

Symbol Quantity Units Unit Symbol

W

F

d

Rearrange the equation to make F and then d the subject.

When a force causes an object to move across the floor what is work done against? _________________________________

What are the energy transformations as this happens?

________________________________________________________________________________________________________

________________________________________________________________________________________________________

When a force causes an object to move up through the air what is work done against? _________________________________

What are the energy transformations as this happens?

________________________________________________________________________________________________________

________________________________________________________________________________________________________ Calculate the work done when a force of 4 N moves a chair by 5.7 m across the ground. How high could 90 J raise a box of weight 1.2 kN?

Page 15: Forces and Motion - Learning Together (KS4 Science)reviseright.weebly.com/uploads/3/8/5/8/38587987/physics_2_workbook… · Sketch what the distance-time graph ... If two forces are

𝑃 =𝐸

𝑡

Symbol Quantity Units Unit Symbol

P

E

t

Rearrange the equation to make E and then t the subject. Which of these speakers is the most powerful? Speaker A transfers 3510000 J in 24 hours and speaker B transfers 3.8 kJ in 1 minute 34 seconds?

Physics 8 Kinetic and Potential Energy

What is gravitational potential energy?

________________________________________________________________________________________________________

________________________________________________________________________________________________________

𝐸𝑃 = 𝑚 × 𝑔 × ℎ

Symbol Quantity Units Unit Symbol

EP

m

g

h

Rearrange the equation to make m and then h the subject.

Page 16: Forces and Motion - Learning Together (KS4 Science)reviseright.weebly.com/uploads/3/8/5/8/38587987/physics_2_workbook… · Sketch what the distance-time graph ... If two forces are

What is kinetic energy?

________________________________________________________________________________________________________

________________________________________________________________________________________________________

𝐸 =1

2× 𝑚 × 𝑣2

Symbol Quantity Units Unit Symbol

EK

m

v

Rearrange the equation to make m and then v the subject.

Ford Fiesta 1465 kg

Vauxhall Astra 1685 kg

Smart City Coupe 730 kg

Ferrari 360 Spider 1350 kg

Ford Transit Van 1850 kg

Pick two cars from the choice above and calculate the kinetic energy it would have travelling at 14 m/s (around 30 miles per hour).

Now calculate the change in gravitational potential energy when they roll down a hill of height 5 m.

Page 17: Forces and Motion - Learning Together (KS4 Science)reviseright.weebly.com/uploads/3/8/5/8/38587987/physics_2_workbook… · Sketch what the distance-time graph ... If two forces are

A 70 kg woman sits at the top of a slide 4 m above the ground. Calculate the speed that she will be travelling at when she reaches the bottom of the slide.

She is actually travelling slower than this speed, explain why.

________________________________________________________________________________________________________

________________________________________________________________________________________________________ A man is driving a car with a total mass of 1450 kg at 15 m/s along a flat section of road at the bottom of a hill. If the man turns off the engine at the bottom of the hill what height will he get to?

The car does actually get that high up the hill, explain why.

________________________________________________________________________________________________________

________________________________________________________________________________________________________

Physics 9 Momentum

What is the difference between speed and velocity?

________________________________________________________________________________________________________

________________________________________________________________________________________________________

𝑝 = 𝑚 × 𝑣

Symbol Quantity Units Unit Symbol

p

m

v

Rearrange the equation to make m and then v the subject.

Page 18: Forces and Motion - Learning Together (KS4 Science)reviseright.weebly.com/uploads/3/8/5/8/38587987/physics_2_workbook… · Sketch what the distance-time graph ... If two forces are

How can an object travelling at a constant speed have a changing momentum?

________________________________________________________________________________________________________

________________________________________________________________________________________________________

________________________________________________________________________________________________________

Physics 10 Collisions and Explosions

What does the conservation of momentum mean?

________________________________________________________________________________________________________

________________________________________________________________________________________________________

________________________________________________________________________________________________________ The diagram shows a car and a van, just before and just after the car collided with the van.

Before the collision After the collision What is the momentum of the car before the collision?

________________________________________________________________________________________________________

What is the momentum of the van before the collision?

________________________________________________________________________________________________________

What is the total momentum before the collision?

________________________________________________________________________________________________________

What is the total momentum after the collision?

________________________________________________________________________________________________________

What is the momentum of the car after the collision?

________________________________________________________________________________________________________

What is the momentum of the van after the collision?

________________________________________________________________________________________________________

What is the velocity of the van after the collision?

________________________________________________________________________________________________________

Page 19: Forces and Motion - Learning Together (KS4 Science)reviseright.weebly.com/uploads/3/8/5/8/38587987/physics_2_workbook… · Sketch what the distance-time graph ... If two forces are

What assumption have you made during these calculations?

________________________________________________________________________________________________________

________________________________________________________________________________________________________ The picture shows two teenagers riding identical skateboards. The skateboards are moving at the same speed and the teenagers have the same mass.

Why don’t the teenagers have the same momentum?

________________________________________________________________________________________________________

________________________________________________________________________________________________________ One of the skateboarders slows down and stops. The teenager then jumps off the skateboard, causing it to recoil and move in the opposite direction

The teenager, of mass 55 kg, jumps off the skateboard at 0.4 m/s causing the skateboard to recoil at 10 m/s. What is the total momentum before the jump? ____________________________

What is the total momentum after the jump? ____________________________ What is the momentum of the teenager?

________________________________________________________________________________

What is the momentum of the skateboard?

________________________________________________________________________________________________________

What is the mass of the skateboard?

________________________________________________________________________________________________________

________________________________________________________________________________________________________

Physics 11 Car Safety Features

How do the side impact bars of a vehicle protect passengers?

