23
1 FOURIER TRANSFORMS Introduction Fourier Transform is a technique employed to solve ODE’s, PDE’s,IVP’s, BVP’s and Integral equations. The subject matter is divided into the following sub topics : FOURIER TRANSFORMS Infinite Sine Cosine Convolution Fourier Transform Transform Theorem & Transform Parseval’s Identity Infinite Fourier Transform Let f(x) be a real valued, differentiable function that satisfies the following conditions: and interval, finite every in ities discontinu simple of number finite a only have or , continuous are x f derivative its and f(x) 1) by defined is f(x) of Transform Fourier infinite The parameter. real zero - non be let Also, exists. x f integral the 2) - dx dx e x f x f F f x i ˆ provided the integral exists. by defined is f ˆ F by denoted f ˆ of Transform Fourier inverse The Transform. Fourier just the or Transform Fourier complex called also is Transform Fourier infinite The 1 - d e f x f f F x i ˆ 2 1 ˆ 1 Note : The function f(x) is said to be self reciprocal with respect to Fourier transform f f ˆ if .

FOURIER TRANSFORMS - e-Learning · 1 FOURIER TRANSFORMS Introduction Fourier Transform is a technique employed to solve ODE’s, PDE’s,IVP’s, BVP’s and Integral equations

  • Upload
    hacong

  • View
    259

  • Download
    2

Embed Size (px)

Citation preview

1

FOURIER TRANSFORMS

Introduction

Fourier Transform is a technique employed to solve ODE’s, PDE’s,IVP’s,BVP’s and Integral equations.The subject matter is divided into the following sub topics :

FOURIER TRANSFORMS

Infinite Sine Cosine ConvolutionFourier Transform Transform Theorem &Transform Parseval’s

Identity

Infinite Fourier Transform

Let f(x) be a real valued, differentiable function that satisfies the following conditions:

andinterval,finiteeveryinitiesdiscontinusimple

ofnumberfiniteaonlyhaveor,continuousarexfderivativeitsandf(x)1)

bydefinedisf(x)ofTransformFourierinfiniteTheparameter.realzero-nonbeletAlso,

exists.xfintegral the2)-

dx

dxexfxfFf xiˆ

provided the integral exists.

bydefinedisfF

bydenotedfofTransformFourierinverseTheTransform.Fourierjust theorTransformFouriercomplexcalledalsoisTransformFourierinfiniteThe

1-

defxffF xi

ˆ2

1ˆ1

Note : The function f(x) is said to be self reciprocal with respect to Fourier transform ff ˆif .

2

Basic Properties

Below we prove some basic properties of Fourier Transforms:

1. Linearity Property

For any two functions f(x) and (x) (whose Fourier Transforms exist) and any twoconstants a and b,

xbFxfaFxbxafF

Proof

By definition, we have

dxexbxafxbxafF xi

xbFxfaF

dxexbdxexfa xixi

This is the desired property.

In particular, if a = b = 1, we get xFxfFxxfF

Again if a= -b = 1, we get xFxfFxxfF

2. Change of Scale Property

have wea,constantzero-nonanyfor then,xfFfIf

aa

f

1xfF

Proof : By definition, we have

)1(dxeaxfaxfF xi

Suppose a > 0. let us set ax = u. Then expression (1) becomes

a

dueufaxfF

ua

i

)2(ˆ1

af

a

Suppose a < 0. If we set again ax = u, then (1) becomes

a

dueufaxfF a

ui

dueufa

ua

i

1

3

)3(ˆ1

af

a

Expressions (2) and (3) may be combined as

af

aaxfF

ˆ1

This is the desired property3. Shifting Properties

For any real constant ‘a’, feaxfFi ai ˆ)(

afxfeFii iax ˆ)(Proof : (i) We have

dxexffxfF xi

ˆ

Hence, dxeaxfaxfF xi

Set x-a = t. Then dx = dt.Then,

dtetfaxfF ati )(

= aie dtetf ti

= aie fii) We have

dxexfaf xai

ˆ

dxeexf xiiax

iaxiax exfxgwheredxexg )()(,

xgF

xfeF iaxThis is the desired result.

4. Modulation Property

,ˆ fxfFIf

afafaxxfFthen ˆˆ2

1cos,

where ‘a’ is a real constant.

