98
Forensic Investigations of of Dam Failures Paul C. Rizzo October 7,2010 October 7,2010

Forensic Investigations of Dam Failures - nhjes.org Engineering for Dam Failures.pdf · penstocks, tunnels, and reservoir slopes 4. Some “Classics

Embed Size (px)

Citation preview

Forensic Investigationsofof

Dam FailuresPaul C. Rizzo

October 7,2010October 7,2010

Case Histories

• A few introductory notes:All j liti ti h j t i l t d– All major litigation on each project is completed

– All information reported here is in the public domain• Dam Failures discussed todayy

– The “Classics” plus– Taum Sauk– Silver Lake

Click to edit Master title style

– Saluda Dam– Swinging Bridge

– Will not talk about Tampa Bay, Lake Dehli, Levee Failures

2

References

• Dr. A.J. “Skip” Hendron

• Brian Green

• Prof J David Rogers• Prof. J. David Rogers

• Euler Cruz & Rafael Cesário

Click to edit Master title style

• Dr. David Petley

3

Definition of Failure

• Failure at a dam is “an uncontrolled release of water” • Causes of Failure• Causes of Failure

– Overtopping – the most common cause– Piping thru Embankment – 2nd!!

i i h d i d!!– Piping thru Foundation – 3rd!!– Foundation Degradation

• Karst developmentLi f ti

Click to edit Master title style

• Liquefaction• Loss of fines over time 

– Earthquakes – ground motion and faultsFailure of gates stoplogs flashboard malfunction– Failure of gates, stoplogs, flashboard malfunction, penstocks, tunnels, and reservoir slopes

4

Some “Classics”Some  ClassicsWe learn from out mistakes!!

Click to edit Master title style

We learn from out mistakes!!

5

Classic Failures

• Had a major impact on dam or hydro  engineering

• Had a major impact on dam safety legislation and dam safety regulations

Click to edit Master title style

legislation and dam safety regulations

• Had a major impact on society

6

Folsom DamFolsom, California

Click to edit Master title style

July 17, 1995

7

Folsom Dam – “Before”

Click to edit Master title style

8

Folsom Dam – “After” 

Click to edit Master title style

9

Folsom Dam ‐ 1995

Click to edit Master title style

10

Folsom Dam

• Increased profession’s awareness of pthe need for maintenance and inspection of auxiliary featuresinspection of auxiliary features associated with a dams

Click to edit Master title style• Changed FERC’s Inspection Guidesg p

11

Shih Kang DamgTaiwan

Click to edit Master title style

September 21, 1999

12

Shih Kang Dam – TaiwanImpact of building a dam over a faultImpact of building a dam over a fault

Click to edit Master title style

13

Shih Kang Dam ‐ Taiwan

Click to edit Master title style

14

Shih Kang Dam ‐ Taiwan

Click to edit Master title style

15

Austin (Bayless) Dam( y )Austin, Pennsylvania

Click to edit Master title style

September 30, 1911

16

Austin Dam – “Before”

Click to edit Master title style

17

Austin Dam – “After” 

Click to edit Master title style

18

Austin Dam

• Destroyed the myth that “gravity dams can’t fail”

• Illustrates the need for detailed,Illustrates the need for detailed, comprehensive foundation investigations and foundation preparation

Click to edit Master title style

and foundation preparation

• Illustrates the need for temperature expansion/contraction joints in gravityexpansion/contraction joints in gravity dams

19

V i DVaiont DamItalyItaly

October 1963

Click to edit Master title style

20

Vaiont Dam – Double Arch245m (800) ft high245m (800) ft high

Click to edit Master title style

2121

Village of Longarone “Before”Vaiont Dam FailureVaiont Dam Failure

Click to edit Master title style

22

The Vaiont Dam Disaster

• Dam completed and filled

• Reservoir cycled up and down several times overthree years

• Left Reservoir Slope Failed catastrophically

• Within 30 – 40 seconds some 270 million m3 of

Click to edit Master title style

• Within 30 40 seconds, some 270 million m ofrock crashed into the reservoir.

• Resulting wave overtopped dam by about 100 –Resulting wave overtopped dam by about 100150 m.