________________________________________________________________________________________________________

________________________________________________________________________________________________________

Page 20: Forces and Motion - Learning Together (KS4 Science)reviseright.weebly.com/uploads/3/8/5/8/38587987/physics_2_workbook… · Sketch what the distance-time graph ... If two forces are

Air bags, crumple zones and seat belts all keep passengers safe by the same basic principle; they reduce the force the passengers

experience by ___________________________________________________________________________________________

for the momentum of the vehicle and passengers to _____________________________________________________________ The front crumple zone of a car is tested at a road traffic laboratory. This is done by using a remote control device to drive the car into a strong barrier. Electronic sensors are attached to the dummy inside the car.

Describe the energy changes that occur as the vehicle comes to rest. Mention the types of energy and where it is transferred to.

________________________________________________________________________________________________________

________________________________________________________________________________________________________

________________________________________________________________________________________________________

________________________________________________________________________________________________________ What does the crumple zone do?

________________________________________________________________________________________________________

________________________________________________________________________________________________________ What do seat belts do and what could happen during a crash if seatbelts weren’t used?

________________________________________________________________________________________________________

________________________________________________________________________________________________________

________________________________________________________________________________________________________ What do air bags do and what could happen during a crash if there weren’t any air bags?

________________________________________________________________________________________________________

________________________________________________________________________________________________________

________________________________________________________________________________________________________ Hybrid cars have an electric engine and a petrol engine. This type of car is often fitted with a regenerative braking system. A regenerative braking system not only slows a car down but at the same time causes a generator to charge the car’s battery. State and explain the benefit of a hybrid car being fitted with a regenerative braking system.

________________________________________________________________________________________________________

________________________________________________________________________________________________________

________________________________________________________________________________________________________

________________________________________________________________________________________________________

Page 21: Forces and Motion - Learning Together (KS4 Science)reviseright.weebly.com/uploads/3/8/5/8/38587987/physics_2_workbook… · Sketch what the distance-time graph ... If two forces are

Electrical Circuits

Physics 12 Static Electricity ●When certain insulating materials are rubbed against each other they become electrically charged. Negatively charged electrons are rubbed off one material and onto each other. ●The material that gains electrons becomes negatively charged. The material that loses electrons is left with an equal positive charge. ●When two electrically charged objects are brought together they exert a force on each other. ●Two objects that carry the same type of charge repel. Two objects that carry different types of charge attract. ●Electrical charges can move easily through some substance, eg metals

Physics 13 Circuits ●Electrical current is a flow of electric charge. The size of the electric current is the rate of flow of electric charge. The size of the current is given by the equation:

𝐼 =𝑄

𝑡

I is the current in amperes (amps), A. Q is the charge in coulombs, C. t is the time in seconds, s.

●The potential difference (voltage) between two points in an electric circuit is the work done (energy transferred) per coulomb of charge that passes between the points.

𝑉 =𝑊

𝑄

V is the potential difference in volts, V. W is the work done in joules, J. Q is the charge in coulombs, C.

Teachers can use either of the terms potential difference or voltage. Questions will be set using the term potential difference. Candidates will gain credit for the correct use of either term. ●The resistance of a component can be found by measuring the current through, and potential difference across, the component. ●The current through a resistor (at a constant temperature) is directly proportional to the potential difference across the resistor. ●Calculate current, potential difference or resistance using the equation:

𝑉 = 𝐼 × 𝑅 V is the potential difference in volts, V. I is the current in amperes (amps), A. R is the resistance in ohms, Ω.

●The current through a component depends in its resistance. The greater the resistance the smaller the current for a given potential difference across the component.

Physics 14 Components ●Apply the principles of basic electrical circuits to practical situations ●Circuit diagrams using standard symbols. The following standard symbols should be known:

Switch (open) Switch (closed) Lamp Fuse

Cell Battery Voltmeter Ammeter

Page 22: Forces and Motion - Learning Together (KS4 Science)reviseright.weebly.com/uploads/3/8/5/8/38587987/physics_2_workbook… · Sketch what the distance-time graph ... If two forces are

Resistor Variable resistor Thermistor LDR

Diode LED Candidates will be required to interpret and draw circuit diagrams. Knowledge and understanding of the uses of thermistors in circuits, eg thermostats is required. Knowledge and understanding of the applications if light-dependent resistors (LDRs) is required, eg switching lights on when it gets dark. ●The resistance of a light-dependent resistor (LDR) decreases as light intensity increases. ●The resistance of a thermistor decreases as the temperature increases. Knowledge of a negative temperature coefficient thermistor only is required.

Physics 15 I-V Graphs ● Evaluate the use of different forms of lighting, in terms of cost and energy efficiency. Examples might include filament bulbs, fluorescent bulbs and light-emitting diodes (LEDs). ●Current-potential difference graphs are used to show how the current through a component varies with the potential difference across it. ●The current-potential difference graphs for a resistor at constant temperature. ●The resistance of a filament bulb increases as the temperature of the filament increases.Candidates should be able to explain resistance change in terms of ions and electrons. ●The current through a diode flows in one direction only. The diode has a very high resistance in the reverse direction.

Resistor Filament Lamp Diode

●An LED emits light when a current flows through it in the forward direction. Candidates should be aware that there is an increasing use of LEDs for lighting, as they use a much smaller current than other forms of lighting.

Physics 16 Series and Parallel Circuits ●The potential difference provided by cells connected in series is the sum of the potential difference of each cell (depending on the direction in which they are connected). ●For components connected in series:

■ the total resistance is the sum of the resistance of each components ■ there is the same current through each component ■ the total potential difference across each component is the same

●For components connect in parallel ■ the potential difference across each component is the same ■ the total current through the whole circuit is the sum of the currents through the separate components.

Page 23: Forces and Motion - Learning Together (KS4 Science)reviseright.weebly.com/uploads/3/8/5/8/38587987/physics_2_workbook… · Sketch what the distance-time graph ... If two forces are

Physics 12 Static Electricity

This is a diagram of an atom, it has the same number of positive ______________________ in

the nucleus as it has negative _____________________ orbiting the nucleus.

The nucleus is strongly bonded together so particles inside it almost never get out. Explain what an ion is.

