43
Forms of Energy Generation : 1. Degradation of electrical energy to heat 2. Heat from nuclear source (by fission) 3. Heat from viscous dissipation Overall Shell Energy Balance Energy Generat ion Let S = rate of heat production per unit volume (W/m 3 ) (S e ) (S n ) (S v )

Forms of Energy Generation : Degradation of electrical energy to heat

  • Upload
    kurt

  • View
    50

  • Download
    1

Embed Size (px)

DESCRIPTION

Overall Shell Energy Balance. Forms of Energy Generation : Degradation of electrical energy to heat Heat from nuclear source (by fission) Heat from viscous dissipation. (S e ) (S n ) ( S v ). Energy Generation. Let S = rate of heat production per unit volume (W/m 3 ). - PowerPoint PPT Presentation

Citation preview

Page 1: Forms of Energy Generation : Degradation of electrical energy to heat

Forms of Energy Generation:

1. Degradation of electrical energy to heat

2. Heat from nuclear source (by fission)

3. Heat from viscous dissipation

Overall Shell Energy Balance

Energy Generation

Let S = rate of heat production per unit volume (W/m3)

(Se)

(Sn)

(Sv)

Page 2: Forms of Energy Generation : Degradation of electrical energy to heat

Electrical Heat Source

Consider an electrical wire (solid cylinder):

Shell Heat Balance:

(2๐œ‹๐‘Ÿ๐ฟ๐‘ž๐‘Ÿ ) |๐‘Ÿ โˆ’ (2๐œ‹๐‘Ÿ๐ฟ๐‘ž๐‘Ÿ ) |๐‘Ÿ+โˆ†๐‘Ÿ+ (2๐œ‹ ๐‘Ÿ โˆ†๐‘Ÿ๐ฟ )๐‘†๐‘’=0

Rate of Heat IN:

Rate of Heat OUT:

Generation:

(2๐œ‹๐‘Ÿ๐ฟ๐‘ž๐‘Ÿ ) |๐‘Ÿ(2๐œ‹๐‘Ÿ๐ฟ๐‘ž๐‘Ÿ ) |๐‘Ÿ+โˆ†๐‘Ÿ

(2๐œ‹๐‘Ÿ โˆ†๐‘Ÿ๐ฟ )๐‘†๐‘’

Page 3: Forms of Energy Generation : Degradation of electrical energy to heat

Electrical Heat Source

Rate of Heat IN:

Rate of Heat OUT:

Generation:

(2๐œ‹๐‘Ÿ๐ฟ๐‘ž๐‘Ÿ ) |๐‘Ÿ(2๐œ‹๐‘Ÿ๐ฟ๐‘ž๐‘Ÿ ) |๐‘Ÿ+โˆ†๐‘Ÿ

(2๐œ‹๐‘Ÿ โˆ†๐‘Ÿ๐ฟ )๐‘†๐‘’

The Shell:

(2๐œ‹๐‘Ÿ๐ฟ๐‘ž๐‘Ÿ ) |๐‘Ÿ=(2๐œ‹๐‘Ÿ๐ฟ) โˆ™ (๐‘ž๐‘Ÿ |๐‘Ÿ )

Rate of Heat IN Area perpendicular to qr at r = r

Page 4: Forms of Energy Generation : Degradation of electrical energy to heat

Electrical Heat Source

Rate of Heat IN:

Rate of Heat OUT:

Generation:

(2๐œ‹๐‘Ÿ๐ฟ๐‘ž๐‘Ÿ ) |๐‘Ÿ(2๐œ‹๐‘Ÿ๐ฟ๐‘ž๐‘Ÿ ) |๐‘Ÿ+โˆ†๐‘Ÿ

(2๐œ‹๐‘Ÿ โˆ†๐‘Ÿ๐ฟ )๐‘†๐‘’

The Shell:

(2๐œ‹๐‘Ÿ๐ฟ๐‘ž๐‘Ÿ ) |๐‘Ÿ+โˆ†๐‘Ÿ=(2๐œ‹(๐‘Ÿ +โˆ†๐‘Ÿ )๐ฟ) โˆ™ (๐‘ž๐‘Ÿ |๐‘Ÿ +โˆ†๐‘Ÿ )

Rate of Heat OUT Area perpendicular to qr at r = r + dr

Page 5: Forms of Energy Generation : Degradation of electrical energy to heat

Electrical Heat Source

Rate of Heat IN:

Rate of Heat OUT:

Generation:

(2๐œ‹๐‘Ÿ๐ฟ๐‘ž๐‘Ÿ ) |๐‘Ÿ(2๐œ‹๐‘Ÿ๐ฟ๐‘ž๐‘Ÿ ) |๐‘Ÿ+โˆ†๐‘Ÿ

(2๐œ‹๐‘Ÿ โˆ†๐‘Ÿ๐ฟ )๐‘†๐‘’

The Shell:

Generation = Volume X Se

๐‘‰=๐œ‹ [ (๐‘Ÿ+โˆ†๐‘Ÿ )2โˆ’๐‘Ÿ2 ] ๐ฟToo small

โˆด๐‘‰=๐œ‹ [2๐‘Ÿ โˆ†๐‘Ÿ ]๐ฟ โˆด๐บ๐‘’๐‘›=2๐œ‹ ๐‘Ÿ โˆ†๐‘Ÿ๐ฟ โˆ™๐‘†๐‘’

ยฟ๐œ‹ [๐‘Ÿ2+2๐‘Ÿ โˆ†๐‘Ÿ+ (โˆ†๐‘Ÿ )2โˆ’๐‘Ÿ2 ] ๐ฟ

Page 6: Forms of Energy Generation : Degradation of electrical energy to heat

Electrical Heat Source

Consider an electrical wire (solid cylinder):

Shell Heat Balance:

(2๐œ‹๐‘Ÿ๐ฟ๐‘ž๐‘Ÿ ) |๐‘Ÿ โˆ’ (2๐œ‹๐‘Ÿ๐ฟ๐‘ž๐‘Ÿ ) |๐‘Ÿ+โˆ†๐‘Ÿ+ (2๐œ‹ ๐‘Ÿ โˆ†๐‘Ÿ๐ฟ )๐‘†๐‘’=0

Dividing by

(๐‘Ÿ ๐‘ž๐‘Ÿ )|๐‘Ÿโˆ’ (๐‘Ÿ ๐‘ž๐‘Ÿ )|๐‘Ÿ+โˆ†๐‘Ÿ

โˆ†๐‘Ÿ =โˆ’๐‘†๐‘’ ๐‘Ÿ

Q: Why did we divide by and not by ?

(2๐œ‹๐‘Ÿ๐ฟ๐‘ž๐‘Ÿ ) |๐‘Ÿ โˆ’ (2๐œ‹๐‘Ÿ๐ฟ๐‘ž๐‘Ÿ ) |๐‘Ÿ+โˆ†๐‘Ÿ=โˆ’ (2๐œ‹๐‘Ÿ โˆ†๐‘Ÿ๐ฟ)๐‘†๐‘’

Page 7: Forms of Energy Generation : Degradation of electrical energy to heat

Electrical Heat Source

Consider an electrical wire (solid cylinder):

We now have:(๐‘Ÿ ๐‘ž๐‘Ÿ )|๐‘Ÿโˆ’ (๐‘Ÿ ๐‘ž๐‘Ÿ )|๐‘Ÿ+โˆ†๐‘Ÿ

โˆ† ๐‘Ÿ =โˆ’๐‘†๐‘’ ๐‘Ÿ

Taking the limit as :

Q: Is this correct?

๐‘‘๐‘‘๐‘Ÿ (๐‘Ÿ ๐‘ž๐‘Ÿ )=โˆ’๐‘†๐‘’ ๐‘Ÿ

NO!

Page 8: Forms of Energy Generation : Degradation of electrical energy to heat

Electrical Heat Source

Consider an electrical wire (solid cylinder):

We now have:(๐‘Ÿ ๐‘ž๐‘Ÿ )|๐‘Ÿโˆ’ (๐‘Ÿ ๐‘ž๐‘Ÿ )|๐‘Ÿ+โˆ†๐‘Ÿ

โˆ† ๐‘Ÿ =โˆ’๐‘†๐‘’ ๐‘Ÿ

We must adhere to the definition of the derivative:

(๐‘Ÿ ๐‘ž๐‘Ÿ )|๐‘Ÿ+โˆ† ๐‘Ÿโˆ’ (๐‘Ÿ ๐‘ž๐‘Ÿ ) |๐‘Ÿโˆ†๐‘Ÿ =+๐‘†๐‘’ ๐‘Ÿ

limโˆ†๐‘Ÿโ†’0

(๐‘Ÿ ๐‘ž๐‘Ÿ )|๐‘Ÿ+โˆ† ๐‘Ÿโˆ’ (๐‘Ÿ ๐‘ž๐‘Ÿ ) |๐‘Ÿโˆ† ๐‘Ÿ = ๐‘‘

๐‘‘๐‘Ÿ (๐‘Ÿ ๐‘ž๐‘Ÿ )=๐‘†๐‘’๐‘Ÿ

Page 9: Forms of Energy Generation : Degradation of electrical energy to heat

Electrical Heat Source

Consider an electrical wire (solid cylinder):

