74
Fourier Series For more ppt’s, visit www.studentsaarthi.c om

Fourier Series For more ppts, visit

Embed Size (px)

Citation preview

Page 1: Fourier Series For more ppts, visit

Fourier Series

For more ppt’s, visit www.studentsaarthi.com

Page 2: Fourier Series For more ppts, visit

ContentPeriodic FunctionsFourier SeriesComplex Form of the Fourier Series Impulse TrainAnalysis of Periodic WaveformsHalf-Range ExpansionLeast Mean-Square Error Approximation

Page 3: Fourier Series For more ppts, visit

Fourier Series

Periodic Functions

Page 4: Fourier Series For more ppts, visit

The Mathematic Formulation

Any function that satisfies

( ) ( )f t f t T

where T is a constant and is called the period of the function.

Page 5: Fourier Series For more ppts, visit

Example:

4cos

3cos)(

tttf Find its period.

)()( Ttftf )(4

1cos)(

3

1cos

4cos

3cos TtTt

tt

Fact: )2cos(cos m

mT

23

nT

24

mT 6

nT 8

24T smallest T

Page 6: Fourier Series For more ppts, visit

Example:

tttf 21 coscos)( Find its period.

)()( Ttftf )(cos)(coscoscos 2121 TtTttt

mT 21

nT 22

n

m

2

1

2

1

must be a

rational number

Page 7: Fourier Series For more ppts, visit

Example:

tttf )10cos(10cos)(

Is this function a periodic one?

10

10

2

1 not a rational number

Page 8: Fourier Series For more ppts, visit

Fourier Series

Fourier Series

Page 9: Fourier Series For more ppts, visit

Introduction

Decompose a periodic input signal into primitive periodic components.

A periodic sequenceA periodic sequence

T 2T 3T

t

f(t)

Page 10: Fourier Series For more ppts, visit

Synthesis

T

ntb

T

nta

atf

nn

nn

2sin

2cos

2)(

11

0

DC Part Even Part Odd Part

T is a period of all the above signals

)sin()cos(2

)( 01

01

0 tnbtnaa

tfn

nn

n

Let 0=2/T.

Page 11: Fourier Series For more ppts, visit

Orthogonal Functions

Call a set of functions {k} orthogonal on an interval a < t < b if it satisfies

nmr

nmdttt

n

b

a nm

0)()(

Page 12: Fourier Series For more ppts, visit

Orthogonal set of Sinusoidal Functions

Define 0=2/T.

0 ,0)cos(2/

2/ 0 mdttmT

T0 ,0)sin(

2/

2/ 0 mdttmT

T

nmT

nmdttntm

T

T 2/

0)cos()cos(

2/

2/ 00

nmT

nmdttntm

T

T 2/

0)sin()sin(

2/

2/ 00

nmdttntmT

T and allfor ,0)cos()sin(

2/

2/ 00

We now prove this one

Page 13: Fourier Series For more ppts, visit

Proof

dttntmT

T 2/

2/ 00 )cos()cos(

0

)]cos()[cos(2

1coscos

dttnmdttnmT

T

T

T

2/

2/ 0

2/

2/ 0 ])cos[(2

1])cos[(

2

1

2/

2/00

2/

2/00

])sin[()(

1

2

1])sin[(

)(

1

2

1 T

T

T

Ttnm

nmtnm

nm

m n

])sin[(2)(

1

2

1])sin[(2

)(

1

2

1

00

nmnm

nmnm

00

Page 14: Fourier Series For more ppts, visit

Proof

dttntmT

T 2/

2/ 00 )cos()cos(

0

)]cos()[cos(2

1coscos

dttmT

T 2/

2/ 02 )(cos

2/

2/

00

2/

2/

]2sin4

1

2

1T

T

T

T

tmm

t

m = n

2

T

]2cos1[2

1cos2

dttmT

T 2/

2/ 0 ]2cos1[2

1

nmT

nmdttntm

T

T 2/

0)cos()cos(

2/

2/ 00

Page 15: Fourier Series For more ppts, visit

Orthogonal set of Sinusoidal Functions

Define 0=2/T.