________________________________________________________________________________________________________ Explain how the following ions are formed from the atom above. Include a diagram like the one above to help with your explanation.

A positive 1+ ion

A negative 1– ion

A positive 2+ ion

A negative 2– ion

An electrical conductor is a material that _______________________________________________________________________

An electrical insulator is a material that _________________________________________________________________________

When two insulating objects are rubbed together the force of ____________________________ can knock electrons off of one material and on to another.

The material that gains electrons has becomes __________________________________________________________________

The material that has lost electrons has becomes ________________________________________________________________

Two materials that have the same charge will ___________________________________

Two materials that have opposite charges will ___________________________________

Static is different to current because ___________________________________________________________________________

________________________________________________________________________________________________________

Static will only build up on ___________________________________________________

This is because ___________________________________________________________________________________________

________________________________________________________________________________________________________

Page 24: Forces and Motion - Learning Together (KS4 Science)reviseright.weebly.com/uploads/3/8/5/8/38587987/physics_2_workbook… · Sketch what the distance-time graph ... If two forces are

Physics 13 Circuits

Explain what the following words mean:

Voltage__________________________________________________________________________________________________

________________________________________________________________________________________________________

Another term for voltage is ________________________________________________________

Current__________________________________________________________________________________________________

________________________________________________________________________________________________________

Resistance_______________________________________________________________________________________________

________________________________________________________________________________________________________ The current through a resistor (at a constant temperature) is directly proportional to the potential difference across the resistor. What does directly proportional mean?

________________________________________________________________________________________________________

________________________________________________________________________________________________________ What would happen if... 1) The resistance was kept the same but the voltage was increased?

________________________________________________________________________________________________________ 2) The resistance was kept the same but the voltage was reversed?

________________________________________________________________________________________________________ 3) The resistance was increased but the voltage was kept the same?

________________________________________________________________________________________________________ 4) A wire is heated to a higher temperature? (What does this do to the resistance?)

________________________________________________________________________________________________________ To take readings of voltage and current you must make sure that the meters are connected properly. Complete the diagram to the right.

You must connect a voltmeter in _____________________________

You must connect an ammeter in _____________________________ Why does the bulb light up when it is connected to the battery?

________________________________________________________________________________________________________

________________________________________________________________________________________________________

________________________________________________________________________________________________________

Page 25: Forces and Motion - Learning Together (KS4 Science)reviseright.weebly.com/uploads/3/8/5/8/38587987/physics_2_workbook… · Sketch what the distance-time graph ... If two forces are

𝑉 = 𝐼 × 𝑅

Symbol Quantity Units Unit Symbol

V

I

R

Rearrange the equation to make Q and then t the subject

𝐼 =𝑄

𝑡

Symbol Quantity Units Unit Symbol

I

Q

t

Rearrange the equation to make Q and then t the subject

𝑉 =𝑊

𝑄

Symbol Quantity Units Unit Symbol

V

W

Q

Rearrange the equation to make W and then Q the subject

Page 26: Forces and Motion - Learning Together (KS4 Science)reviseright.weebly.com/uploads/3/8/5/8/38587987/physics_2_workbook… · Sketch what the distance-time graph ... If two forces are

Physics 14 Components

Name Symbol Description of what is does

Cell

Battery

Switch

Lamp

Voltmeter

Ammeter

Resistor

Variable Resistor

LDR

Thermistor

Diode

Fuse

Complete this graph to show how the resistance of an LDR changes when the light levels are increased.

Complete this graph to show how the resistance of a thermistor changes when it is warmed up.

Page 27: Forces and Motion - Learning Together (KS4 Science)reviseright.weebly.com/uploads/3/8/5/8/38587987/physics_2_workbook… · Sketch what the distance-time graph ... If two forces are

Physics 15 I-V Graphs

Component: __________________________

As the voltage increases the current increases.

When the voltage is increased the current goes up by the same amount.

When you reverse the voltage (negative) you reverse the current.

Component: __________________________

As the voltage increases the current increases.

When the voltage is increased the current doesn’t always go up by the same amount.

When you reverse the voltage (negative) no current flows.

Component: __________________________

As the voltage increases the current increases.

When the voltage is increased the current goes up by the same amount until the lamp gets hot and the resistance changes. At this point when the voltage in increased the current doesn’t increase by the same amount.

When you reverse the voltage (negative) you reverse the current.

Getting the Results

You can get the results for the above by using the circuit drawn to the right.

Voltmeters are attached in ________________

They measure the ________________________

Ammeters are attached in ________________

They measure the ________________________

The variable resistor is used to ______________

________________________________________

There is an increase in the use of LEDs for lighting instead of filament lamps. Outline the advantages of using LEDs instead of traditional light bulbs.

________________________________________________________________________________________________________

________________________________________________________________________________________________________

________________________________________________________________________________________________________

Page 28: Forces and Motion - Learning Together (KS4 Science)reviseright.weebly.com/uploads/3/8/5/8/38587987/physics_2_workbook… · Sketch what the distance-time graph ... If two forces are

Physics 16 Series and Parallel Circuits

If components are set up in ‘series’ what does this mean?__________________________________________________________

________________________________________________________________________________________________________

If components are set up in ‘parallel’ what does this mean?_________________________________________________________

________________________________________________________________________________________________________

Series Circuits

The current leaving the cell will _______________________________________________________________________________

ICell I1 I2

The voltage of the cell will ___________________________________________________________________________________

VCell V1 V2

If we wanted to replace resistor 1 and 2 with a single resistor we can work out the total resistor of resistors in series using the equation:

RTotal R1 R2

Parallel Circuits

The current leaving the cell will _______________________________________________________________________________

ICell I3 I4

The voltage of the cell will ___________________________________________________________________________________

VCell V3 V4

Page 29: Forces and Motion - Learning Together (KS4 Science)reviseright.weebly.com/uploads/3/8/5/8/38587987/physics_2_workbook… · Sketch what the distance-time graph ... If two forces are

Mains Electricity

Physics 17 AC and DC ●Cells and batteries supply a current that always passes in the same direction. This is called direct current (d.c.). ●An alternating current (a.c.) is one that is constantly changing direction. Candidates should be able to compare and calculate potential differences of d.c. supplies and the peak potential difference of a.c. supplies from diagrams of oscilloscope traces. Candidates should be able to determine the period and hence the frequency of a supply from diagrams of oscilloscope traces. ●Mains electricity is an a.c. supply. In the UK it has a frequency of 50 cycles per second (50 Hertz) and is about 230V.