We now have:๐‘‘๐‘‘๐‘Ÿ (๐‘Ÿ ๐‘ž๐‘Ÿ )=๐‘†๐‘’๐‘Ÿ

Boundary conditions:

๐‘Ž๐‘ก ๐‘Ÿ=0 ,๐‘ž๐‘Ÿ= ๐‘“๐‘–๐‘›๐‘–๐‘ก๐‘’

๐‘Ž๐‘ก ๐‘Ÿ=๐‘… ,๐‘‡=๐‘‡ 0

Note: The problem statement will tell you hints about what boundary conditions to use.

Integrating: ๐‘ž๐‘Ÿ=๐‘†๐‘’๐‘Ÿ2

+๐ถ1

๐‘Ÿ

Page 10: Forms of Energy Generation : Degradation of electrical energy to heat

Electrical Heat Source

Consider an electrical wire (solid cylinder):

We now have:

๐‘Ž๐‘ก ๐‘Ÿ=0 ,๐‘ž๐‘Ÿ= ๐‘“๐‘–๐‘›๐‘–๐‘ก๐‘’Applying B.C. 1:

๐‘ž๐‘Ÿ=๐‘†๐‘’๐‘Ÿ2

+๐ถ1

๐‘Ÿ

Because q has to be finite at r = 0, all the terms with radius, r, below the denominator must vanish. Therefore:

๐ถ1=0

๐‘ž๐‘Ÿ=๐‘†๐‘’๐‘Ÿ2

Page 11: Forms of Energy Generation : Degradation of electrical energy to heat

Electrical Heat Source

Consider an electrical wire (solid cylinder):

We now have: ๐‘ž๐‘Ÿ=๐‘†๐‘’๐‘Ÿ2

Substituting Fourierโ€™s Law:

โˆ’๐‘˜ ๐‘‘๐‘‡๐‘‘๐‘Ÿ =

๐‘†๐‘’ ๐‘Ÿ2

๐‘‘๐‘‡๐‘‘๐‘Ÿ =

โˆ’๐‘†๐‘’๐‘Ÿ2๐‘˜

๐‘‡=โˆ’๐‘†๐‘’๐‘Ÿ 2

4๐‘˜ +๐ถ2

Page 12: Forms of Energy Generation : Degradation of electrical energy to heat

Electrical Heat Source

Consider an electrical wire (solid cylinder):

We now have: ๐‘‡=โˆ’๐‘†๐‘’๐‘Ÿ 2

4๐‘˜ +๐ถ2

Applying B.C. 2: ๐‘Ž๐‘ก ๐‘Ÿ=๐‘… ,๐‘‡=๐‘‡ 0

๐‘‡ 0=โˆ’๐‘†๐‘’๐‘…2

4 ๐‘˜ +๐ถ2

๐ถ2=๐‘‡0+๐‘†๐‘’๐‘…2

4 ๐‘˜

๐‘‡=โˆ’๐‘†๐‘’๐‘Ÿ 2

4๐‘˜ +๐‘†๐‘’๐‘…2

4๐‘˜ +๐‘‡ 0

This is it! But, we rewrite it into a nicer formโ€ฆ

Page 13: Forms of Energy Generation : Degradation of electrical energy to heat

Electrical Heat Source

Consider an electrical wire (solid cylinder):

๐‘‡ โˆ’๐‘‡0=๐‘†๐‘’๐‘…2

4๐‘˜ [1โˆ’( ๐‘Ÿ๐‘… )2]

Temperature Profile:

Important assumptions:

1. Temperature rise is not large so that

k and Se are constant & uniform.

2. The surface of the wire is

maintained at T0.

