7
Journal of Pharmacy Research Vol.11 Issue 2 February 2017 Prevesh Kumar et al. / Journal of Pharmacy Research 2017,11(2),96-102 96-102 Research Article ISSN: 0974-6943 Available online through http://jprsolutions.info *Corresponding author. Prevesh Kumar Research Scholar, OPJS Institute of Pharmacy, OPJS University, Churu, Rajasthan. ,India Formulation and evaluation of biodegaredable nanoparticle of Glimepiride by ionic gelation method Prevesh Kumar 1* , Dr. Devender Pathak 1 , Pawan Singh 2 1*,2 Research Scholar, OPJS Institute of Pharmacy, OPJS University, Churu, Rajasthan. ,India. 3 Research Scholar, IFTM Institute of PharmacyAcademy, IFTM University, Moradabad, Uttar Pradesh, India. Received on:24-12-2016; Revised on: 28-01-2017; Accepted on: 09-02-2017 ABSTRACT Aim:To explore the water solubility of drug and increase oral bioavailability of Glimepiride. Nanoparticles of Glimepiride for oral drug delivery were prepared by ionic gelation method using polyelectrolyte charge interaction. Glimepiride is an effective antidiabetic agent; however, it suffers from short biological half-life. Therefore, it was selected as amodel drug. Method:The prepared Nanoparticles were evaluated for Physico-chemical studies like drug polymer interaction through FT-IR analysis, Melting Point by Differential Scanning Calorimetry, surface morphology by Scanning Electron Microscopy (SEM), Percent drug entrapment, production yield, in-vitro drug release characteristics and release kinetics. The result of FT-IR studies showed that there was no drug polymer interaction found. Results and Discussion:The SEM studies confirmed that with increase of polymer concentration the nanoparticles become smooth, and in-vitro release studies showed that the drug release followed diffusion for formulation F5, F6, and F7 and for the formulation F8, F9 and F10 followed non- fickian mechanism, moreover all the formulations exhibited high percentage yield as well as high percent drug entrapment. Conclusion:The method proves to be beneficial in designing control release formulations of Glimepiride Chitosan-Gelatin-B ionic gelation method, using polyelectrolyte charge interaction. KEY WORDS: Nanoparticles, Glimepiride, Chitosan, Gelatin-B, ionic gelation method, Polyelectrolyte charge interaction. 1. INTRODUCTION: Drug delivery is the method for administering a pharmaceutical compound to achieve a therapeutic effect in humans or animals. Drug delivery system can have very important role in theefficacy of drugs [1] . Some drugs have an optimum concentration of range within which maximum effect is derived. But there is very slow progress inefficacy of the treatment of severe disease, has suggested a growing need for drug delivery system [2] . Drug delivery system is amulti- disciplinary approach to thedelivery of therapeutics to the target tissue which gives new ideas on controlling the pharmacokinetics, pharmacodynamics, immunogenicity, biorecognition, non-specific toxicity, and efficacy of the drug [3] . The main approach of drug delivery system is to promoting the exposure of drug on targeted area rather than anon-target area to avoid unnecessary side effects. Novel drug delivery system is based on two mechanisms, 1. Physical mechanism (osmosis, diffusion, erosion) 2. Biochemical mechanism (monoclonal antibiotics, gene therapy, vector system) Drug delivery system (DDS) such as biodegradable polymer based nanoparticles can be designed to improve drug bioavailability orally. There are many antibiotic, antifungal, anticancer drugs which are improved by different drug delivery systems. DDS are designed to alter the pharmacokinetics and biodistribution of the drug [4] . Polymeric Nanoparticles (PNP) are defined as aparticulate dispersion or solid particles with a size range of 10 to 1000 nm in diameter [5] .The term PNP is a collective term given for any type of polymer nanoparticles, but specifically for nanospheres and nanocapsules. Nanospheres are matrix particles, i.e., particles whose entire mass is solid and molecules may be adsorbed at the sphere surface or encapsulated within the particle. In general, they are spherical, but “nanospheres” with a nonspherical shape are also described in the literature [6] .