Physics 18 3 Pin Plugs and Circuit Breakers ●Understand the principles of safe practice and recognise dangerous practice in the use of mains electricity. ●Compare the uses of fuses and circuit breakers ●Evaluate and explain the need to use different cables for different appliances ●Most electrical appliances are connected to the mains using cable and a three-pin plug. ●The structure of electrical cable. Candidates should be familiar with both two-core and three-core cable. ●The structure and wiring of a three-pin plug. Knowledge and understanding of the materials used in three-pin plugs is required, as is the colour coding of the covering of the three wires. ●If an electrical fault causes too great a current, the circuit is disconnected by a fuse or a circuit breaker in the live wire. ●When the current in a fuse wire exceeds the rating of the fuse it will melt, breaking the circuit. ●Some circuits are protected by Residual Current Circuit Breakers (RCCBs). Candidates should realise that RCCBs operate by detecting a difference in the current between the live and neutral wires. Knowledge of how the devices do this is not required. Candidates should be aware of the fact that this device operates much faster than a fuse. ●Appliances with metal cases are usually earthed. Candidates should be aware that some appliances are double insulated, and therefore have no earth wire connection. ●The earth wire and fuse together protect the wiring of the circuit. Candidates should have an understanding of the link between cable thickness and fuse values.

Physics 19 Electrical Power ●Consider the factors involved when making a choice of electrical appliances. Candidates should consider the efficiency and power of the appliances. ●When an electrical charge flows through a resistor the resistor gets hot. Candidates should understand that a lot of energy is wasted in filament bulbs by heating. Less energy is wasted in power saving lamps such as Compact Fluorescent Lamps (CFLs).Candidates should understanding that there is a choice when buying new applications in how efficiently they transfer energy. ●The rate at which energy is transferred by an appliance is called the power.

𝑃 =𝐸

𝑡

P is power in watts, W, E is energy in joules, J, t is time in seconds, s

●Power, potential difference and current are related by the equation: 𝑃 = 𝐼 × 𝑉

P is power in watts, W. I is current in amperes (amps), A. V is potential difference in volts, V

Candidates should be able to calculate the current through an appliance from its power and the potential difference of the supply, and from this determine the size of fuse needed. ●Energy transferred, potential difference and charge are related by the equation:

𝐸 = 𝑉 × 𝑄 E is energy in joules, J. V is potential difference in volts, V. Q is charge in coulombs, C.

Page 30: Forces and Motion - Learning Together (KS4 Science)reviseright.weebly.com/uploads/3/8/5/8/38587987/physics_2_workbook… · Sketch what the distance-time graph ... If two forces are

Physics 17 AC and DC What is meant by direct current?

________________________________________________________________________________________________________

________________________________________________________________________________________________________

Name the sources of direct current ____________________________________________________________________________

What is meant by alternating current?

________________________________________________________________________________________________________

________________________________________________________________________________________________________

We call the electricity from the plug sockets the ‘Mains’ supply.

What is the frequency of the UK Mains supply? Value: _______________ units: ______________

What is the voltage/potential difference of the UK Mains supply? Value: _______________ units: ______________

An oscilloscope is a device used to measure and show the size of voltages or currents and how they change over time. Sketch the oscilloscope traces (graphs) for the following electrical supplies.

A DC supply A smaller DC supply that has been reversed

An AC supply An AC supply with a smaller voltage

An AC supply with a lower frequency

What is the time period of an alternating supply and how can you measure it on an oscilloscope trace?

________________________________________________________________________________________________________

________________________________________________________________________________________________________

𝑓 =1

𝑇

Symbol Quantity Units Unit Symbol

f

T

Physics 18 3 Pin Plugs and Circuit Breakers

What material is the case of a plug made from? _________________________________

Why? ___________________________________________________________________________________________________

What material are the inner wires of a plug made from? _________________________________

Why? ___________________________________________________________________________________________________

Page 31: Forces and Motion - Learning Together (KS4 Science)reviseright.weebly.com/uploads/3/8/5/8/38587987/physics_2_workbook… · Sketch what the distance-time graph ... If two forces are

What material are the pins made from? _________________________________

Why? ___________________________________________________________________________________________________

When electricity gets to our homes we use plugs with three pins to connect it to the appliances we want to use. Name the parts of the plug from the diagram below; include the colours of the wires.

Wire X

Wire Y

Wire Z

A

B

Typical household fuses come in 3, 5 and 13 A; it is important to choose the most appropriate fuse for the appliance. Describe what would happen if a fuse was used with a rating below the expected current of the appliance.

________________________________________________________________________________________________________

________________________________________________________________________________________________________

Explain why it is important not to choose a fuse rating a lot higher than the expected current that the appliance will use.

________________________________________________________________________________________________________

________________________________________________________________________________________________________

What is the link between cable thickness and the maximum current than can flow safely?

________________________________________________________________________________________________________

________________________________________________________________________________________________________

What is the earth wire for? How do the earth wire and fuse help keep us and the wiring safe?

________________________________________________________________________________________________________

________________________________________________________________________________________________________

________________________________________________________________________________________________________

Some appliances don’t need an earth wire, why not?

________________________________________________________________________________________________________

________________________________________________________________________________________________________

Circuit breakers can also be used instead of a fuse. What are the advantages of using a circuit breaker to do the same job?