0 ,0)cos(2/

2/ 0 mdttmT

T0 ,0)sin(

2/

2/ 0 mdttmT

T

nmT

nmdttntm

T

T 2/

0)cos()cos(

2/

2/ 00

nmT

nmdttntm

T

T 2/

0)sin()sin(

2/

2/ 00

nmdttntmT

T and allfor ,0)cos()sin(

2/

2/ 00

,3sin,2sin,sin

,3cos,2cos,cos

,1

000

000

ttt

ttt

,3sin,2sin,sin

,3cos,2cos,cos

,1

000

000

ttt

ttt

an orthogonal set.an orthogonal set.

Page 16: Fourier Series For more ppts, visit

Decomposition

dttfT

aTt

t

0

0

)(2

0

,2,1 cos)(2

0

0

0

ntdtntfT

aTt

tn

,2,1 sin)(2

0

0

0

ntdtntfT

bTt

tn

)sin()cos(2

)( 01

01

0 tnbtnaa

tfn

nn

n

Page 17: Fourier Series For more ppts, visit

ProofUse the following facts:

0 ,0)cos(2/

2/ 0 mdttmT

T0 ,0)sin(

2/

2/ 0 mdttmT

T

nmT

nmdttntm

T

T 2/

0)cos()cos(

2/

2/ 00

nmT

nmdttntm

T

T 2/

0)sin()sin(

2/

2/ 00

nmdttntmT

T and allfor ,0)cos()sin(

2/

2/ 00

Page 18: Fourier Series For more ppts, visit

Example (Square Wave)

112

200

dta

,2,1 0sin1

cos2

200

nntn

ntdtan

,6,4,20

,5,3,1/2)1cos(

1 cos

1sin

2

200

n

nnn

nnt

nntdtbn

2 3 4 5--2-3-4-5-6

f(t)1

Page 19: Fourier Series For more ppts, visit

112

200

dta

,2,1 0sin1

cos2

200

nntn

ntdtan

,6,4,20

,5,3,1/2)1cos(

1 cos

1sin

2

100

n

nnn

nnt

nntdtbn

2 3 4 5--2-3-4-5-6

f(t)1

Example (Square Wave)

ttttf 5sin

5

13sin

3

1sin

2

2

1)(

ttttf 5sin

5

13sin

3

1sin

2

2

1)(

Page 20: Fourier Series For more ppts, visit

112

200

dta

,2,1 0sin1

cos2

200

nntn

ntdtan

,6,4,20

,5,3,1/2)1cos(

1 cos

1sin

2

100

n

nnn

nnt

nntdtbn

2 3 4 5--2-3-4-5-6

f(t)1

Example (Square Wave)

-0.5

0

0.5

1

1.5

ttttf 5sin

5

13sin

3

1sin

2

2

1)(

ttttf 5sin

5

13sin

3

1sin

2

2

1)(

Page 21: Fourier Series For more ppts, visit

Harmonics

T

ntb

T

nta

atf

nn

nn

2sin

2cos

2)(

11

0

DC Part Even Part Odd Part

T is a period of all the above signals

)sin()cos(2

)( 01

01

0 tnbtnaa

tfn

nn

n

Page 22: Fourier Series For more ppts, visit

Harmonics

tnbtnaa

tfn

nn

n 01

01

0 sincos2

)(

Tf

22 00Define , called the fundamental angular frequency.