3. Heat flux is finite at the center.

Page 14: Forms of Energy Generation : Degradation of electrical energy to heat

Electrical Heat Source

Other important notesโ€ฆLet: electrical conductivity

current density

voltage drop over a length

[ 1ฮฉโˆ™๐‘๐‘š ]

[ ๐‘Ž๐‘š๐‘๐‘๐‘š2 ]

[๐‘‰ ]

๐‘†๐‘’=๐ผ 2๐‘˜๐‘’

๐ผ=๐‘˜๐‘’๐ธ๐ฟ

๐‘†๐‘’๐‘…2

4๐‘˜ =๐ธ2๐‘…2

4๐ฟ2 (๐‘˜๐‘’

๐‘˜ )These imply the following : ๐‘‡ โˆ’๐‘‡0=

๐‘†๐‘’๐‘…2

4๐‘˜ [1โˆ’( ๐‘Ÿ๐‘… )2]

Page 15: Forms of Energy Generation : Degradation of electrical energy to heat

Electrical Heat Source

๐‘‡ โˆ’๐‘‡0=๐‘†๐‘’๐‘…2

4๐‘˜ [1โˆ’( ๐‘Ÿ๐‘… )2]

Temperature Profile:

The stress profile versus the temperature profile:

๐‘ž๐‘Ÿ=๐‘†๐‘’๐‘Ÿ2

Heat flux profile:

Page 16: Forms of Energy Generation : Degradation of electrical energy to heat

Electrical Heat Source

Quantities that might be asked for:

1. Maximum Temperature

2. Average Temperature Rise

3. Heat Outflow Rate at the Surface

Substituting r = 0 to the profile T(r): ๐‘‡๐‘š๐‘Ž๐‘ฅ=๐‘‡ 0+

๐‘†๐‘’๐‘…2

4 ๐‘˜

โŸจ๐‘‡ โŸฉโˆ’๐‘‡ 0=โˆซ0

2๐œ‹

โˆซ0

๐‘…

(๐‘‡ โˆ’๐‘‡0 )๐‘Ÿ ๐‘‘๐‘Ÿ ๐‘‘ ๐œƒ

โˆซ0

2 ๐œ‹

โˆซ0

๐‘…

๐‘Ÿ ๐‘‘๐‘Ÿ ๐‘‘ ๐œƒโŸจ๐‘‡ โŸฉโˆ’๐‘‡ 0=

๐‘†๐‘’๐‘…2

8๐‘˜ =12๐‘‡๐‘š๐‘Ž๐‘ฅ

๐‘ž๐‘Ÿ=๐‘„๐ด= ๐‘„

2๐œ‹ ๐‘…๐ฟ=๐‘†๐‘’๐‘Ÿ2

|๐‘Ÿ=๐‘… ๐‘„=๐œ‹ ๐‘…2๐ฟ โˆ™๐‘†๐‘’

Page 17: Forms of Energy Generation : Degradation of electrical energy to heat

Electrical Heat Source

Examples for Review:

Example 10.2-1 and Example 10.2-2Bird, Stewart, and Lightfoot, Transport Phenomena, 2nd Ed., p. 295

Page 18: Forms of Energy Generation : Degradation of electrical energy to heat

Nuclear Heat Source

Consider a spherical nuclear fuel assembly (solid sphere):

Before doing a balance, let: volumetric heat rate of production within the fissionable material only

volumetric heat rate of production at r = 0

Sn depends on radius parabolically:

a dimensionless positive constant

Page 19: Forms of Energy Generation : Degradation of electrical energy to heat

Nuclear Heat Source

Consider a spherical nuclear fuel assembly (solid sphere):

Before doing a balance, let:

temperature profile in the fissionable sphere

temperature profile in the Alcladding

heat flux in the fissionable sphere

heat flux in the Al cladding

Page 20: Forms of Energy Generation : Degradation of electrical energy to heat

Nuclear Heat Source

Consider a spherical nuclear fuel assembly (solid sphere):

For the fissionable material:

(4๐œ‹ ๐‘Ÿ2๐‘ž๐‘Ÿ(๐น ))|๐‘Ÿโˆ’ (4๐œ‹๐‘Ÿ 2๐‘ž๐‘Ÿ

(๐น) )|๐‘Ÿ+โˆ† ๐‘Ÿ+(4 ๐œ‹๐‘Ÿ2โˆ†๐‘Ÿ )๐‘†๐‘›=0

Rate of Heat IN:

Rate of Heat OUT:

Generation:

(4๐œ‹ ๐‘Ÿ2๐‘ž๐‘Ÿ(๐น ))|๐‘Ÿ

(4๐œ‹ ๐‘Ÿ2๐‘ž๐‘Ÿ(๐น ))|๐‘Ÿ+โˆ†๐‘Ÿ

(4๐œ‹๐‘Ÿ 2โˆ† ๐‘Ÿ )๐‘†๐‘›

Page 21: Forms of Energy Generation : Degradation of electrical energy to heat

Electrical Heat Source

Rate of Heat IN:

Rate of Heat OUT:

Generation:

Generation = Volume X Sn

๐‘‰=43 ๐œ‹ [ (๐‘Ÿ+โˆ†๐‘Ÿ )3โˆ’๐‘Ÿ3 ]

Too small

โˆด๐‘‰=4๐œ‹ [๐‘Ÿ2โˆ†๐‘Ÿ ] โˆด๐บ๐‘’๐‘›=(4๐œ‹๐‘Ÿ 2โˆ†๐‘Ÿ )๐‘†๐‘›

ยฟ43 ๐œ‹ [๐‘Ÿ3+3๐‘Ÿ 2โˆ†๐‘Ÿ +3๐‘Ÿ (โˆ† ๐‘Ÿ )2+ (โˆ†๐‘Ÿ )3โˆ’๐‘Ÿ 3 ]

(4๐œ‹ ๐‘Ÿ2๐‘ž๐‘Ÿ(๐น ))|๐‘Ÿ

(4๐œ‹ ๐‘Ÿ2๐‘ž๐‘Ÿ(๐น ))|๐‘Ÿ+โˆ†๐‘Ÿ

(4๐œ‹๐‘Ÿ 2โˆ† ๐‘Ÿ )๐‘†๐‘›

Page 22: Forms of Energy Generation : Degradation of electrical energy to heat

Nuclear Heat Source

For the fissionable material:

(4๐œ‹ ๐‘Ÿ2๐‘ž๐‘Ÿ(๐น ))|๐‘Ÿโˆ’ (4๐œ‹๐‘Ÿ 2๐‘ž๐‘Ÿ

(๐น) )|๐‘Ÿ+โˆ† ๐‘Ÿ+(4 ๐œ‹๐‘Ÿ2โˆ†๐‘Ÿ )๐‘†๐‘›=0

For the Al cladding:

(4๐œ‹ ๐‘Ÿ2๐‘ž๐‘Ÿ(๐ถ ))|๐‘Ÿโˆ’ ( 4๐œ‹๐‘Ÿ 2๐‘ž๐‘Ÿ

(๐ถ))|๐‘Ÿ +โˆ†๐‘Ÿ=0

No generation

here!

Dividing by :

(๐‘Ÿ 2๐‘ž๐‘Ÿ(๐น ))|๐‘Ÿ+โˆ†๐‘Ÿ โˆ’ (๐‘Ÿ 2๐‘ž๐‘Ÿ

(๐น ) )|๐‘Ÿโˆ†๐‘Ÿ =๐‘†๐‘›๐‘Ÿ

2

Dividing by :

(๐‘Ÿ 2๐‘ž๐‘Ÿ(๐ถ))|๐‘Ÿ+โˆ†๐‘Ÿโˆ’ (๐‘Ÿ 2๐‘ž๐‘Ÿ

(๐ถ ))|๐‘Ÿโˆ†๐‘Ÿ =0

Page 23: Forms of Energy Generation : Degradation of electrical energy to heat

Nuclear Heat Source

For the fissionable material:

(4๐œ‹ ๐‘Ÿ2๐‘ž๐‘Ÿ(๐น ))|๐‘Ÿโˆ’ (4๐œ‹๐‘Ÿ 2๐‘ž๐‘Ÿ

(๐น) )|๐‘Ÿ+โˆ† ๐‘Ÿ+(4 ๐œ‹๐‘Ÿ2โˆ†๐‘Ÿ )๐‘†๐‘›=0

For the Al cladding:

(4๐œ‹ ๐‘Ÿ2๐‘ž๐‘Ÿ(๐ถ ))|๐‘Ÿโˆ’ ( 4๐œ‹๐‘Ÿ 2๐‘ž๐‘Ÿ

(๐ถ))|๐‘Ÿ +โˆ†๐‘Ÿ=0

No generation

here!