Formulation and evaluation of biodegaredable …jprsolutions.info/files/final-file-58b42968025dd2.95877605.pdfdisciplinary approach to thedelivery of therapeutics to the target tissue

  • Upload
    vanmien

  • View
    218

  • Download
    4

Embed Size (px)

Citation preview

Journal of Pharmacy Research Vol.11 Issue 2 February 2017

Prevesh Kumar et al. / Journal of Pharmacy Research 2017,11(2),96-102

96-102

Research Article

ISSN: 0974-6943

Available online throughhttp://jprsolutions.info

*Corresponding author.

Prevesh Kumar

Research Scholar,

OPJS Institute of Pharmacy,

OPJS University, Churu, Rajasthan. ,India

Formulation and evaluation of biodegaredable nanoparticleof Glimepiride by ionic gelation method

Prevesh Kumar1*, Dr. Devender Pathak1, Pawan Singh2

1*,2 Research Scholar, OPJS Institute of Pharmacy, OPJS University, Churu, Rajasthan. ,India.3Research Scholar, IFTM Institute of Pharmacy Academy, IFTM University, Moradabad, Uttar Pradesh, India.

Received on:24-12-2016; Revised on: 28-01-2017; Accepted on: 09-02-2017

ABSTRACT

Aim:To explore the water solubility of drug and increase oral bioavailability of Glimepiride. Nanoparticles of Glimepiride for oral drug

delivery were prepared by ionic gelation method using polyelectrolyte charge interaction. Glimepiride is an effective antidiabetic agent;

however, it suffers from short biological half-life. Therefore, it was selected as amodel drug. Method:The prepared Nanoparticles were

evaluated for Physico-chemical studies like drug polymer interaction through FT-IR analysis, Melting Point by Differential Scanning

Calorimetry, surface morphology by Scanning Electron Microscopy (SEM), Percent drug entrapment, production yield, in-vitro drug release

characteristics and release kinetics. The result of FT-IR studies showed that there was no drug polymer interaction found. Results and

Discussion:The SEM studies confirmed that with increase of polymer concentration the nanoparticles become smooth, and in-vitro release

studies showed that the drug release followed diffusion for formulation F5, F6, and F7 and for the formulation F8, F9 and F10 followed non-

fickian mechanism, moreover all the formulations exhibited high percentage yield as well as high percent drug entrapment. Conclusion:The

method proves to be beneficial in designing control release formulations of Glimepiride Chitosan-Gelatin-B ionic gelation method, using

polyelectrolyte charge interaction.

KEY WORDS: Nanoparticles, Glimepiride, Chitosan, Gelatin-B, ionic gelation method, Polyelectrolyte charge interaction.

1. INTRODUCTION:

Drug  delivery  is  the  method  for administering  a  pharmaceutical

compound  to  achieve a  therapeutic effect  in humans or  animals.

Drug delivery system can have very important role in theefficacy of

drugs [1]. Some drugs have an optimum concentration of range within

which maximum effect is derived. But there is very slow progress

inefficacy of the treatment of severe disease, has suggested a growing

need for drug delivery system [2]. Drug delivery system is amulti-

disciplinary approach  to  thedelivery of  therapeutics  to  the  target

tissue which gives new ideas on controlling the pharmacokinetics,

pharmacodynamics, immunogenicity, biorecognition, non-specific

toxicity, and efficacy of the drug [3].

The  main  approach  of  drug  delivery  system  is  to  promoting  the

exposure of drug on targeted area rather than anon-target area to

avoid unnecessary  side effects.

Novel drug delivery system is based on two mechanisms,

1. Physical mechanism (osmosis, diffusion, erosion)

2. Biochemical  mechanism  (monoclonal  antibiotics,  gene

therapy, vector system)

Drug delivery system (DDS) such as biodegradable polymer based

nanoparticles can be designed to improve drug bioavailability orally.

There are many antibiotic, antifungal, anticancer drugs which are

improved by different drug delivery systems. DDS are designed to

alter the pharmacokinetics and biodistribution of the drug [4].