0 nnDefine , called the n-th harmonic of the periodic function.

tbtaa

tf nn

nnn

n

sincos2

)(11

0

Page 23: Fourier Series For more ppts, visit

Harmonics

tbtaa

tf nn

nnn

n

sincos2

)(11

0

)sincos(2 1

0 tbtaa

nnnn

n

12222

220 sincos2 n

n

nn

nn

nn

nnn t

ba

bt

ba

aba

a

1

220 sinsincoscos2 n

nnnnnn ttbaa

)cos(1

0 nn

nn tCC

Page 24: Fourier Series For more ppts, visit

Amplitudes and Phase Angles

)cos()(1

0 nn

nn tCCtf

20

0

aC

22nnn baC

n

nn a

b1tan

harmonic amplitude phase angle

Page 25: Fourier Series For more ppts, visit

Fourier Series

Complex Form of the Fourier Series

Page 26: Fourier Series For more ppts, visit

Complex Exponentials

tnjtne tjn00 sincos0

tjntjn eetn 00

2

1cos 0

tnjtne tjn00 sincos0

tjntjntjntjn eej

eej

tn 0000

22

1sin 0

Page 27: Fourier Series For more ppts, visit

Complex Form of the Fourier Series

tnbtnaa

tfn

nn

n 01

01

0 sincos2

)(

tjntjn

nn

tjntjn

nn eeb

jeea

a0000

11

0

22

1

2

1

0 00 )(2

1)(

2

1

2 n

tjnnn

tjnnn ejbaejba

a

1

000

n

tjnn

tjnn ececc

)(2

1

)(2

12

00

nnn

nnn

jbac

jbac

ac

)(

2

1

)(2

12

00

nnn

nnn

jbac

jbac

ac

Page 28: Fourier Series For more ppts, visit

Complex Form of the Fourier Series

1

000)(

n

tjnn

tjnn ececctf

1

10

00

n

tjnn

n

tjnn ececc

n

tjnnec 0

)(2

1

)(2

12

00

nnn

nnn

jbac

jbac

ac

)(

2

1

)(2

12

00

nnn

nnn

jbac

jbac

ac

Page 29: Fourier Series For more ppts, visit

Complex Form of the Fourier Series

2/

2/

00 )(

1

2

T

Tdttf

T

ac

)(2

1nnn jbac

2/

2/ 0

2/

2/ 0 sin)(cos)(1 T

T

T

Ttdtntfjtdtntf

T

2/

2/ 00 )sin)(cos(1 T

Tdttnjtntf

T

2/

2/

0)(1 T

T

tjn dtetfT

2/

2/

0)(1

)(2

1 T

T

tjnnnn dtetf

Tjbac )(

2

1

)(2

12

00

nnn

nnn

jbac

jbac

ac

)(

2

1

)(2

12

00

nnn

nnn

jbac

jbac

ac

Page 30: Fourier Series For more ppts, visit

Complex Form of the Fourier Series

n

tjnnectf 0)(

n

tjnnectf 0)(

dtetfT

cT

T

tjnn

2/

2/

0)(1 dtetf

Tc

T

T

tjnn

2/

2/

0)(1

)(2

1

)(2

12

00

nnn

nnn

jbac

jbac

ac

)(

2

1

)(2

12

00

nnn

nnn

jbac

jbac

ac

If f(t) is real,*nn cc

nn jnnn

jnn ecccecc

|| ,|| *

22

2

1|||| nnnn bacc

n

nn a

b1tan

,3,2,1 n

00 2

1ac

Page 31: Fourier Series For more ppts, visit

Complex Frequency Spectra

nn jnnn

jnn ecccecc

|| ,|| *

22

2

1|||| nnnn bacc

n

nn a

b1tan ,3,2,1 n

00 2

1ac

|cn|

amplitudespectrum

n

phasespectrum

Page 32: Fourier Series For more ppts, visit

Example

2

T

2

T TT

2

d

t

f(t)