Taking :

๐‘‘๐‘‘๐‘Ÿ (๐‘Ÿ 2๐‘ž๐‘Ÿ

(๐น ))=๐‘†๐‘›๐‘Ÿ 2

Taking :

๐‘‘๐‘‘๐‘Ÿ (๐‘Ÿ 2๐‘ž๐‘Ÿ

(๐ถ))=0

Page 24: Forms of Energy Generation : Degradation of electrical energy to heat

Nuclear Heat Source

For the fissionable material:

(4๐œ‹ ๐‘Ÿ2๐‘ž๐‘Ÿ(๐น ))|๐‘Ÿโˆ’ (4๐œ‹๐‘Ÿ 2๐‘ž๐‘Ÿ

(๐น) )|๐‘Ÿ+โˆ† ๐‘Ÿ+(4 ๐œ‹๐‘Ÿ2โˆ†๐‘Ÿ )๐‘†๐‘›=0

For the Al cladding:

(4๐œ‹ ๐‘Ÿ2๐‘ž๐‘Ÿ(๐ถ ))|๐‘Ÿโˆ’ ( 4๐œ‹๐‘Ÿ 2๐‘ž๐‘Ÿ

(๐ถ))|๐‘Ÿ +โˆ†๐‘Ÿ=0

No generation

here!

Taking :

๐‘‘๐‘‘๐‘Ÿ (๐‘Ÿ 2๐‘ž๐‘Ÿ

(๐น ))=๐‘†๐‘›0[1+๐‘ ( ๐‘Ÿ๐‘… (๐น ) )

2]๐‘Ÿ 2Taking :

๐‘‘๐‘‘๐‘Ÿ (๐‘Ÿ 2๐‘ž๐‘Ÿ

(๐ถ))=0

Page 25: Forms of Energy Generation : Degradation of electrical energy to heat

Nuclear Heat Source

For the fissionable material:

(4๐œ‹ ๐‘Ÿ2๐‘ž๐‘Ÿ(๐น ))|๐‘Ÿโˆ’ (4๐œ‹๐‘Ÿ 2๐‘ž๐‘Ÿ

(๐น) )|๐‘Ÿ+โˆ† ๐‘Ÿ+(4 ๐œ‹๐‘Ÿ2โˆ†๐‘Ÿ )๐‘†๐‘›=0

For the Al cladding:

(4๐œ‹ ๐‘Ÿ2๐‘ž๐‘Ÿ(๐ถ ))|๐‘Ÿโˆ’ ( 4๐œ‹๐‘Ÿ 2๐‘ž๐‘Ÿ

(๐ถ))|๐‘Ÿ +โˆ†๐‘Ÿ=0

No generation

here!

Integrating: Integrating:

Page 26: Forms of Energy Generation : Degradation of electrical energy to heat

Nuclear Heat Source

Integrating: Integrating:

Boundary Conditions: Boundary Conditions:

๐‘Ž๐‘ก ๐‘Ÿ=0 ,๐‘ž๐‘Ÿ ๐‘–๐‘  ๐‘“๐‘–๐‘›๐‘–๐‘ก๐‘’ ๐‘Ž๐‘ก ๐‘Ÿ=๐‘…(๐น ) ,๐‘ž๐‘Ÿ(๐น )=๐‘ž๐‘Ÿ

(๐ถ )

๐ถ1(๐น )=0 ๐ถ1

(๐ถ)=๐‘†๐‘›0 ( 13+๐‘5 )๐‘…(๐น )3

For the fissionable material For the Al cladding

Page 27: Forms of Energy Generation : Degradation of electrical energy to heat

Nuclear Heat Source

Inserting Fourierโ€™s Law: Inserting Fourierโ€™s Law:

For the fissionable material For the Al cladding

Page 28: Forms of Energy Generation : Degradation of electrical energy to heat

Nuclear Heat Source

For the fissionable material For the Al cladding

Boundary Conditions: Boundary Conditions:

At r = R(F),

T(F) = T(C) R(F)

R(C)

At r = R(C),

T(C) = T0

Page 29: Forms of Energy Generation : Degradation of electrical energy to heat

Nuclear Heat Source

For the fissionable material

For the Al cladding

Page 30: Forms of Energy Generation : Degradation of electrical energy to heat

Recall the Overall Shell Energy Balance:

Overall Shell Energy Balance

Q by Convective Transport Q by Molecular Transport

W by Molecular Transport W by External Forces

Energy Generation

Steady-State!

Page 31: Forms of Energy Generation : Degradation of electrical energy to heat

Overall Shell Energy Balance

Q by Convective Transport Q by Molecular Transport

W by Molecular Transport

How can we account for all these terms at once?