Polymeric Nanoparticles (PNP) are defined as aparticulate dispersion

or solid particles with a size range of 10 to 1000 nm in diameter [5].The

term  PNP  is  a  collective  term  given  for  any  type  of  polymer

nanoparticles, but specifically for nanospheres and nanocapsules.

Nanospheres are matrix particles, i.e., particles whose entire mass is

solid  and  molecules  may  be  adsorbed  at  the  sphere  surface  or

encapsulated within the particle. In general, they are spherical, but

“nanospheres” with a nonspherical shape are also described in the

literature [6].

Journal of Pharmacy Research Vol.11 Issue 2 February 2017

Prevesh Kumar et al. / Journal of Pharmacy Research 2017,11(2),96-102

96-102

Nanocapsules are vesicular systems, acting as a kind of reservoir, in

which the entrapped substances are confined to a cavity consisting

of a liquid core (either oil or water) surrounded by a solid material

shell [7]. Nanoparticles may or may not exhibit size-related properties

that differ significantly from those observed in fine particles or bulk

materials.

The major goal in designing of polymeric nanoparticles as a delivery

system  is,

1. To control particles size

2. Surface property

3. Release of pharmaceutical active agent to achieve in site

specification of at therapeutically optical range and dose

regimen

1.1. Ionotropic Gelation Method

Ionotropic  gelation  is  based  on  the  ability  of  polyelectrolytes  to

cross-link in the presence of counter ions to form hydrogel beads

also called as gelispheres. Gelispheres are aspherical cross-linked

hydrophilic  polymeric  entity  capable  of  extensive  gelation  and

swelling in simulated biological fluids and the release of drug through

it  controlled  by  polymer  relaxation[8].The  hydrogel  beads  are

produced by  dropping a drug-loaded polymeric  solution  into  the

aqueous  solution  of  polyvalent  cations[9].The  cationsdiffuse  into

the drug-loaded polymeric drops, forming a three-dimensional lattice

of theionicallycrosslinked moiety. Biomolecules can also be loaded

into these gelispheres under mild conditions to retain their three-

dimensional structure[10].

Polyelectrolyte solution[Sodium Alginate (-)/Gellan gum (-)/CMC (-)/Pectin (-)/

Chitosan (+) + Drug]

Added drop wise under magnetic stirring by needle

Counter ion solution [Calcium chloride solution (+)/Sodium tripolyphosphate (-)]

Gelispheres

Glimepride (a BCS class II drug) is the third generation of asulfonyl

urea  oral  antidiabetic  drug  having  high  permeability  and  low

solubility. Low water  soluble drugs often exhibit  low dissolution

profile and oral bioavailability problems.

Glimepiride is a new low-dose oral sulfonylurea that provides 24-h

glycemic control of NIDDM with once-daily dosing. In experimental

animal models, glimepiride lowered blood glucose by stimulating

insulin  release  from  the  pancreas[11] also appeared  to have  extra

pancreatic effects (2-5). of note, glimepiride was associated with

fewer direct effects on the mammalian cardiovascular system than

other sulfonylureas. Glimepiride did not cause vasoconstriction in

an animal model of hypoxic lactic acidosis.[12] Glimepiride also induced

less alteration  in coronary  flow/resistance  than  glyburide. These

findings may be due to differences in relative effects on ATP-sensitive

K+ channels in cardiomyocytes and pancreatic 3-cells.

The pharmacokinetic profile in healthy subjects and NIDDM patients

suggests  that  this  agent  may  be  suitable  for  once-a-day  dosing.

Glimepiride  is  rapidly  and completely  absorbed afteroral

administration, with subsequent biotransformation to metabolites

that lack clinically meaningful glucose-lowering activity.After multiple

doses,  the  apparent  terminal  half-life  is  9  h  (Hoechst-Roussel

Pharmaceuticals, unpublished observations).

These preclinical and clinical findings were the basis for the current

study, which was one in a series of dose-response studies.