23

Vaiont Dam – Reservoir Slope Failure

Click to edit Master title style

24

Longarone Village “After”Vaiont Dam FailureVaiont Dam Failure

Click to edit Master title style

25

Vaiont Dam at the Top

Click to edit Master title style

26

T DTeton DamTeton IdahoTeton, IdahoJune 5, 1976

Click to edit Master title style

27

Teton – “Before”

Click to edit Master title style

28

Start of Piping – June 5 – 7:00 AM

Click to edit Master title style

29

June 5 ‐11:20 AM

Click to edit Master title style

30

June 5 – 11:50 AM(Crest still intact)(Crest still intact)

Click to edit Master title style

31

June 5 – 11:50 AM(Crest now eroding)(Crest now eroding)

Click to edit Master title style

32

June 5 – 12:00 noon(Crest lost – maximum flood)(Crest lost  maximum flood)

Click to edit Master title style

33

Lessons Learned 

• Compaction is extremely important throughout the dam and especially at the abutments

• Grout Curtains are critical to prevent piping

• Keyway design is critical

Click to edit Master title style

• Keyway design is critical

• Filters are a key feature to resist piping

(When in doubt, add a filter)

34

Compaction Against Right Abutment

Click to edit Master title style

35

Compaction Equipment after Change

Click to edit Master title style

36

Sayano‐Shushenskayah kKhakassia, RussiaAugust 17 2009

Click to edit Master title style

August 17, 2009

37

Accident at Russia’s LargestHydroelectric Power StationHydroelectric Power Station

Click to edit Master title style

38

PenstocksSpillway

Dam

Units

Powerhouse

12345678910

Control Building

39

40

The Accident – 2009 Aug 17

Click to edit Master title style

4141

Before the Accident

Crane

Click to edit Master title style

Power Units

Air‐Oil Tanks

42Sump Tank Governor

Pumps Generators floor42

After the Accident

Sump Tank

Air‐Oil Tanks

Sump Tank

Floor

Click to edit Master title styleColector Ring

Unit 2

Crosshead –Unit 2

Colector Ring

Unit 1

43

Generator floor

43

General View

Floor

Click to edit Master title style

4444

General View

Click to edit Master title style

4545

Before the Accident

Generator Rotor – Unit 5

Click to edit Master title style

46

Generator Runner

The accident started here

46

Sump Tank (turned)

Air‐Oil Tank

Crosshead

47

After the Accident

Unit 7: destroyed

Click to edit Master title styleUnit 9: destroyed

4848

Unit 9

Unit 7

49

50

51

Unit 2

Units 7Units 7 and 9

52

FloodFlood

53

Lower Van Norman DamLos Angeles, California

bFebruary 9, 1971

Click to edit Master title styleA Classic that was not a failure!

54

Lower Van Norman February 9 1971February 9, 1971 

L V N D b ilt b th Cit f L t A l

Click to edit Master title style

• Lower Van Norman Dam was built by the City of Lost Angelesas part of the Los Angeles Aqueduct in 1916 – 1918, using thehydraulic fill and puddled fill techniques. A rolled fill additionwas placed in 1924.

• The embankment failed during the February 9, 1971 M. 6.7 SanFernando Earthquake but no water was released

55

Fernando Earthquake, but no water was released.

Lower Van Norman

Click to edit Master title style

56

Lower Van NormanForerunner to Modern Liquefaction AnalysisForerunner to Modern Liquefaction Analysis

Susceptibility to Liquefaction

Click to edit Master title style•Careful forensic evaluations by the geotechnical engineering group at U.C.Berkeley unraveled the dam’s failure by liquefaction of a zone of low densitysandy hydraulic fill, shown in blue in the above sections.Th St t b tl l t d 30 th h d li fill d f t fitti

57

•The State subsequently slated 30 other hydraulic fill dams for retrofittingbetween 1973 – 75.