Proof : We have

2cos

iaxiax eeax

4

Hence

2cos

iaxiax eexfFaxxfF

property.desired theisThis

.propertiesshiftandlinearityusingby,ˆˆ2

1afaf

Note : Similarly

afafaxxfF ˆˆsin21

Examples

0whereef(x)function theofTransformFourier theFind1. x-a a

For the given function, we have

dxeexfF xixa

dxeedxee xixaxixa

0

0

get we0, x-x,-xand x0 x,xfact that theUsing

dxeedxeexfF xiaxxiax

0

0

dxedxexiaxia

0

0

0

0

ia

e

ia

e xiaxia

iaia

11

22

2

a

a

2. Find the Fourier Transform of the function

ax

ax

0,

1,f(x)

where ‘a’ is a positive constant. Hence evaluate

d

xai

cossin)(

dii

0

sin)(

For the given function, we have

dxexfxfF xi)(

5

dxexfdxexfdxexf xi

a

xia

a

xia )()()(

dxe

a

a

xi

asin

2

)1(sin

a

fxfFThus

get weformula,inversionemployingbyfInverting

de

axf xi

sin

22

1

d

xixa sincossin1

dxa

idxa sinsincossin1

Here, the integrand in the first integral is even and the integrand in the second integralis odd. Hence using the relevant properties of integral here, we get

d

xaxf

cossin)( 1

or

)(cossin

xfdxa

ax

ax

0,

,

d

sinyields this1,a0,For x

Since the integrand is even, we have

0

sin2 d

or

20

sin

d

Transform.Fourierrespect to withreciprocalselfis22x

ef(x) thatDeduce

constant.positiveaisa'' where2x2a-ef(x)ofTransformFourier theFind3.

Here

dxeexfF xixa 22

6

dxe xixa 22

dxeaa

iax

2

22

42

dxee a

iax

a

2

2

2

24

getwe,2a

i-ax tSetting

a

dteexfF ta

22

2

4

dteea

ta

0

422

2

21

function.gammausing,1 2

2

4

aea

2

2

4ˆ aea

f

This is the desired Fourier Transform of f(x).

2

2x-

2

2

2

2f

hence,andef(x)getwe

2x2a-ef(x)in21aFor

e

getwe,ef(x)in xputtingAlso 2x2- 2

2-e)f(

.

Hence, )f( and f are same but for constant multiplication by 2 .

f)f(Thus

reciprocalselfise)f( thatfollowsIt 22

-x

x

ASSIGNMENT

Find the Complex Fourier Transforms of the following functions :

constantpositiveaisa''where,0

,xf(1)

ax

axx

constantspositiveareb''anda''where

bx,0

bxa,1

ax,0

xf(2)

7

1,0

1,1xf(3)

x

xx

ax

axxa

,0

,xf(4)

22

constantpositiveaisa'' where)()5( xaxexf

)()6( xexf 2cos)()7( 2xxf 3sin)()8( 2xxf

2fofTransformFourierinverse theFind(9) e

FOURIER SINE TRANSFORMS

Let f(x) be defined for all positive values of x.

ThusxfFor

xdxxf

s .fby

denotedisThisf(x).ofTransformSineFourier thecalledissinintegralThe

s

0

dxxxfxfFs sinf0s

dxf s sinˆ2integralethrough th

definedisfofTransformsineFourierinverseThe

0

s

dxff

Thusf

ss

s

sinˆ2Ff(x)

.Forf(x)bydenotedisThis

0

1-s

-1s

Properties

The following are the basic properties of Sine Transforms.

(1) LINEARITY PROPERTYIf ‘a’ and ‘b’ are two constants, then for two functions f(x) and (x),

we have xgbFxfaFxbxafF sss

Proof : By definition, we have

dxxxbxafxbxafFs sin0

xbFxfaF ss This is the desired result. In particular, we have

xFxfFxxfF sss and

xFxfFxxfF sss

8

(2) CHANGE OF SCALE PROPERTY

have we0,aforthen,fxfFIf s s

aa s

f

1axfFs

Proof : We have

dxxaxf sinaxfF0s

Setting ax = t , we get

a

dtt

atf

sinaxfF

0s

aa s

f

1

(3) MODULATION PROPERTY

have we0,aforthen,ˆxfFIf s sf

afafaxxfF sss ˆˆcos21

Proof : We have

0

sincoscos dxxaxxfaxxfFs

dxxaxaxf sinsin2

10

property.Linearityusingby,ˆˆ21 afaf ss

EXAMPLES

1. Find the Fourier sine transform of

ax

ax

,0

0,1xf

For the given function, we have

a

adxxdxx sin0sinf

0s

ax

0

cos

acos1

x

ef(x)of transformsineFourier theFind2.