The current study was designed to determine the preferred dosing

regimen and to evaluate the potential need for higher doses. Many

of NIDDM patients were randomized to receive glimepiride at 1) two

dosing intervals, once daily, or  in  two equally divided doses and

at 2) two concentration dosages, 8 and 16 mg daily.

2. MATERIALS AND METHODS

Glimepiride was used and provided by Bal Pharma Pvt Ltd, Ruderpur,

India., Chitosan, and Gelatin-B was obtained as gift sample from Hi-

Media laboratories Pvt. Ltd Mumbai. Sodium Tri-poly phosphate

was obtained as gift sample from Sigma-Aldrich Pvt Ltd Mumbai.

Light liquid paraffin and Heavy liquid paraffin was obtained as gift

sample from CDH Pvt, Ltd, New Delhi.

2.1. Method

The  Glimepiride  nanoparticles  were  prepared  by  ion  gelation

technique by using chitosan/gelatin-B mixture as a coating material.

Chitosan and gelatin-B were dissolved in dilute acetic acid solution

(1% v/v) together at concentrations of 1–4% w/v and adjusted to a

certain solution pH (usually 5.0). Glimepiride (10mg) was dissolved

in the above polymeric mixture. The drug in the polymeric mixture

was emulsified in 200 ml of liquid paraffin (1:1 mixture of light and

heavy liquid paraffin) at 40°C containing 1 ml Tween 80 (2% w/v).

The emulsification time was allowed for 10min under mechanical

stirring (500 rpm). The w/o emulsion was cooled to 4°C to induce

coagulation of Gelatin-B. Then 50 ml Na-TPP (1% w/v) with pH in the

Journal of Pharmacy Research Vol.11 Issue 2 February 2017

Prevesh Kumar et al. / Journal of Pharmacy Research 2017,11(2),96-102

96-102

range 4–5 at 4°C was added dropwise. Stirring was continued for 15–

60  min  to obtain  cross-linked nanoparticles.  Nanoparticles were

collected by centrifugation and washed with double distilled water

several times, then with acetone to remove water and dried at room

temperature under vacuum. The prepared nanoparticles were stored

in desiccators for further studies. Glimepiride loaded nanoparticles

with different polymer compositions (1:5, 1:6, 1:7, 1:8, 1:9 and 1:10)

were named as F5, F6, F7, F8, F9, and F10, respectively.

2.2. EVALUATION PARAMETERS

2.2.1. Percentage yield determination

2.2.1.1. Percentage Drug Entrapment (PDE)

2.2.1.2. Particle size analysis

Particle size was determined by optical microscopy. Briefly, about 5

mg of nanoparticles were taken on a glass slide and sizes of about

200 spherical particles were measured each time (n=3) by using an

optical microscope.

2.2.1.3.Surface morphology and dimensional analysis

The morphological and dimensional analyses of the nanoparticles

were  performed by  scanning  electron microscopy  (SEM).

Nanoparticles size and size distribution were determined by SEM

photomicrographs analyzing about 500 nanoparticles.

2.2.1.4. In vitro drug release

Drug  release  studies  were  carried  out  using  USP  XXIII  basket

dissolution rate test apparatus (100 rpm, 37 ± 1°C) for 2h in 0.1 N HCl

(with 0.5% SLS) pH=1.2 and for 8h in 7.4 pH phosphate buffer (with

0.5% SLS).

At different time intervals, 5ml of the sample was withdrawn and

replaced with the same amount of fresh medium. The sample was

analyzed for Glimepiride directly or after appropriate dilution with

the pH 7.4 phosphate buffer spectrophotometrically at 233 nm using

a UV/ VIS spectrometer against a reagent blank.

3. RESULT AND DISCUSSION

3.1. Drug and polymer compatibility study

3.1.1. FTIR Study of Drug and chitosan

The FTIR spectra of the physical mixture (1:1) of Drug and Chitosan

showed slight shifting in absorption bands, but  the characteristic

group for –NH stretching were found to be an intact  i.e. peak at

3333.69 cm-1 and 3288.77 cm-1, moreover the peak at 1674 cm-1was

also found to be intact.