A

2

d

dteT

Ac

d

d

tjnn

2/

2/

0

2/

2/0

01

d

d

tjnejnT

A

2/

0

2/

0

0011 djndjn ejn

ejnT

A

)2/sin2(1

00

dnjjnT

A

2/sin1

002

1dn

nT

A

TdnT

dn

T

Adsin

Page 33: Fourier Series For more ppts, visit

TdnT

dn

T

Adcn

sin

82

5

1

T ,

4

1 ,

20

1

0

T

dTd

Example

40 80 120-40 0-120 -80

A/5

50 100 150-50-100-150

Page 34: Fourier Series For more ppts, visit

TdnT

dn

T

Adcn

sin

42

5

1

T ,

2

1 ,

20

1

0

T

dTd

Example

40 80 120-40 0-120 -80

A/10

100 200 300-100-200-300

Page 35: Fourier Series For more ppts, visit

Example

dteT

Ac

d tjnn

0

0

d

tjnejnT

A

00

01

00

110

jne

jnT

A djn

)1(1

0

0

djnejnT

A

2/0

sindjne

TdnT

dn

T

Ad

TT d

t

f(t)

A

0

)(1 2/2/2/

0

000 djndjndjn eeejnT

A

Page 36: Fourier Series For more ppts, visit

Fourier Series

Impulse Train

Page 37: Fourier Series For more ppts, visit

Dirac Delta Function

0

00)(

t

tt and 1)(

dtt

0 t

Also called unit impulse function.

Page 38: Fourier Series For more ppts, visit

Property

)0()()(

dttt )0()()(

dttt

)0()()0()0()()()(

dttdttdttt

(t): Test Function

Page 39: Fourier Series For more ppts, visit

Impulse Train

0 tT 2T 3TT2T3T

n

T nTtt )()(

n

T nTtt )()(

Page 40: Fourier Series For more ppts, visit

Fourier Series of the Impulse Train

n

T nTtt )()(

n

T nTtt )()(T

dttT

aT

T T

2)(

2 2/

2/0

Tdttnt

Ta

T

T Tn

2)cos()(

2 2/

2/ 0 0)sin()(

2 2/

2/ 0 dttntT

bT

T Tn

n

T tnTT

t 0cos21

)(

n

T tnTT

t 0cos21

)(

Page 41: Fourier Series For more ppts, visit

Complex FormFourier Series of the Impulse Train

Tdtt

T

ac

T

T T

1)(

1

2

2/

2/

00

Tdtet

Tc

T

T

tjnTn

1)(

1 2/

2/

0

n

tjnT e

Tt 0

1)(

n

tjnT e

Tt 0

1)(

n

T nTtt )()(

n

T nTtt )()(

Page 42: Fourier Series For more ppts, visit

Fourier Series

Analysis ofPeriodic Waveforms

Page 43: Fourier Series For more ppts, visit

Waveform Symmetry

Even Functions

Odd Functions

)()( tftf

)()( tftf

Page 44: Fourier Series For more ppts, visit

Decomposition

Any function f(t) can be expressed as the sum of an even function fe(t) and an odd function fo(t).

)()()( tftftf oe

)]()([)( 21 tftftfe

)]()([)( 21 tftftfo

Even Part

Odd Part

Page 45: Fourier Series For more ppts, visit

Example

00

0)(

t

tetf

t

Even Part

Odd Part

0

0)(

21

21

te

tetf

t

t

e

0

0)(

21

21

te

tetf

t

t

o

Page 46: Fourier Series For more ppts, visit

Half-Wave Symmetry

)()( Ttftf and 2/)( Ttftf

TT/2T/2

Page 47: Fourier Series For more ppts, visit

Quarter-Wave Symmetry

Even Quarter-Wave Symmetry

TT/2T/2

Odd Quarter-Wave Symmetry

T

T/2T/2

Page 48: Fourier Series For more ppts, visit

Hidden Symmetry

The following is a asymmetry periodic function:

Adding a constant to get symmetry property.