-ax

Here

9

0s

sinf

x

dxxe ax

Differentiating with respect to , we get

0s

sinf

x

dxxe

d

d

d

d ax

0

sin dxxx

axe

performing differentiation under the integral sign

0

cos dxxxx

e ax

022

sincos xxaa

e ax

22

a

a

Integrating with respect to , we get

ca

1s tanf

00fBut s when

c=0

a

1

s tanf

3. Find f(x) from the integral equation

2,0

21,2

10,1

sinxf0

xdx

Let () be defined by

2,0

21,2

10,1

Given

0

ˆsin s

fxdxxf

Using this in the inversion formula, we get

dxx

sin2

xf0

dxdxdx sinsinsin

2

2

1

1

02

10

2

1

1

0

2 0sin2sin

dxdx

xxx

2cos2cos12

ASSIGNMENT

Find the sine transforms of the following functions

ax

axxa

xx

xf

,0

1,

10,

)1(

0,)2( axexf ax

ax

axxxf

,0

0,sin)3(

givenf(x)forSolve(4)

1,0

10,1sinxf

0

dxx

Find the inverse sine transforms of the following functions :

0,ˆ)5(

ae

fa

s

2

ˆ)6( sf

FOURIER COSINE TRANSFORMS dxxxf cosintegralThe x.of valuespositivefordefinedbef(x)Let

0

Thus.Forfbydenotedisandf(x)ofTransformCosineFourier thecalledis cc xf

xdxxfxf

cos2

Ff0cc

Thus.orxfbydenotedisThis.2

integralthe

throughdefinedisofTransformCosineFourierinverseThe

cf

1-cFcosˆ

cf

0

dxfc

0

1-c cosˆ2ˆFxf

dxff c

Basic Properties

The following are the basic properties of cosine transforms :

(1) Linearity property

xxfxafFhave we(x),andf(x)functionsfor two thenconstants, twoareb''anda''If

c

cc bFaFxb

11

(2) Change of scale property

aa

cc

cc

f1

axfF

have we0,aforthen,fxfFIf

(3) Modulation property

aaax

ccc

cc

ff2

1cosxfF

have we0,aforthen,fxfFIf

The proofs of these properties are similar to the proofs of the correspondingproperties of Fourier Sine Transforms.

Examples(1) Find the cosine transform of the function

2,0

21,2

10,

x

xx

xx

xf

We have

xdxxdxxxdxx

xdxxf

cos0cos2cos

cosf

2

2

1

1

0

0c

Integrating by parts, we get

2

12

1

0

2c

cos1

sin2

cossinf

xx

xxx

x

2

12coscos2

0 22

-ax

ax

kxcosevaluateHence0.a,ef(x)of transformcosine theFind(2)

dx

Here

22c

022

0c

f

sincosa

cosf

a

a

Thus

xxae

xdxe

ax

ax

Using the definition of inverse cosine transform, we get

xda

x cosa

2f

0 22

12

or

0 22

cos

2

da

xe

aax

Changing x to k, and to x, we get

a

edx

a

kx ax

2x

cos0 22

(4) Solve the integral equation

aedxxxf cos

0

Let () be defined by() = e-a

c0fcosGiven

dxxxf

Using this in the inversion formula, we get

22

00 22

0

0

2

sincos2

cos2

cos2

f

xa

a

xxaxa

e

xde

xdx

a

ASSIGNMENT

Find the Fourier Cosine Transforms of the following functions :

4,0

41,4

10,4

f(x)(1)

x

xx

xx

0,)2(2 aexf ax

ax

axxxf

,0

0,cos)()3(

0,)()4( axexf ax

21

1)()5(

xxf

21

2cos)()6(

x

xxf

13

givenf(x)forSolve)7(

1,0

10,1cos)(

dxxxf0

thatShow(8)

afaf

afaf

cc

ss

ˆˆaxf(x)sinF(ii)

ˆˆaxf(x)sinF(i)

21

s

21

c

CONVOLUTIONexist.)(and)(such thatfunctions twobeg(x)andf(x)Let

dxxgdxxf

Then the integral

dttgtxf

is called the convolution of f(x) and g(x), and is denoted by f * g. Thus

dttgtxfgf

*

Note that f * g is a function of x

Properties

hfgf **hg*f2.f*gg*f1.