Fig 1. FTIR Study of Drug and Chitosan

3.1.2. Drug and Gelatin-BThe FTIR spectra of a physical mixture of Glimepiride and Gelatin-B(1:1) showed no interaction with the drug as major peaks of the drugfound to be intact in the spectra. The characteristic peak for –NHstretching were found to be an intact i.e. peak at 3333.69 cm-1 and3288.77 cm-1, moreover the peak at 1674 cm-1 was also found to beintact.

Fig 2. FTIR Study of Drug and Gelatin-B.

3.1.3. Differential Scanning Calorimetry (DSC):

The thermal behavior of drugs and excipients was studied by a TA

Instruments DSC Q20. The scans were carried out on each sample, at

scan rates of 10 °C/min

This  fig show  the pure  drug melting  point  showing  the

purity of drug and the melting point was found is 207 ºC

Fig 3. DSC thermogram of Glimepiride

Journal of Pharmacy Research Vol.11 Issue 2 February 2017

Prevesh Kumar et al. / Journal of Pharmacy Research 2017,11(2),96-102

96-102

This fig show the Gelatin-B melting point showing Gelatin-B the melting point was found is less than 35 ºC

Fig 3. DSC thermogram of Glimepiride

This fig show the Gelatin-B melting point showing Gelatin-B the melting point was found is less than 35 ºC

Fig 4. DSC thermogram of Gelatin- B

This  figure  shows  the  Sodium  tripolyphosphate  melting  pointshowing Sodium tri-polyphosphate the melting point was found is522 ºC.

This  fig show  the Chitosan melting  point  showing  Chitosan  themelting point was found is 203 ºC

Fig 5. DSC thermogram of Sodium tri-polyphosphate

Fig 6. DSC thermogram of Chitosan

Fig 7.DSC thermogram of Drug-loaded

S. No Formulation code Production yield (%)

1 F5 8 5

2 F6 6 9

3 F7 9 3

4 F8 5 6

5 F9 6 0

6 F10 6 1

In this fig showing the no drug interaction with the nanoparticlesand the pure drug melting point is shifted from the original meltingpoint that showing the entrapment of drug in nanoparticles.

3.1.4. Percentage yield determination

The production yield of chitosan-Gelatin-B nanoparticle prepared

with thedifferent concentration of polymer at 500 rpm is shown in

thetable. The production yield was found to decrease with increase

in the composition ratio of drug and polymer, the decrease in the

percentage yield could be attributed due to the higher cross-linking

between oppositely charged polyelectrolyte.

Table 1:Percentage yield of Different Formulation of PreparedNanoparticles

Journal of Pharmacy Research Vol.11 Issue 2 February 2017

Prevesh Kumar et al. / Journal of Pharmacy Research 2017,11(2),96-102

96-102

Fig 8. Percentage Yield of different Formulations

S. No Formulation code Entrapment efficiency(% )

1 F5 9 62 F6 9 03 F7 9 24 F8 9 65 F9 9 56 F10 9 4

Fig. 9 Percentage Drug Entrapment of different Formulations

3.1.6. Particle Size AnalysisThe main particle size of different nanoparticles was found to be82.02 to 126.8 nm, table. The increase in the gelatin-B concentrationaffected the particle size of nanoparticles, at aconcentration (1:5) themean particle size was found to be 85.03 nm, whereas at aconcentration(1:7) it was 126.8 nm. This increase in particle size may be due toincrease  the  viscosity  of  droplets  with  anincrease  in  polymerconcentration, which resulted in larger droplets of theemulsion. Table3 represents the data.

Fig 10. Particle size of different formulations analyzed by TEM

Fig 11. Particle size of different Formulations analyzed by Zeta

Sizer

Table 3 Polydispersity index (PDI) and ZETA SIZER

S. No Formulation code Mean partic le size(nm)

1 F5 85.32 F6 89.83 F7 126.84 F8 82.025 F9 96.756 F10 88.32

3.1.5.Percentage Drug EntrapmentThe entrapment efficiency of all the prepared formulations compliedwith the Pharmacopoeial limits for the drug content. The entrapmentefficiency of the drug in the prepared nanoparticles was found to bebetween 90 to 96%, table.