We need all these terms for viscous dissipation:

Page 32: Forms of Energy Generation : Degradation of electrical energy to heat

Combined Energy Flux Vector

Convective Energy FluxHeat Rate from Molecular Motion

Work Rate from Molecular Motion

Combined Energy Flux Vector:

๐’†=( 12 ๐œŒ๐‘ฃ2+๐œŒ ๏ฟฝฬ‚๏ฟฝ)๐’—+ [๐… โˆ™๐’— ]+๐’’

We introduce something new to replace q:

Page 33: Forms of Energy Generation : Degradation of electrical energy to heat

Combined Energy Flux Vector

Combined Energy Flux Vector:

We introduce something new to replace q:

๐…=๐‘๐œน+๐‰Recall the molecular stress tensor:When dotted with v: [๐… โˆ™๐’— ]=๐‘ ๐’—+[๐‰ โˆ™๐’— ]

Substituting into e:

๐’†=( 12 ๐œŒ๐‘ฃ2+๐œŒ ๏ฟฝฬ‚๏ฟฝ)๐’—+๐‘๐’—+[๐‰ โˆ™๐’— ]+๐’’

Page 34: Forms of Energy Generation : Degradation of electrical energy to heat

Combined Energy Flux Vector

Combined Energy Flux Vector:

We introduce something new to replace q:

๐’†=( 12 ๐œŒ๐‘ฃ2+๐œŒ ๏ฟฝฬ‚๏ฟฝ)๐’—+๐‘๐’—+[๐‰ โˆ™๐’— ]+๐’’

Simplifying the boxed expression:

๐œŒ ๏ฟฝฬ‚๏ฟฝ ๐’—+๐‘ ๐’—=๐œŒ (๏ฟฝฬ‚๏ฟฝ+ ๐‘๐œŒ )๐’—=๐œŒ (๐‘ˆ+๐‘ ๏ฟฝฬ‚๏ฟฝ ) ๐’—=๐œŒ ๏ฟฝฬ‚๏ฟฝ ๐’—

Finally: ๐’†=( 12 ๐œŒ๐‘ฃ2+๐œŒ ๏ฟฝฬ‚๏ฟฝ )๐’—+[๐‰ โˆ™๐’— ]+๐’’

Page 35: Forms of Energy Generation : Degradation of electrical energy to heat

Viscous Dissipation Source

Consider the flow of an incompressible Newtonian fluid between 2 coaxial cylinders:

๐‘ฃ ๐‘ง (๐‘ฅ )=๐‘ฃ๐‘( ๐‘ฅ๐‘ )

Page 36: Forms of Energy Generation : Degradation of electrical energy to heat

Viscous Dissipation Source

Consider the flow of an incompressible Newtonian fluid between 2 coaxial cylinders:

We now make a shell balance shown in red on the left.

Rate of Energy IN:

Rate of Energy OUT:

๐‘Š๐ฟ๐’†๐’™ |๐‘ฅ

๐‘Š๐ฟ๐’†๐’™ |๐‘ฅ+โˆ† ๐‘ฅ

When the combined energy flux vector is used, the generation term will automatically appear from e.

Page 37: Forms of Energy Generation : Degradation of electrical energy to heat

Viscous Dissipation Source

Consider the flow of an incompressible Newtonian fluid between 2 coaxial cylinders:

We now make a shell balance shown in red on the left.

Rate of Energy IN:

Rate of Energy OUT:

๐‘Š๐ฟ๐’†๐’™ |๐‘ฅ

๐‘Š๐ฟ๐’†๐’™ |๐‘ฅ+โˆ† ๐‘ฅ

When the combined energy flux vector is used, the generation term will automatically appear from e.

๐‘Š๐ฟ๐’†๐’™ |๐‘ฅ+โˆ† ๐‘ฅโˆ’๐‘Š๐ฟ๐’†๐’™ |๐‘ฅ=0๐‘‘๐’†๐’™

๐‘‘๐‘ฅ =0

๐’†๐’™=๐ถ1

Page 38: Forms of Energy Generation : Degradation of electrical energy to heat

Viscous Dissipation Source

Consider the flow of an incompressible Newtonian fluid between 2 coaxial cylinders:

When the combined energy flux vector is used, the generation term will automatically appear from e.

๐’†๐’™=๐ถ1 ๐’†=( 12 ๐œŒ๐‘ฃ2+๐œŒ ๏ฟฝฬ‚๏ฟฝ )๐’—+[๐‰ โˆ™๐’— ]+๐’’

Fourierโ€™s Law:

Newtonโ€™s Law:

๐‘ž๐‘ฅ=โˆ’๐‘˜๐‘‘๐‘‡๐‘‘๐‘ฅ

๐œ๐‘ฅ๐‘ง=โˆ’๐œ‡๐‘‘๐‘ฃ ๐‘ง

๐‘‘๐‘ฅ

Page 39: Forms of Energy Generation : Degradation of electrical energy to heat

Viscous Dissipation Source

Consider the flow of an incompressible Newtonian fluid between 2 coaxial cylinders:

When the combined energy flux vector is used, the generation term will automatically appear from e.