A

TT

A/2

A/2

TT

Page 49: Fourier Series For more ppts, visit

Fourier Coefficients of Symmetrical Waveforms

The use of symmetry properties simplifies the calculation of Fourier coefficients.– Even Functions– Odd Functions– Half-Wave– Even Quarter-Wave– Odd Quarter-Wave– Hidden

Page 50: Fourier Series For more ppts, visit

Fourier Coefficients of Even Functions

)()( tftf

tnaa

tfn

n 01

0 cos2

)(

2/

0 0 )cos()(4 T

n dttntfT

a

Page 51: Fourier Series For more ppts, visit

Fourier Coefficients of Even Functions

)()( tftf

tnbtfn

n 01

sin)(

2/

0 0 )sin()(4 T

n dttntfT

b

Page 52: Fourier Series For more ppts, visit

Fourier Coefficients for Half-Wave Symmetry

)()( Ttftf and 2/)( Ttftf

TT/2T/2

The Fourier series contains only odd harmonics.The Fourier series contains only odd harmonics.

Page 53: Fourier Series For more ppts, visit

Fourier Coefficients for Half-Wave Symmetry

)()( Ttftf and 2/)( Ttftf

)sincos()(1

00

n

nn tnbtnatf

odd for )cos()(4

even for 02/

0 0 ndttntfT

na T

n

odd for )sin()(4

even for 02/

0 0 ndttntfT

nb T

n

Page 54: Fourier Series For more ppts, visit

Fourier Coefficients forEven Quarter-Wave Symmetry

TT/2T/2

])12cos[()( 01

12 tnatfn

n

4/

0 012 ])12cos[()(8 T

n dttntfT

a

Page 55: Fourier Series For more ppts, visit

Fourier Coefficients forOdd Quarter-Wave Symmetry

])12sin[()( 01

12 tnbtfn

n

4/

0 012 ])12sin[()(8 T

n dttntfT

b

T

T/2T/2

Page 56: Fourier Series For more ppts, visit

ExampleEven Quarter-Wave Symmetry

4/

0 012 ])12cos[()(8 T

n dttntfT

a 4/

0 0 ])12cos[(8 T

dttnT

4/

0

00

])12sin[()12(

8T

tnTn

)12(

4)1( 1

nn

TT/2T/2

1

1T T/4T/4

Page 57: Fourier Series For more ppts, visit

ExampleEven Quarter-Wave Symmetry

4/

0 012 ])12cos[()(8 T

n dttntfT

a 4/

0 0 ])12cos[(8 T

dttnT

4/

0

00

])12sin[()12(

8T

tnTn

)12(

4)1( 1

nn

TT/2T/2

1

1T T/4T/4

ttttf 000 5cos

5

13cos

3

1cos

4)(

ttttf 000 5cos

5

13cos

3

1cos

4)(

Page 58: Fourier Series For more ppts, visit

Example

TT/2T/2

1

1

T T/4T/4

Odd Quarter-Wave Symmetry

4/

0 012 ])12sin[()(8 T

n dttntfT

b 4/

0 0 ])12sin[(8 T

dttnT

4/

0

00

])12cos[()12(

8T

tnTn

)12(

4

n

Page 59: Fourier Series For more ppts, visit

Example

TT/2T/2

1

1

T T/4T/4

Odd Quarter-Wave Symmetry

4/

0 012 ])12sin[()(8 T

n dttntfT

b 4/

0 0 ])12sin[(8 T

dttnT

4/

0

00

])12cos[()12(

8T

tnTn

)12(

4

n

ttttf 000 5sin

5

13sin

3

1sin

4)(

ttttf 000 5sin

5

13sin

3

1sin

4)(

Page 60: Fourier Series For more ppts, visit

Fourier Series

Half-Range Expansions

Page 61: Fourier Series For more ppts, visit

Non-Periodic Function Representation

A non-periodic function f(t) defined over (0, ) can be expanded into a Fourier series which is defined only in the interval (0, ).

Page 62: Fourier Series For more ppts, visit

Without Considering Symmetry

A non-periodic function f(t) defined over (0, ) can be expanded into a Fourier series which is defined only in the interval (0, ).