Table 2 Percentage Drug Entrapment Efficiency of DifferentFormulations

Journal of Pharmacy Research Vol.11 Issue 2 February 2017

Prevesh Kumar et al. / Journal of Pharmacy Research 2017,11(2),96-102

96-102

Fig 12. Particle size of different Formulations

Fig 13. Cumulative % Drug Release of Glimepiride fromChitosan- Gelatin-B Nanoparticles

Table 4.Cumulative % Drug Release of Glimepiride from Chitosan- Gelatin B Nanoparticle

3.1.8.In vitro drug release

3.1.8.1..Influence of change in pH of dissolution medium

3.1.7.Polydispersity index (PDI)

PDI  value  range  from  0  to  1,  a  higher  value  indicates  a  less

homogenous nanoparticles size distribution. Following figure indicate

that PDI is almost 0.268 which means formulations had a homogenous

distribution of nanoparticles in water shown in above fig.

The prepared polyelectrolyte exhibited drug release in a controlled

manner at pH 7.4 and it was also found that the drug release was

decreased as the concentration of polymer was increased. The drug

release rate could be slower because of the diffusion of Glimepiride

from the internal nanoparticles environment. This indicates that cross-

linked  Chitosan-Gelatin-B  nanoparticles  should  have  produced

stronger electrostatic interaction with negatively charged Na-TPP

(Polyanion).

Time (hrs) Cumulative % Drug Release

F5 F6 F7 F8 F9 F10

0 0 0 0 0 0 0

1 37.39  ±  1.2 30.09  ±  1.10 26.11  ±  0.34 16.33  ±  1.22 12.1  ±  2.45 10.23  ±  3.44

2 42.22  ±  0.68 35.1  ±  1.19 29.67  ±  0.23 20.89 ±1.67 18.78  ±  1.28 14.47  ±  1.22

3 45.39  ±  1.7 38.22 ±1.20 34.32  ±  1.22 28.38  ±  1.00 25.28  ±  2.22 19.68  ±  1.10

4 49.12  ±  2.3 42.89  ±  2.33 39.19  ±  2.22 32.87  ±  1.27 30.23  ±  1.25 25.47  ±  2.69

5 54.34  ±  1.9 46.12  ±  2.63 44.28  ±  2.19 37.12  ±  0.78 34.47  ±  1.27 30.48  ±  2.37

6 60.59  ±  2.0 50.28  ±  3.09 47.66  ±  1.99 41.86  ±  0.34 39.89  ±  0.24 35.49  ±  2.00

7 68.89  ±  1.45 55.48  ±  3.67 52.34  ±  1.23 47.28  ±  2.67 45.37  ±  1.00 40.88  ±  3.45

8 73.34  ±  1.00 59.67  ±  1.23 56.23  ±  0.10 53.81  ±  1.23 49.67  ±  2.89 45.38  ±  2.36

9 79.32 ±1.21 65.23  ±  0.45 60.48  ±  0.23 57.48  ±  1.00 54.34  ±  2.67 49.48  ±  3.33

1 0 84.27  ±  1.23 70.11  ±  1.22 64.79  ±  0.34 61.39  ±  2.34 58.23  ±  2.34 55.39  ±  3.25

11 90.45  ±  1.26 75.1  ±  1.65 68.67  ±  0.12 65.32  ±  1.45 63.01  ±  1.35 60.02  ±  1.23

1 2 97.99  ±  1.28 79.09  ±  1.11 75.56  ±  1.23 71.78  ±  1.34 68.89  ±  1.26 66.12  ±  2.25