Swinging Bridge Damg g gSullivan County, New York

Click to edit Master title style

May 5, 2005

58

Swinging Bridge Dam Cross SectionSwinging Bridge Dam Cross Section

Click to edit Master title style

59

Swinging Bridge Dam

Click to edit Master title style

60

Swinging Bridge Dam

Click to edit Master title style

61

Swinging Bridge Dam

• Over time leaks developed

• Fines transported to penstock during dewatering

• Sinkholes developed on crest

• Reservoir drained

• Penstock & Unit abandoned

Click to edit Master title style

• Dam repaired and refilled (3 yr shutdown)

62

Silver Dam Lakel hUpper Peninsula, Michigan

May 2003Click to edit Master title style

May 2003

63

Silver Lake DamDead River Hydroelectric ProjectDead River Hydroelectric Project

M t i T St L k• Mountain Top Storage Lake– Main Concrete Dam with Spillway & Outlet Pipe/Gate Control– Auxiliary Dams and Dikes

Emergency Spillway with Erodible Fuse plug– Emergency Spillway with Erodible Fuse plug

• May, 2003 – snowmelt, Gate Control not Activated• Fuse Plug Eroded

Click to edit Master title style

• Fuse Plug Eroded• Main Dam Overtopped – minimal damage• Dam No. 2 overtopped & eroded away entirely

• Failure drained approximately 25,000 acre feet of water  from Silver Lake Reservoir

• $100 million damage – no fatalities

64

• $100 million damage  no fatalities

Silver Lake – Overtopping of Main Dam

Click to edit Master title style

65

Saluda Dam

Columbia, South Carolina

Click to edit Master title styleRehabilitation

66

Saluda DamA Failure that was Prevented!A Failure that was Prevented!

WATEREERIVER

SALUDA RIVER

COLUMBIA

SANTEERIVER

COLUMBIA

LAKEMURRAY

Click to edit Master title style

67

Aerial View of Saluda Dam

Intake TowersNORTH

Spillway

McMeekin Station

Click to edit Master title styleAsh Ponds &

Saluda Hydro

BushAsh Ponds & Landfill

Bush River Rd.

68

Saluda Dam

HydroelectricPlant

Existing Dam

Plant

Lake Murray

Lake Area 78 square miles

Click to edit Master title style

Lake Area 78 square milesLake Capacity  1,600,000 acre feet Dam Length 7,800 feetMax Dam Height 200 feetPowerhouse Capacity 260 MWOriginal Construction Hydraulic Fill

69

Original Construction Hydraulic FillOriginal Completion  1930 

Original Dam ConstructionOriginal Dam Construction

•Dam was constructed 1927 ‐ 1930

•11,000,000 cy‐‐semi‐hydraulic method

Click to edit Master title style

7085

As‐Built Dam Configuration

• Semi‐Hydraulic Fill

• Most soils “Dumped”

• No compaction

Rolled CoreWashed Fill

Click to edit Master title style

Rip RapUnwashed Fill

Washed Fill

Washed Fill

Sluiced Core Residual SoilUnwashed Fill

71

Dynamic Stability Analysis

• Liquefaction Evaluation of Saluda Dam

– Earthquake record selection

Liquefaction methodology– Liquefaction methodology

• Post‐Seismic Stability Analysis

Click to edit Master title style

72

Liquefaction Analysis

Factor of Safety against Liquefaction (FSL)

Click to edit Master title style

-0.02 0.32 0.66 1.001.00 1.33 1.67 2.002.00 3.78 5.57 7.35

Extensive Liquefaction, Post‐Seismic FS < 1

73

Section AA’ (typ.)

Lower Bound

B t C

-0.03 0.31 0.66 1.001.00 1.33 1.67 2.002.00 3.51 5.02 6.53

Click to edit Master title style

Best Case

-0.06 0.30 0.65 1.001.00 1.33 1.67 2.002.00 3.96 5.92 7.88

74

Remediation Concept

Competent Rock

Click to edit Master title styleRockfill Damoc a• Length 5,100 feet

• Max. Height 200 feet

75

g

Remediation Concept

Click to edit Master title styleRCC Dam• Length 2,200 feet

• Max. Height 210 feet

a

76

g

Taum Sauk Upper ReservoirLesterville, MissouriDecember 15, 2005

Click to edit Master title style

ecember 5, 005

77

Taum Sauk on December 14, 2005

Click to edit Master title style

78

Taum Sauk on December 15, 2005Release of 1 4 Billion Gallons of WaterRelease of 1.4 Billion Gallons of Water