________________________________________________________________________________________________________

________________________________________________________________________________________________________ Residual Current Circuit Breakers (RCCBs) operate by detecting a difference in the current between the ___________________

and ___________________ wires. What are the advantages of using a RCCB over a normal circuit breaker?

________________________________________________________________________________________________________

________________________________________________________________________________________________________

wire X

B

wire Zwire Y

A3A

Page 32: Forces and Motion - Learning Together (KS4 Science)reviseright.weebly.com/uploads/3/8/5/8/38587987/physics_2_workbook… · Sketch what the distance-time graph ... If two forces are

Physics 19 Electrical Power

𝑃 =𝐸

𝑡

Symbol Quantity Units Unit Symbol

P

E

t

Rearrange the equation to make E and then t the subject

𝑃 = 𝐼 × 𝑉

Symbol Quantity Units Unit Symbol

P

I

V

Rearrange the equation to make I and then V the subject

𝐸 = 𝑉 × 𝑄

Symbol Quantity Units Unit Symbol

E

V

Q

Rearrange the equation to make V and then Q the subject

Page 33: Forces and Motion - Learning Together (KS4 Science)reviseright.weebly.com/uploads/3/8/5/8/38587987/physics_2_workbook… · Sketch what the distance-time graph ... If two forces are

Atoms and Radiation

Physics 20 Rutherford and Atoms ●Explain how results from Rutherford and Marsden scattering experiments led to the ‘plum pudding’ model being replaced by the nuclear model. Candidates should realise that new evidence can cause a theory to be re-evaluated.Candidates should realise that, according to the nuclear model, most of the atom is empty space. ●The basic structure of an atom is a small central nucleus composed of protons and neutrons surrounded by electrons. Candidates should appreciate the relative size of the nucleus compared to the size of the atom. ●The relative masses and relative charges of protons, neutrons and electrons. ●In an atom the number of electrons is equal to the number of protons in the nucleus. The atom has no overall electrical charge.

Physics 21 Ions and Isotopes ●Atoms may lose or gain electrons to form charged particles called ions. ●The atoms of an element always have the same number of protons, but have a different number of neutrons for each isotope. The total number of protons in an atom is called its atomic number. The total number of protons and neutrons in an atom is called its mass number.

Physics 22 Alpha, Beta and Gamma ●Some substances give out radiation from the nuclei of their atoms all the time, whatever is done to them. These substances are said to by radioactive. Candidates should be aware of the random nature of radioactive decay. ●Identification of an alpha particle as two protons and two neutrons, the same as a helium nucleus, a beta particle as an electron from the nucleus and gamma radiation as electromagnetic radiation.

Physics 23 Properties and Uses ●Evaluate the possible hazards associated with the use of different types of nuclear radiation ●Evaluate measures that can be taken to reduce exposure to nuclear radiations ●Properties of the alpha, beta and gamma radiations limited to their relative ionising power, their penetration through materials and their range in air. ●Alpha and beta radiations are deflected by both electric and magnetic fields but gamma radiation is not.All candidates should know that alpha particles are deflected less than beta particles and in an opposite direction.Higher tier candidates should be able to explain this in terms of the relative mass and charge of each particle. ●The uses of and the dangers associated with each type of nuclear radiation.

Physics 24 Half-Life ●Evaluate the appropriateness of radioactive sources for particular uses, including as tracers, in terms of the type(s) of radiation emitted and their half-lives. ●The half-life of a radioactive isotope is the average time it takes for the number of nuclei of the isotope in a sample to halve, of the time it takes for the count rate from a sample containing the isotope to fall to half its initial level.

Physics 25 Background Radiation ●Evaluate the effect of occupation and / or location on the level of background radiation and radiation dose. ●Nuclear equations to show single alpha and beta decay. Candidates will be required to balance such equations, limited to the completion of atomic number and mass number. The identification of daughter elements from such decays is not required. ●The origins of background radiation. Knowledge and understanding should include both natural sources, such as rocks and cosmic rays from space, and man-made sources such as the fallout from nuclear weapons tests and nuclear accidents.

Page 34: Forces and Motion - Learning Together (KS4 Science)reviseright.weebly.com/uploads/3/8/5/8/38587987/physics_2_workbook… · Sketch what the distance-time graph ... If two forces are

Physics 20 Rutherford and Atoms

There are several models of the atom.

The Solid Sphere Model The Plum Pudding Model The Nuclear Model

The Solid Sphere model assumed that the atom was a solid ball like a snooker or golf ball. The Plum Pudding model describes the atoms as a positive ‘dough’ with negative charges scattered through it at random. Describe and draw the nuclear model of the atom.

________________________________________________________________________________________________________

________________________________________________________________________________________________________

________________________________________________________________________________________________________

________________________________________________________________________________________________________ Complete the table below.

Particle Relative Charge

Relative Mass

Where is it found?

Proton

Neutron

Electron

The periodic table displays all the different types of atoms/elements that exist. The boxes on the table look like the ones below:

Explain what the notation in the box tells us (not these specific examples):

1: ____________________________________________

2: ____________________________________________

3: ____________________________________________

4: ____________________________________________

How do you work out the number of neutrons that are in an atom?

________________________________________________________________________________________________________

________________________________________________________________________________________________________

1 9 32 40 80

2 Be P Ca Br

3 Beryllium Phosphorus Calcium Bromine 4 4 15 20 35

Page 35: Forces and Motion - Learning Together (KS4 Science)reviseright.weebly.com/uploads/3/8/5/8/38587987/physics_2_workbook… · Sketch what the distance-time graph ... If two forces are

An atom is neutral because it has the same number of positive ___________________ as it has negative ___________________ How do you work out the number of electrons that are in an atom?