Table 5. Mechanism of drug release

Formulation Code Zero Order First Order Higuchi Model KorsmeyerPeppas n Value

F5 0.922 0.800 0.992 0.934 0.254

F6 0.917 0.963 0.978 0.958 0.325

F7 0.933 0.970 0.985 0.963 0.397

F8 0.977 0.976 0.974 0.986 0.596

F9 0.985 0.989 0.972 0.997 0.696

F10 0.996 0.983 0.948 0.988 0.772

Journal of Pharmacy Research Vol.11 Issue 2 February 2017

Prevesh Kumar et al. / Journal of Pharmacy Research 2017,11(2),96-102

96-102

4. CONCLUSIONThe  process  was  found  to  have  great  potential  in  producingnanoparticles of uniform size, with asmooth surface and very highpercent drug entrapment efficiency coupled with high productionyield.  It  was  also  found  that  polyelectrolyte  complex  formationbetween  the  positively charged Chitosan  and negatively chargedGelatin B can control the release of model drug i.e. Glimepiride forabout 12 hours in almost all the formulations, as this system can beuseful  in  designing  control  release  formulation  through  simplemodifications  in  formulation  parameters.  The  most  importantparameter that was found to affect were polyelectrolyte concentration,pH of the formulation medium, stirring rate, thecrystallinity of thedrug.

REFERENCES

1. Bernabeu E, Gonzalez L, Cagel M, Gergic EP, Moretton MA,

Chiappetta DA. Novel Soluplus- TPGS mixed micelles for

encapsulation  of  paclitaxel  with enhanced  in vitro

cytotoxicity on breast and ovarian cancer cell lines. Colloids

and surfaces B, Biointerfaces. 2016;140:403-11.

2. Utku S, Ozcanhan MH, Unluturk MS. Automated personnel-

assets-consumables-drug tracking in ambulance services

for more  effective  and  efficient  medical  emergency

interventions. Computer  methods  and  programs  in

biomedicine. 2016;127:216-31.

3. Sherafudeen SP, Vasantha PV. Development and evaluation

of in situ nasal gel formulations of loratadine. Research in

pharmaceutical sciences. 2015;10(6):466-76.

4. Kang X, Xiao HH, Song HQ,  Jing XB, Yan LS, Qi RG.

Advances  in  drug  delivery  system  for  platinum  agents

based combination therapy. Cancer biology & medicine.

2015;12(4):362-74.

5. Lim  WK,  Denton  AR.  Depletion-induced  forces  and

crowding in polymer-nanoparticle mixtures: Role of polymer

shape fluctuations and penetrability. The Journal of chemical

physics. 2016;144(2):024904.

6. Karimi M, Ghasemi A, SahandiZangabad P, Rahighi R,

MoosaviBasri SM, Mirshekari H,  Smart micro/nanoparticles

in stimulus-responsive  drug/gene  delivery  systems,

Chemical Society reviews. 2016;45(5):1457-501

7. Holmkvist AD,  Friberg  A,  Nilsson  UJ,  Schouenborg  J,

Hydrophobic  ion  pairing  of  a  minocycline/Ca(2+)/AOT

complex for preparation of drug-loaded PLGA nanoparticles

with improved sustained release, International journal of

pharmaceutics. 2016;499(1-2):351-7.

8. De la Calle C, Morata L, Cobos-Trigueros N, Martinez JA,

Cardozo  C,  Mensa  J,  Staphylococcus  aureusbacteremic

pneumonia, European journal of clinical microbiology &

infectious diseases.2016; 765-42.

9. Zhou  YF,  Shi  W,  Yu  Y, Tao  MT,  Xiong  YQ,  Sun  J,

Pharmacokinetic/Pharmacodynamic  Correlation of

Cefquinome Against  Experimental  Catheter-Associated

Biofilm Infection Due to Staphylococcus aureus, Frontiers

in microbiology. 2015;6:1513.

10. Steyn M, Buskes J, Skeletal Manifestations of TB in Modern

Human Remains, Clinical anatomy. 2016; 45-785.

11. Tiyaboonchai, W., 2003.  Chitosan nanoparticles;  A

promising system for drug delivery. Naresuan uni. J. 11(3),

51-66.

12. Shahidi, F., Arachchi, J. K. V., Jeon, Y., Food applications of

chitin and  chitosan Trends  in Food Sciences and

Technology. 10, 37.

Source of support: Nil, Conflict of interest: None Declared