Click to edit Master title style

79

Original Rockfill Dam X‐Section

Click to edit Master title style

80

Original Rockfill Dam X‐Section

Click to edit Master title style

81

Panel 72 Erosion

Click to edit Master title style

82

Taum Sauk Forensic Investigation

• Field InvestigationsVi l Ob i– Visual Observations

– Geologic Mapping• Breach AreaBreach Area• Breach Channel

– Record Search

Click to edit Master title style

– Test Borings & Sampling– Laboratory Testing– Instrumentation InvestigationInstrumentation Investigation– Interviews (operators & mgmt)

83

Forensic Investigation

• Engineering AnalysesH d li A l i ( fl l it– Hydraulic Analysis (overflow zones, velocity, impingement zone)

– Rockfill Dike (seepage, piping & stability)– Concrete Facing (effect on µ)– Liner (effect on µ)– Parapet Wall (stability, structural)

Click to edit Master title style

Parapet Wall (stability, structural)– Asphalt Liner (effect on µ)– Grout Curtain (effect on µ)Fil ( ff )– Filters (effect on µ)

84

Rockfill Dike Stability ‐ Sliding

Click to edit Master title style

Water PressureResisting

Weight of

Estimated  P

Normal F

W

Sliding Weight of Water

85

Pore Pressure at Overtopping

Force

Taum Sauk Re‐build Data

• Same Footprint

• No change in capacity or generation

• 110 to 140 ft high• 110 to 140 ft high

• ~ 6800 ft long  ‐ 9 monoliths @ ~800 ft

Click to edit Master title style

• RCC with processed “old rockfill” dam

• RCC – 2.8 million CY + 0.5 million CVC

• Symmetrical w Concrete Face

• Overflow Release Structure86

• Overflow Release Structure

• Highly redundant Instrumentation 

Rock Foundation Preparation

Click to edit Master title style

87

Foundation Preparation

Click to edit Master title style

88

Upstream View of the Fracture ZoneCleaning and Mapping in ProgressCleaning and Mapping in Progress

Click to edit Master title style

89

Overflow Release Structure

Click to edit Master title style

90

Taum Sauk on April 1, 2010

Click to edit Master title style

91

Keys to a ForensicKeys to a Forensic Investigation

Click to edit Master title style

92

Keys to a Forensic Investigation

• Investigation Work PlanPl f Liti ti f th b i i– Plan for Litigation from the beginning• Civil or Civil & Criminal• Expect Opposing Experts

Lit t S h– Literature Search– Interviews– Review of Existing Calculations  & Design Basis

Click to edit Master title style

– Field Investigations– Laboratory Testing– “New” AnalysisNew  Analysis– Report Preparation

93

Keys to a Forensic Investigation

• Have a well defined engagement letter• Avoid emails!!• Avoid derogatory remarks & comments• Keep consistent & accurate field logs• Keep confidentiality

Click to edit Master title style

• Use NDA’s with Subcontractors• Treat drafts & preliminary documents  consistent with standard corporate policy

• Implement a robust QA/QC Program

94

• Be open minded!!

Keys to a Forensic Investigation

• Public Domain Literature Search – Professional Literature

– News Accounts & Photos/Videos/

• Private File Search– STID’s & PFMA’s

Click to edit Master title style

– STID s & PFMA s

– Permit Applications

Inspection Reports– Inspection Reports

– Instrumentation Reports

C t ti R t & Ph t95

– Construction Reports & Photos

Keys to a Forensic Investigation

• Field Investigations (drilling, geophysics, etc)– Implement a Field Work Plan– Implement a HSEP immediatelyI l t QA/QC P– Implement a QA/QC Program

– Use Calibrated Equipment with traceable records• SPT Energy

Click to edit Master title style

SPT Energy• Shelby Tube & Split Barrel Dimensions• Pressure gages, flow meters, DRM Systems

U S l M if P l– Use Sample Manifest Protocols– Watch the field records carefully!!!!– Use NDA’s with subcontractors

96

– Use NDA s with subcontractors

Keys to a Forensic Investigation

• Laboratory Testing– Implement a Laboratory Testing Plan

– Implement a QA/QC Programp Q /Q g

– Use Calibrated Equipment with traceable records

Click to edit Master title style

– Use defendable Standards (ASTM, C of E, etc)

– Use Sample Manifest Protocolsp

– Watch the lab records carefully!!!!

– Should Field Logs be adjusted based on lab

97

Should Field Logs be adjusted based on lab tests?

Thank you for your time!

Click to edit Master title style

98