1
FORMULARIO DE TRANSFORMADA DE LAPLACE L{f (t)} (s) = F (s) ⇔L -1 {F (s)} (t) = f (t) I Propiedades de Linealidad 1)L{f (t) ± g(t)} = L{f (t)} ± L{g(t)} 3)L -1 {F (s) ± G(s)} = L -1 {F (s)}±L -1 {G(s)} 2)L{kf (t)} = kL{f (t)} 4)L -1 {kF (s)} = kL -1 {F (s)} II ormulas B´ asicas a) L{A} (s) = A s , s> 0 g) L{cos (at)} (s) = s s 2 +a 2 , a R, s> 0 b) L{t n } (s) = n! s n+1 , n N, s> 0 h) L{sin (at)} (s) = a s 2 +a 2 , a R, s> 0 c) L{t α } (s) = Γ(α+1) s α+1 , α> -1 i) L{cosh (at)} (s) = s s 2 -a 2 , a R d) L{e at } (s) = 1 s-a , a R, s>a j ) L{sinh (at)} (s) = a s 2 -a 2 , a R e) L{μ a (t)} = e -as s , a R k) L{δ a (t)} =e -as , a R f ) L{μ(t)} = 1 s l) L{δ (t)} =1 III Teoremas Importantes a ) L{e at f (t)} (s) = L{f (t)} (s-a) = F (s - a) ⇔L -1 {F (s - a)} (t) =e at L -1 {F (s)} (t) b ) L{μ a (t)f (t-a)} (s) =e -as ·L{f (t)} s =e -as F (s) ⇔L -1 {e -as F (s)} (t) = μ a (t)L -1 {F (s)} (t-a) c ) L{t n f (t)} (s) =(-1) n · d n ds n (L{f (t)}) (s) L -1 { d n F (s) ds n } t =(-1) n t n L -1 {F (s)} (t) L -1 {F (s)} (t) =(-1) n t -n L -1 { d n F (s) ds n } (t) d ) Si existe ım t0 + f (t) t , entonces L{ f (t) t } (s) = s L{f (t)} (s) ds e ) Si f es una funci´ on peri´ odica de periodo p, entonces: L{f (t)} (s) = p 0 e -st f (t) 1 - e -ps f ) L{f (n) (t)} (s) = s n L{f (t)} (s) -s n-1 f (0) -s n-2 f (0) -s n-3 f (0) -···-sf (n-2) (0) -f (n-1) (0) En particular para n =1, 2, se tiene: L{f (t)} (s) = s · L{f (t)} (s) - f (0) L{f (t)} (s) = s 2 · L{f (t)} (s) - s · f (0) - f (0) g ) L{ t a f (t)dt} (s) = 1 s · L{f (t)} (s) - 1 s · a 0 f (t)dt En particular para a = 0, se tiene: L{ t 0 f (t)dt} (s) = 1 s · L{f (t)} (s) IV Producto de Convoluci´ on a ) Definici´ on. f (t) * g(t)= t 0 f (u)g(t - u)du = t 0 f (t - u)g(u)du b ) Propiedades 1) L{f (t) * g(t)} (s) = L{f (t)} (s) · L{g(t)} (s) 2) L -1 {F (s) · G(s)} (t) = L -1 {F (s)} (t) *L -1 {G(s))} (t) = f (t) * g(t) Formulario de Transformada de Laplace Sergio Luis Ricardo Barrientos D´ ıaz

Formulario Transformada de Laplace

Embed Size (px)

Citation preview

Page 1: Formulario Transformada de Laplace

FORMULARIO DE TRANSFORMADA DE LAPLACE

L{f(t)}(s) = F (s) ⇔ L−1{F (s)}(t) = f(t)

I Propiedades de Linealidad1)L{f(t)± g(t)} = L{f(t)} ± L{g(t)} 3)L−1{F (s)±G(s)} = L−1{F (s)} ± L−1{G(s)}2)L{kf(t)} = kL{f(t)} 4)L−1{kF (s)} = kL−1{F (s)}

II Formulas Basicasa) L{A}(s) = A

s, s > 0 g) L{cos (at)}(s) = s

s2+a2 , a ∈ R, s > 0

b) L{tn}(s) = n!sn+1 , n ∈ N, s > 0 h) L{sin (at)}(s) = a

s2+a2 , a ∈ R, s > 0

c) L{tα}(s) = Γ(α+1)sα+1 , α > −1 i) L{cosh (at)}(s) = s

s2−a2 , a ∈ Rd) L{eat}(s) = 1

s−a, a ∈ R, s > a j) L{sinh (at)}(s) = a

s2−a2 , a ∈ Re) L{µa(t)} = e−as

s, a ∈ R k) L{δa(t)} = e−as, a ∈ R

f) L{µ(t)} = 1s

l) L{δ(t)} = 1

III Teoremas Importantes

a) L{eatf(t)}(s) = L{f(t)}(s−a) = F (s− a) ⇔ L−1{F (s− a)}(t) = eatL−1{F (s)}(t)

b) L{µa(t)f(t−a)}(s) = e−as·L{f(t)}s = e−asF (s) ⇔ L−1{e−asF (s)}(t) = µa(t)L−1{F (s)}(t−a)

c)L{tnf(t)}(s) = (−1)n · dn

dsn (L{f(t)})(s) ⇔ L−1{dnF (s)dsn }t = (−1)ntnL−1{F (s)}(t)

⇔ L−1{F (s)}(t) = (−1)nt−nL−1{dnF (s)dsn }(t)

d) Si existe lımt→0+

f(t)

t, entonces L{f(t)

t}(s) =

∫∞sL{f(t)}(s)ds

e) Si f es una funcion periodica de periodo p, entonces: L{f(t)}(s) =

∫ p

0e−stf(t)

1− e−ps

f ) L{f (n)(t)}(s) = snL{f(t)}(s)−sn−1f(0)−sn−2f ′(0)−sn−3f ′′(0)−· · ·−sf (n−2)(0)−f (n−1)(0)En particular para n = 1, 2, se tiene:

L{f ′(t)}(s) = s · L{f(t)}(s) − f(0)

L{f ′′(t)}(s) = s2 · L{f(t)}(s) − s · f(0)− f ′(0)

g) L{∫ t

af(t)dt}(s) = 1

s· L{f(t)}(s) − 1

s·∫ a

0f(t)dt

En particular para a = 0, se tiene:

L{∫ t

0

f(t)dt}(s) =1

s· L{f(t)}(s)

IV Producto de Convolucion

a) Definicion.

f(t) ∗ g(t) =

∫ t

0

f(u)g(t− u)du =

∫ t

0

f(t− u)g(u)du

b) Propiedades

1) L{f(t) ∗ g(t)}(s) = L{f(t)}(s) · L{g(t)}(s)

2) L−1{F (s) ·G(s)}(t) = L−1{F (s)}(t) ∗ L−1{G(s))}(t) = f(t) ∗ g(t)

Formulario de Transformada de LaplaceSergio Luis Ricardo Barrientos Dıaz