________________________________________________________________________________________________________ Use the periodic table to help you complete the table below

Number Name Symbol Protons Neutrons Electrons Atomic Number Mass Number

1 Hydrogen

2 Helium

3 Lithium

4 Be

5 B

6 C

7 Nitrogen

8 O

9 Fluorine

10 Ne

Here is a diagram of the experimental set up that Rutherford used to find out what atoms are like. Describe what he did:

________________________________________________________________

________________________________________________________________

________________________________________________________________

________________________________________________________________

________________________________________________________________

________________________________________________________________

Complete this table on Rutherford’s results and the conclusions that he made:

Observation Conclusion

The alpha particles where deflected by something.

The positive alpha particles where deflected by something.

Only 1 in about every 8000 was deflected back.

Page 36: Forces and Motion - Learning Together (KS4 Science)reviseright.weebly.com/uploads/3/8/5/8/38587987/physics_2_workbook… · Sketch what the distance-time graph ... If two forces are

Physics 21 Ions and Isotopes

This is a diagram of an atom, it has the same number of positive ______________________ in

the nucleus as it has negative _____________________ orbiting the nucleus.

The nucleus is strongly bonded together so particles inside it almost never get out. Explain what an ion is

________________________________________________________________________________________________________ Explain how the following ions are formed from the atom above. Include a diagram like the one above to help with your explanation.

A positive 1+ ion

A negative 1– ion

A positive 2+ ion

A negative 2– ion

Isotopes are different versions of the same element. They all have the same number of ________________________ but a

different number of _____________________ Calculate the number of protons, neutrons and electrons of these isotopes

Isotope 𝑈92233

𝑈92235

𝑈92238

𝐶612

𝐶613

𝐶614

Protons

Neutrons

Electrons

Isotope 𝐶𝑙1735

𝐶𝑙1737

𝐹𝑒2654

𝐹𝑒2656

𝐴𝑢79197

𝐴𝑢79195

Protons

Neutrons

Electrons

Page 37: Forces and Motion - Learning Together (KS4 Science)reviseright.weebly.com/uploads/3/8/5/8/38587987/physics_2_workbook… · Sketch what the distance-time graph ... If two forces are

Physics 22 Alpha, Beta and Gamma

Explain what the following words mean.

Radioactive ______________________________________________________________________________________________

Decay___________________________________________________________________________________________________

Radiation ________________________________________________________________________________________________

Stable___________________________________________________________________________________________________

The real life scenarios below are like radioactivity. Read them through and fill in the table

What represents…

Sally has eaten something undercooked and is feeling unwell. She goes to the toilet and is sick. When she

comes out she is feeling much better.

Harry is up a ladder painting a wall green. He is holding onto the ladder with one hand and five cans of paint

and a brush in the other. The ladder is very wobbly. He decides to drop four of the cans so he can hold onto

the ladder better.

Radioactive?

Decay?

Radiation?

Stable?

Complete these tables about the different types of radiation.

Type of Radiation

What is it? What is it made from? Diagram

Alpha

Beta

Gamma

Physics 23 Properties and Uses

Type of Radiation

Relative Charge

Relative Mass

Ionising Power

Deflected by EM Field?

What is it stopped by?

Alpha

Beta

Gamma

Page 38: Forces and Motion - Learning Together (KS4 Science)reviseright.weebly.com/uploads/3/8/5/8/38587987/physics_2_workbook… · Sketch what the distance-time graph ... If two forces are

Draw lines to show which source should be stored in each box so that the risk of radiation leakage is a minimum

A radioactive source emits alpha, beta and gamma radiation. The diagram shows what happens to the radiation as it passes between two charged plates.

Identify which types of radiation P, Q and R are.

P Q R

How do you know?

________________________________________________________________________________________________________

________________________________________________________________________________________________________

________________________________________________________________________________________________________

________________________________________________________________________________________________________

________________________________________________________________________________________________________

Describe and explain the possible dangers from having the following types of radiation OUTSIDE our bodies.

Alpha ___________________________________________________________________________________________________

________________________________________________________________________________________________________

Beta ____________________________________________________________________________________________________

________________________________________________________________________________________________________

Gamma _________________________________________________________________________________________________

________________________________________________________________________________________________________

Aluminium5 mm thick

Cardboard2 mm thick

Lead10 mm thick

Gamma source Beta source Alpha source

Diagram 1

Q

R

P

Radioactivesource

Negatively chargedplate

Positively chargedplate

Page 39: Forces and Motion - Learning Together (KS4 Science)reviseright.weebly.com/uploads/3/8/5/8/38587987/physics_2_workbook… · Sketch what the distance-time graph ... If two forces are

Describe and explain the possible dangers from having the following types of radiation INSIDE our bodies.

Alpha ___________________________________________________________________________________________________

________________________________________________________________________________________________________

Beta ____________________________________________________________________________________________________

________________________________________________________________________________________________________

Gamma _________________________________________________________________________________________________

________________________________________________________________________________________________________ Radiation is used to control the thickness of paper, cardboard and aluminium when it is manufactured. Use the diagram to explain how radiation is used in this situation.

________________________________________________

________________________________________________

________________________________________________

________________________________________________

________________________________________________

________________________________________________

________________________________________________

How else could you do this job?

________________________________________________________________________________________________________

________________________________________________________________________________________________________

________________________________________________________________________________________________________

Outline the benefits of using radiation to do this job

________________________________________________________________________________________________________

________________________________________________________________________________________________________

Outline the drawbacks of radiation doing this job

________________________________________________________________________________________________________

________________________________________________________________________________________________________

Radiation is also used in smoke detectors. Radiation passes between a source and a detector. If particles of smoke drift between the source and the detector the radiation is absorbed. The detector then triggers an alarm to alert us. Outline the benefits of using radiation to do this job

___________________________________________________________

___________________________________________________________

___________________________________________________________

___________________________________________________________

Page 40: Forces and Motion - Learning Together (KS4 Science)reviseright.weebly.com/uploads/3/8/5/8/38587987/physics_2_workbook… · Sketch what the distance-time graph ... If two forces are

Outline the drawbacks of radiation doing this job

________________________________________________________________________________________________________

________________________________________________________________________________________________________ Radiation is used to sterilise medical equipment like in the diagram. The radiation kills bacteria and viruses on the equipment. Outline the benefits of using radiation to do this job

_________________________________________________

_________________________________________________

_________________________________________________

_________________________________________________

_________________________________________________

_________________________________________________ Outline the drawbacks of radiation doing this job

________________________________________________________________________________________________________

________________________________________________________________________________________________________

________________________________________________________________________________________________________ How else could you do this job?