T

Page 63: Fourier Series For more ppts, visit

Expansion Into Even Symmetry

A non-periodic function f(t) defined over (0, ) can be expanded into a Fourier series which is defined only in the interval (0, ).

T=2

Page 64: Fourier Series For more ppts, visit

Expansion Into Odd Symmetry

A non-periodic function f(t) defined over (0, ) can be expanded into a Fourier series which is defined only in the interval (0, ).

T=2

Page 65: Fourier Series For more ppts, visit

Expansion Into Half-Wave Symmetry

A non-periodic function f(t) defined over (0, ) can be expanded into a Fourier series which is defined only in the interval (0, ).

T=2

Page 66: Fourier Series For more ppts, visit

Expansion Into Even Quarter-Wave Symmetry

A non-periodic function f(t) defined over (0, ) can be expanded into a Fourier series which is defined only in the interval (0, ).

T/2=2

T=4

Page 67: Fourier Series For more ppts, visit

Expansion Into Odd Quarter-Wave Symmetry

A non-periodic function f(t) defined over (0, ) can be expanded into a Fourier series which is defined only in the interval (0, ).

T/2=2 T=4

Page 68: Fourier Series For more ppts, visit

Fourier Series

Least Mean-Square Error Approximation

Page 69: Fourier Series For more ppts, visit

Approximation a function

Use

k

nnnk tnbtna

atS

100

0 sincos2

)(

to represent f(t) on interval T/2 < t < T/2.

Define )()()( tStft kk

2/

2/

2)]([1 T

T kk dttT

E Mean-Square Error

Page 70: Fourier Series For more ppts, visit

Approximation a function

Show that using Sk(t) to represent f(t) has least mean-square property.

2/

2/

2)]([1 T

T kk dttT

E

2/

2/

2

100

0 sincos2

)(1 T

T

k

nnn dttnbtna

atf

T

Proven by setting Ek/ai = 0 and Ek/bi = 0.

Page 71: Fourier Series For more ppts, visit

Approximation a function

2/

2/

2)]([1 T

T kk dttT

E

2/

2/

2

100

0 sincos2

)(1 T

T

k

nnn dttnbtna

atf

T

0)(1

2

2/

2/

0

0

T

T

k dttfT

a

a

E 0)(1

2

2/

2/

0

0

T

T

k dttfT

a

a

E0cos)(

2 2/

2/ 0

T

Tnn

k tdtntfT

aa

E 0cos)(2 2/

2/ 0

T

Tnn

k tdtntfT

aa

E

0sin)(2 2/

2/ 0

T

Tnn

k tdtntfT

bb

E 0sin)(2 2/

2/ 0

T

Tnn

k tdtntfT

bb

E

Page 72: Fourier Series For more ppts, visit

Mean-Square Error

2/

2/

2)]([1 T

T kk dttT

E

2/

2/

2

100

0 sincos2

)(1 T

T

k

nnn dttnbtna

atf

T

2/

2/1

22202 )(

2

1

4)]([

1 T

T

k

nnnk ba

adttf

TE

2/

2/1

22202 )(

2

1

4)]([

1 T

T

k

nnnk ba

adttf

TE

Page 73: Fourier Series For more ppts, visit

Mean-Square Error

2/

2/

2)]([1 T

T kk dttT

E

2/

2/

2

100

0 sincos2

)(1 T

T

k

nnn dttnbtna

atf

T

2/

2/1

22202 )(

2

1

4)]([

1 T

T

k

nnn ba

adttf

T

2/

2/1

22202 )(

2

1

4)]([

1 T

T

k

nnn ba

adttf

T

Page 74: Fourier Series For more ppts, visit

Mean-Square Error

2/

2/

2)]([1 T

T kk dttT

E

2/

2/

2

100

0 sincos2

)(1 T

T

k

nnn dttnbtna

atf

T

2/

2/1

22202 )(

2

1

4)]([

1 T

Tn

nn baa

dttfT

2/

2/1

22202 )(

2

1

4)]([

1 T

Tn

nn baa

dttfT