๐’†๐’™=๐ถ1 โˆ’๐‘˜ ๐‘‘๐‘‡๐‘‘๐‘ฅ โˆ’๐œ‡๐‘ฃ๐‘ง

๐‘‘๐‘ฃ๐‘ง

๐‘‘๐‘ฅ =๐ถ1

Substituting the velocity profile:

Integrating:

โˆ’๐‘˜ ๐‘‘๐‘‡๐‘‘๐‘ฅ โˆ’๐œ‡๐‘ฅ (๐‘ฃ๐‘

๐‘ )2

=๐ถ1

๐‘‡=โˆ’ ๐œ‡๐‘˜ ( ๐‘ฃ๐‘

๐‘ )2 ๐‘ฅ22โˆ’๐ถ1

๐‘˜ ๐‘ฅ+๐ถ2

Page 40: Forms of Energy Generation : Degradation of electrical energy to heat

Viscous Dissipation Source

Consider the flow of an incompressible Newtonian fluid between 2 coaxial cylinders:

When the combined energy flux vector is used, the generation term will automatically appear from e.

Boundary Conditions:

After applying the B.C.:

๐‘‡ โˆ’๐‘‡ 0

๐‘‡๐‘โˆ’๐‘‡0=12 [ ๐œ‡๐‘ฃ๐‘

2

๐‘˜ (๐‘‡ ๐‘โˆ’๐‘‡ 0 ) ]( ๐‘ฅ๐‘ )(1โˆ’ ๐‘ฅ๐‘ )+๐‘ฅ๐‘

๐‘‡=โˆ’ ๐œ‡๐‘˜ ( ๐‘ฃ๐‘

๐‘ )2 ๐‘ฅ22โˆ’๐ถ1

๐‘˜ ๐‘ฅ+๐ถ2

Page 41: Forms of Energy Generation : Degradation of electrical energy to heat

Viscous Dissipation Source

Consider the flow of an incompressible Newtonian fluid between 2 coaxial cylinders:

When the combined energy flux vector is used, the generation term will automatically appear from e.

๐‘‡ โˆ’๐‘‡ 0

๐‘‡๐‘โˆ’๐‘‡0=12 [ ๐œ‡๐‘ฃ๐‘

2

๐‘˜ (๐‘‡ ๐‘โˆ’๐‘‡ 0 ) ]( ๐‘ฅ๐‘ )(1โˆ’ ๐‘ฅ๐‘ )+๐‘ฅ๐‘

Q: So where is Sv?

๐‘†๐‘ฃ=๐œ‡(๐‘ฃ๐‘

๐‘ )2

๐‘‡=โˆ’ ๐œ‡๐‘˜ ( ๐‘ฃ๐‘

๐‘ )2 ๐‘ฅ22โˆ’๐ถ1

๐‘˜ ๐‘ฅ+๐ถ2

After applying the B.C.:

Page 42: Forms of Energy Generation : Degradation of electrical energy to heat

Viscous Dissipation Source

Consider the flow of an incompressible Newtonian fluid between 2 coaxial cylinders:

๐‘‡ โˆ’๐‘‡ 0

๐‘‡๐‘โˆ’๐‘‡0=12 [ ๐œ‡๐‘ฃ๐‘

2

๐‘˜ (๐‘‡ ๐‘โˆ’๐‘‡ 0 ) ]( ๐‘ฅ๐‘ )(1โˆ’ ๐‘ฅ๐‘ )+๐‘ฅ๐‘Temperature

Profile:

New Dimensionless Number:Dim. Group Ratio Equation

Brinkman, Br viscous heat dissipation/ molecular heat transport

Page 43: Forms of Energy Generation : Degradation of electrical energy to heat

Viscous Dissipation Source

Scenarios when viscous heating is significant:

1. Flow of lubricant between rapidly moving parts.2. Flow of molten polymers through dies in high-

speed extrusion.3. Flow of highly viscous fluids in high-speed

viscometers.4. Flow of air in the boundary layer near an earth

satellite or rocket during reentry into the earthโ€™s atmosphere.