Convolution Theorem

)(g)(fg*fF

Thenly.respectiveg(x)andf(x)ofTransformsFourier thebe)(g)and(fLet

The convolution theorem may also be rewritten as

gfFg*f 1-Parseval’s Identity

A direct consequence of convolution theorem is Parseval’s identity. The Parseval’sidentities in respect of Fourier transforms, sine transforms and cosine transforms areas indicated below :

Fourier Transforms:

dxxfdfb

dxxgxfdgf

22ˆ)(

ˆˆ(a)

14

Fourier Sine Transforms:

dxxfdfb

dxxgxfdgf

s

s

22ˆ)(

ˆˆ(a)

Fourier CosineTransforms:

dxxfdfb

dxxgxfdgf

c

c

22ˆ)(

ˆˆ(a)

Examples

(1) Employ convolution theorem to find the inverse Fourier Transform of

9

1ˆ,4

1ˆ94

1

22

22

gfLet

We recall the result

a

e

aF

ora

aeF

xa

xa

221

22

1

For a=2, 3, we get

)(3

ˆ9

1

)(2

ˆ4

1

3

21

2

21

xge

gF

xfe

fF

x

x

Convolution theorem is

dte

dtee

dttgtxfgfgfF

ttx

ttx

32

32

1

12

13

1

2

1

*ˆˆ

1,0

1,1f(x)given that

sinevaluateoidentity tsParseval'Employ2.

0 2

2

x

x

dxx

x

For the given function, we have

15

sin2

2

1

2

1)1(

2

1ˆ1

1

1

1 i

edxef

xixi

Parseval’s identity for Fourier Transforms is

0 2

2

0 2

2

2

2

2

2

21

1

2

22

2

sin

get weby x,Replacing

even.isL.H.S.on theintegrand theas,2

sin

sin

sin22

sin2

2

11

ˆ

dxx

x

d

or

d

or

d

or

ddx

or

dfdxxf

ASSIGNMENT

22

1-

2

x-

1

1Ffind to

n theoremconvolutioemploy,1

1eFGiven that1.

2. Use Parseval’s identity to prove the following :

0,

4ax

x(iii)

41x

dx(ii)

1241x

dx(i)

0222

20

22

022

adx

x

0

4

2

6

xcos-1 thatProve,

1,0

1,1)()(

dx

xx

xxxfIfiv

16

Z – TRANSFORMS

Introduction

The Z-transform plays an important role plays in the study of communications,sample data control systems, discrete signal processing , solutions of differenceequations etc.

Definition

Let un = f(n) be a real-valued function defined for n=0,1,2,3,….. and un = 0 for n<0.Then the Z-transform of un denoted by Z(un) is defined by

0

)()(n

nnn zuuZzu (1)

The transform also is referred to as the one sided Z-transform or unilateral Z-transform. Next, we define un = f(n) for n=0, 1, 2, …… ∞.

The two-sided Z-transform is defined by

nnn zuuZ )( (2)

The region of the Z-plane in which the series (1) or (2) converges is called the regionof convergence of the transform.

Properties of Z-transform

1. Linearity property

Consider the sequences {un} and {vn} and constants a and b. Then

Z[aun + bvn ] = aZ(un) + bZ(vn)

Proof : By definition, we have

Definition Properties Examples

Z - TRANSFORMS

17

)()(

][][

0 0

0

nn

n n

nn

nn

n

nnnnn

vbZuaZ

zvbzua

zbvaubvauZ

In particular, for a=b=1, we get

Z[un+vn] = Z(un) + Z(vn)and for a=-b=1, we get

Z[un - vn] = Z(un) - Z(vn)

2. Damping property

Let Z(un) = )(zu . Then (i) azuuaZ n

n )( (ii) )()( azuuaZ nn

Proof : By definition, we have

a

zu

a

zuzuauaZ

n

n

nn

nn

nn

n

0 0

)()(

Thus

a

zuuaZ n

n )(

This is the result as desired. Here, we note that that if Z(un) = )(zu , then

][)( zuuaZ nn

aZZ

=

a

zu

Next,

)(

)()()(00

azu

azuzuauaZn

nn

n

nn

nn

n

Thus

)()( azuuaZ nn

This is the result as desired.

3. Shifting property

(a) Right shifting rule :

If Z(un) = )(zu , then Z(un-k) = z-k )(zu where k>0

Proof : By definition, we have

18

0n

nknkn zuuZ

Since un = 0 for n<0, we have un-k = 0 for n=0,1,……(k-1)

Hence

)(

].......[

.......

0

110

)1(10

zuz

zuz

zuuz

zuzu

zuuZ

k

n

nn

k

k

kk

kn

nknkn

Thus

Z(un-k) = z-k )(zu

(b)Left shifting rule :

]......)([)( )1(1

22

110

k

kk

kn zuzuzuuzuzuZ

Proof :

0

1

0

0

)(

0

)(

0

,

n

k

n

nn

nn

k

n

nkkn

k

n

nkkn

k

n

nknkn

zuzuz

knmwherezuzzuz

zuuZ

= ]......)([ )1(1

22

110

kk

k zuzuzuuzuz

Particular cases :

In particular, we have the following standard results :

1. ])([)( 01 uzuzuZ n

2. ])([)( 110

22

zuuzuzuZ n

3. ])([)( 22

110

33

zuzuuzuzuZ n etc.