________________________________________________________________________________________________________

________________________________________________________________________________________________________ Radiation can be used as a tracer in medical situations. Briefly explain what this involves.

_______________________________________________________________________

_______________________________________________________________________

_______________________________________________________________________

_______________________________________________________________________

_______________________________________________________________________

_______________________________________________________________________

How else could you do this job?

________________________________________________________________________________________________________

________________________________________________________________________________________________________

________________________________________________________________________________________________________

Page 41: Forces and Motion - Learning Together (KS4 Science)reviseright.weebly.com/uploads/3/8/5/8/38587987/physics_2_workbook… · Sketch what the distance-time graph ... If two forces are

Outline the benefits of using radiation to do this job

________________________________________________________________________________________________________

________________________________________________________________________________________________________

Outline the drawbacks of radiation doing this job

________________________________________________________________________________________________________

________________________________________________________________________________________________________

Physics 24 Half Life

Different radioactive isotopes have different half-lives. If a radioactive isotope has a long half-life it means that ___________________________________________________________

________________________________________________________________________________________________________

If a radioactive isotope has a short half-life it means that ___________________________________________________________

________________________________________________________________________________________________________ Write an explanation of what half-life is.

________________________________________________________________________________________________________

________________________________________________________________________________________________________

Here is experimental data obtained from other radioactive isotopes. Use the skills you have learnt to find the half lives of the following radioactive isotopes. It is expected that you take more than one measurement and that an average is calculated. Americium 241

10 000

9000

8000

7000

6000

5000

4000

3000

2000

1000

0

0 100 200 300 400 500 600 700 800 900 1000

Number ofamericium

atoms

Time in years

Page 42: Forces and Motion - Learning Together (KS4 Science)reviseright.weebly.com/uploads/3/8/5/8/38587987/physics_2_workbook… · Sketch what the distance-time graph ... If two forces are

Technetium 99

Phosphorous 32

0 2 4 6 8 10 12 14 16 18

300

200

100

0

Count ratein counts

per minute

Time in hours

0

100

150

250

350

50

0

200

300

5 10 15 20 25 30 35 40 45

Time in days

Count

rate in

counts per

minute

Page 43: Forces and Motion - Learning Together (KS4 Science)reviseright.weebly.com/uploads/3/8/5/8/38587987/physics_2_workbook… · Sketch what the distance-time graph ... If two forces are

Isotope 𝐴𝑚95241

𝑇𝑐4399

𝑃1532

Protons

Neutrons

Electrons

What is the half-life of Americium 241? You can draw on the graphs and write your calculations here.

________________________________________________________________________________________________________

________________________________________________________________________________________________________

________________________________________________________________________________________________________

What is the half-life of Technetium 99?

________________________________________________________________________________________________________

________________________________________________________________________________________________________

________________________________________________________________________________________________________

What is the half-life of Phosphorous 32

________________________________________________________________________________________________________

________________________________________________________________________________________________________

________________________________________________________________________________________________________

Here is information about some different radioactive isotopes, the radiation they emit and their half-lives.

Isotope Radiation emitted Half-life Isotope Radiation emitted Half-life

bismuth 83 beta 61 minutes polonium 210 alpha 138 days

caesium 135 beta 3 million years polonium-213 alpha 0.3 seconds

cobalt 60 gamma 5 years radon 222 alpha 28 years

hydrogen-3 beta 12 years technetium 99 gamma 6 hours

iridium-192 gamma 74 days uranium-239 beta 24 minutes

Which isotope would be best suited for controlling the thickness of paper? _____________________________________________ Which isotope would be best suited for sterilising medical equipment? ________________________________________________ Which isotope would be best suited for a household smoke detector? ________________________________________________ Which isotope would be best suited to be injected as a medical tracer? _______________________________________________ Choose one of your answers and justify why the isotope you have chosen is the most suitable.

________________________________________________________________________________________________________

________________________________________________________________________________________________________

________________________________________________________________________________________________________

________________________________________________________________________________________________________

________________________________________________________________________________________________________

Page 44: Forces and Motion - Learning Together (KS4 Science)reviseright.weebly.com/uploads/3/8/5/8/38587987/physics_2_workbook… · Sketch what the distance-time graph ... If two forces are

________________________________________________________________________________________________________

________________________________________________________________________________________________________

________________________________________________________________________________________________________

________________________________________________________________________________________________________

________________________________________________________________________________________________________

________________________________________________________________________________________________________

________________________________________________________________________________________________________

Physics 25 Background Radiation We are exposed to a background level of radiation and have been all of our lives. Complete the pie chart to show the main contributors to background radiation. Which are the natural contributors to background radiation levels?

_____________________________________________________

_____________________________________________________

_____________________________________________________

Which are the manmade contributors to background radiation?

_____________________________________________________

_____________________________________________________

_____________________________________________________ What was the count rate of the background radiation in the classroom?

_____________________________________________________ When something undergoes alpha decay it decays by giving out an alpha particle.

This can be presented with the following nuclear equation:

𝑋 →𝑍𝐴 𝑌 + 𝛼2

4 Complete this equation

When something undergoes beta decay it decays by giving out a beta particle. A neutron in the nucleus changes into a proton and an electron. The electron is given out as radiation and the neutron stays in the nucleus.

This can be presented with the following nuclear equation:

𝑋 →𝑍𝐴 𝑌 + 𝛽−1

0 Complete this equation

Page 45: Forces and Motion - Learning Together (KS4 Science)reviseright.weebly.com/uploads/3/8/5/8/38587987/physics_2_workbook… · Sketch what the distance-time graph ... If two forces are

Nuclear and Stars

Physics 26 Nuclear Fission ●There are two fissionable substances in common use in nuclear reactors: uranium 235 and plutonium 239. The majority use uranium 235. ●Nuclear fission is the splitting of an atomic nucleus. ●For fission to occur the uranium 235 or plutonium 239 nucleus must first absorb a neutron. ●The nucleus undergoing fission splits into two smaller nuclei and two or three neutrons and energy is released. ●The neutrons may go on to start a chain reaction. Candidates should be able to sketch or complete a labelled diagram to illustrate how a chain reaction may occur.

Physics 27 Nuclear Fusion & Birth of Stars ●Compare the uses of nuclear fusion and nuclear fission. Limited to the generation of electricity ●Nuclear fusion is the joining of two atomic nuclei to form a larger one. ●Nuclear fusion is the process by which energy is released in stars ●Stars form when enough dust and gas from space is pulled together by gravitational attraction. Smaller masses may also form and be attracted by a larger mass to become planets. Candidates should be able to explain why the early Universe contained only hydrogen but now contains a large variety of different elements.

Physics 28 The Death of Stars ●During the ‘main sequence’ period of its life cycle a star is stable because the forces within it are balanced. The term ‘radiation pressure’ will not be required. ●A star goes through a life cycle. This life cycle is determined by the size of the star. Candidates should be familiar with the chart below that shows the life cycle of stars. ●Fusion processes in stars produce all of the naturally occurring elements. These elements may be distributed throughout the Universe by the explosion of a massive star (supernova) at the end of its life. Candidates should be able to explain how stars are able to maintain their energy output for millions of years. Candidates should know that elements up to iron are formed during the stable period of a star. Elements heavier that iron are formed in a supernova.

Page 46: Forces and Motion - Learning Together (KS4 Science)reviseright.weebly.com/uploads/3/8/5/8/38587987/physics_2_workbook… · Sketch what the distance-time graph ... If two forces are

Physics 26 Nuclear Fission

What is the difference between a nucleus and an atom?

________________________________________________________________________________________________________

________________________________________________________________________________________________________

What happens during nuclear fission? (What is there before it happens and what comes out?)

________________________________________________________________________________________________________

________________________________________________________________________________________________________

________________________________________________________________________________________________________

What are the two fissionable materials that are commonly used and which one is used the most?

________________________________________________________________________________________________________

________________________________________________________________________________________________________

Complete this diagram to show how a chain reaction could occur

The diagram shows the cross-section through a nuclear reactor. The control rods, made of boron, are used to control the chain reaction. Boron atoms absorb neutrons without undergoing nuclear fission. Explain how they would be used to:

Slow the reaction, speed up the reaction and stop the reaction.

Page 47: Forces and Motion - Learning Together (KS4 Science)reviseright.weebly.com/uploads/3/8/5/8/38587987/physics_2_workbook… · Sketch what the distance-time graph ... If two forces are

Physics 27 Nuclear Fusion & Birth of Stars

What happens during nuclear fusion? (What is there before it happens and what comes out?)

________________________________________________________________________________________________________

________________________________________________________________________________________________________

________________________________________________________________________________________________________

Is nuclear fission or nuclear fusion most commonly used to generate electricity? ________________________________________

Why? ___________________________________________________________________________________________________

________________________________________________________________________________________________________

The early universe contained only hydrogen but now contains a large variety of different elements. How did this happen?

________________________________________________________________________________________________________

________________________________________________________________________________________________________

________________________________________________________________________________________________________ What is a nebula?

________________________________________________________________________________________________________

________________________________________________________________________________________________________ Explain how a nebula may form a protostar.

________________________________________________________________________________________________________

________________________________________________________________________________________________________ What is the difference between a protostar and a main sequence (stable) star?

________________________________________________________________________________________________________ How could the planets have been formed?

________________________________________________________________________________________________________

________________________________________________________________________________________________________

Physics 28The Death of Stars

In a main sequence star there are forces acting both inwards and outwards. The force acting inwards is _____________________

What are the forces like in comparison to each other? ____________________________________________________________

How can a star remain stable for millions of years? _______________________________________________________________

________________________________________________________________________________________________________

Why does a star eventually change (as it dies)? __________________________________________________________________

________________________________________________________________________________________________________

Page 48: Forces and Motion - Learning Together (KS4 Science)reviseright.weebly.com/uploads/3/8/5/8/38587987/physics_2_workbook… · Sketch what the distance-time graph ... If two forces are

List the stages that a star about the same size as the Sun would go through as it dies.

________________________________________________________________________________________________________

________________________________________________________________________________________________________

List the stages that a star that is much bigger than the Sun would go through as it dies.

________________________________________________________________________________________________________

________________________________________________________________________________________________________ What is a black hole and how do you detect one?

________________________________________________________________________________________________________

________________________________________________________________________________________________________

________________________________________________________________________________________________________ Where are all elements made? _______________________________________________________________________________

Where are elements lighter than iron formed? ___________________________________________________________________

Where are elements heavier that iron formed? ___________________________________________________________________ How are elements distributed throughout the Universe?

________________________________________________________________________________________________________

________________________________________________________________________________________________________

What could then happen?

________________________________________________________________________________________________________

________________________________________________________________________________________________________ The diagram, drawn below, places stars in one of four groups. Where a star is placed on the diagram is determined by the surface temperature and relative luminosity of the star. A star with a relative luminosity of 1, emits the same amount of energy every second as the Sun. Use the information in the diagram to describe what will happen to the Sun after the stable period ends. Make sure you mention the stages that it goes through.

______________________________________________

______________________________________________

______________________________________________

______________________________________________

______________________________________________

______________________________________________

______________________________________________

______________________________________________