19

Some Standard Z-Transforms :

1.Transform of an

By definition, we have

.....1

)(

0

2

0

n

n

n

nnn

z

a

z

a

z

a

zaaZ

The series on the RHS is a Geometric series. Sum to infinity of the series is

az

zor

za 1

1Thus,

az

zaZ n

)(

In particular, when a=1, we get Z(1) =1z

z

2. Transform of ean

Here)()( nan kZeZ where k = ea

aez

z

kz

z

Thus

aan

ez

zeZ

)(

3. Transform of np , p being a positive integer

We have,

0

)1(1

0

)(

n

np

n

npp

nznz

znnZ

Also, we have by defintion

0

11)(n

npp znnZ

Differentiating with respect to z, we get

0

)1(1

0

11

)(

)(

n

np

n

npp

znn

zndz

dnZ

dz

d

Using this in (1), we get

)]([)( 1 pp nZdz

dznZ

(1)

20

Particular cases of )( pnZ :-

1. For p = 1, we get

2)1(1

)1()(

z

z

z

z

dz

dzZ

dz

dznZ

Thus,

2)1()(

z

znZ

2. For p = 2, we get

3

2

22

)1()1()()(

z

zz

z

z

dz

dznZ

dz

dznZ

Thus,

3

22

)1()(

z

zznZ

3. For p = 3, we get

4

233

)1(

4)(

z

zzznZ

4. Transform of nan

By damping property, we have

22

2

)(1

)1()()(

az

az

a

za

z

z

znZnaZ

aZZ

aZZ

n

, in view of damping

propertyThus,

2)()(

az

aznaZ n

5. Transform of n2an

We have,

a

ZZ

a

ZZ

n

z

zznZanZ

3

222

)1()()(

Thus,

3

222

)()(

az

zaazanZ n

21

6. Transforms of coshn and sinhnWe have

)(2

1)(cosh

2cosh

nn

nn

eeZnZ

een

)()(2

1 nn eZeZ , by using the linearity property

1cosh2

cosh

1)(2

)(

1)(2

2

1

2

22

zz

zz

eezz

eez

zeezz

ezezz

ez

z

ez

z

Next,

1cosh2

sinh

1cosh22

11

2)(sinh

2sinh

2

2

zz

z

zz

eez

ezez

znZ

een

nn

7. Transforms of cosn and sinn

We have

)(2

1)(cos

2cos

inin

inin

eeZnZ

een

1cos2

]cos[

1)(

)(2

2

2

1

2

2

zz

zz

eezz

eezz

ez

z

ez

z

inin

inin

ii

22

Next,

1cos2

sin

1cos22

2

1)(sin

2sin

2

2

zz

z

zz

ee

i

z

ez

z

ez

z

inZ

i

een

ii

ii

inin

Examples :

Find the Z-transforms of the following :

1.nn

nu

4

1

2

1

We have,

nn

n ZuZ4

1

2

1)(

)14)(12(

)38(2

14

4

12

2

4

1

2

1

4

1

2

1

zz

zz

z

z

z

z

z

z

z

z

ZZnn

2.!

1

nun

Here

z

n

n

n

nn

ezz

nz

znn

ZuZ

1

2

00

........!2

1

!1

1

1

!

1

!

1

!

1)(

,

, by exponential theorem

23

3. nau nn cos

We have

1cos2

)cos()(cos

2

zz

zznZ

By using the damping rule, we get

22

2

2

2

)cos(

1cos2

cos

1cos2

)cos()cos(

aazz

azz

a

z

a

z

a

z

a

z

zz

zznaZ

aZZ

n

4. un =)!2(

1

n

Let us denote vn =!

1

n, so that vn+2 =

)!2(

1

n= un

Here

zn evZ

1

)( Hence

z

vvvZzvZuZ nnn

10

22 )()()( , by left shifting rule

zez

zez

z

z

11

!1

1.

1

!0

1

12

12

ASSIGNMENT

Find the Z-transforms of the following :1. un = cos(2n+3)2. un = cosh2n3. un = n4

4. un = an coshn5. un = an sinhn6. un = e-an cosn7. un = e-an sinn8. un = a-n n2

9. un = (n-2)3

10. un = (n+1)4