Fracture Characterization

Embed Size (px)

Citation preview

  • 7/25/2019 Fracture Characterization

    1/142

    Tayfun Babadagli, PhD, PEng Short Course Reservoir Characterization File-16 1

    NATURALLYFRACTUREDRESERVOIRSNFR

    Dataacquisition?????Reservoirsimulation

    Dilemma: Howtoincorporatedifferent(andlimited)datasetsandmapthe

    fracturenetwork.

    NFRcharacterizationismainlybasedonthefracturesetsseeninthelogsand

    cores.

    FRACTURE CHARACTERIZATION

  • 7/25/2019 Fracture Characterization

    2/142

    Tayfun Babadagli, PhD, PEng Short Course Reservoir Characterization File-17

    Evaluation

    of

    Outcrop

    Fracture

    Patterns

    Babadagli, T.: Fractal Analysis of 2-D Fracture Networks of Geothermal Reservoirs in South-Western Turkey,J. of Volcanology and Geothermal Res., vol. 112/1-4, Dec. 2001, 83-103.

    Babadagli, T.: Evaluation of Outcrop Fracture Patterns of Geothermal Reservoirs in Southwestern Turkey,

    2000 World Geothermal Congress, Kyushu-Tohoku, Japan, May 28-June 10, 2000.

  • 7/25/2019 Fracture Characterization

    3/142

    Tayfun Babadagli, PhD, PEng Short Course Reservoir Characterization File-17

    STATEMENT

    OF

    THE

    PROBLEM

    Quantification of fracture network properties

    (density, spatial distribution, orientation,

    connectedness, length etc.) for modeling studies:

    FRACTAL ANALYSIS

    OBJECTIVE

    Fractalanalysisoffracturenetworks

    Usingdifferentmethods.

    Outcropfracturepatterns

    DifferentproducingformationsofgeothermalreservoirsinSouthwestern

    Turkey

  • 7/25/2019 Fracture Characterization

    4/142

    Tayfun Babadagli, PhD, PEng Short Course Reservoir Characterization File-17

    r1

    r2SAND BOX

    TECHNIQUE

    r1 r2r3

    BOX COUNTING TECHNIQUE

    N(r)~rD

    i=1,2,3,...

  • 7/25/2019 Fracture Characterization

    5/142

    Tayfun Babadagli, PhD, PEng Short Course Reservoir Characterization File-17

    MID (or INTERSECTION) POINT DISTRIBUTION

    MASS DIMENSION (SAND-BOX METHOD)

    L1L2L3L4

    N(L) ~ LDMID

    (OR INTERSECTION)

    POINTS OF FRACTURESN : Number of points

  • 7/25/2019 Fracture Characterization

    6/142

    Tayfun Babadagli, PhD, PEng Short Course Reservoir Characterization File-17

    NUMBER OF FRACTURES PER UNIT AREA

    MASS DIMENSION (SAND-BOX METHOD)

    L1L2

    L3L4

    N(L) ~ LDFRACTURES

    BOX

    SIZES

    }

    N : Number of points

  • 7/25/2019 Fracture Characterization

    7/142

    Tayfun Babadagli, PhD, PEng Short Course Reservoir Characterization File-17

    METHODS APPLIED

    BOX COUNTING(BOX DIMENSION)

    MID-POINT DISTRIBUTION

    (MASS DIMENSION - SAND-BOX METHOD)

    INTERSECTION POINT DISTRIBUTION(MASS DIMENSION - SAND-BOX METHOD)

    NUMBER OF FRACTURES PER UNIT AREA(MASS DIMENSION - SAND-BOX METHOD)

  • 7/25/2019 Fracture Characterization

    8/142

    Tayfun Babadagli, PhD, PEng Short Course Reservoir Characterization File-17

    N

    a b

  • 7/25/2019 Fracture Characterization

    9/142

    Tayfun Babadagli, PhD, PEng Short Course Reservoir Characterization File-17

    Fracture mid-points and intersection points

  • 7/25/2019 Fracture Characterization

    10/142

    Tayfun Babadagli, PhD, PEng Short Course Reservoir Characterization File-17

    FRACTAL DIMENSIONS FOR DIFFERENT

    SCALES USING DIFFERENT METHODSGIGA (km) MEGA (m) MACRO (cm) MICRO (m)METHOD

    BC : BOX COUNTING

    MPD : MID-POINT DIST.

    IPD : INTERSECTION-POINT DIST.

    NFA : NUMBER OF FRACTURE PER UNIT AREA

    BC

    MPD

    IPD

    NFA

    1.57 - 1.581.14 - 1.52

    1.71 - 2.00

    1.10 - 1.81

    1.07 - 1.89

    1.16 - 1.25 1.01 - 1.04

  • 7/25/2019 Fracture Characterization

    11/142

    Tayfun Babadagli, PhD, PEng Short Course Reservoir Characterization File-17

    PATTERN NO FRACTAL DIM.

    Fig. 3-a 1.15

    Fig. 3-b 1.39

    Fig. 3-c 1.41

    Fig. 3-d 1.25

    Fig. 3-e 1.29

    Fig. 3-f 1.39Fig. 3-g 1.15

    Fig. 3-h 1.50

    Fig. 3-i 1.46

    Fig. 3-j 1.40Fig. 3-k 1.35

    Fig. 3-l 1.27

    Fig. 3-m 1.39

    FRACTAL DIMENSION - BOX COUNTING

  • 7/25/2019 Fracture Characterization

    12/142

    Tayfun Babadagli, PhD, PEng Short Course Reservoir Characterization File-17

    KIZILDERE FIELD GERMENCIK FIELD

    Region Fractal

    Dim.

    Region Fractal

    Dim.

    Upper Prod. Form. 1.393 Germencik 1.396

    Upper Prod. Form. 1.278 Germencik 1.387

    Upper Prod. Form. 1.354 Germencik 1.421

    Upper Prod. Form. 1.261 Germencik 1.452

    Upper Prod. Form. 1.204 Germencik 1.367

    Lower Prod. Form. 1.250 Germencik 1.392Germencik 1.462

    FRACTAL DIMENSION - BOX COUNTING

  • 7/25/2019 Fracture Characterization

    13/142

    Tayfun Babadagli, PhD, PEng Short Course Reservoir Characterization File-17

    ROCK PIECES THIN SECTIONS1.175 1.015

    1.255 1.035

    1.252 1.015

    1.164 1.013

    1.189 1.020

    FRACTAL DIMENSION - BOX COUNTING

  • 7/25/2019 Fracture Characterization

    14/142

    Tayfun Babadagli, PhD, PEng Short Course Reservoir Characterization File-17

    FRACTAL DIMENSION - BOX COUNT. and SAND BOX

    PATTERN

    NO

    MID POINT

    DISTRIBUTION

    INTERSECTION

    POINTDISTRIBUTION

    NUMBER OF

    FRACTURESPER UNIT AREA

    (FNUA)

    FRACTURE

    LENGTHPER UNIT AREA

    (FLUA)

    Fig. 2-a 1.74 1.71 1.05 1.85

    Fig. 2-b 1.99 1.74 2.04 1.80

    Fig. 2-c 1.17 1.31 1.55 1.99

    Fig. 2-d 1.59 1.39 1.48 1.76Fig. 2-e 1.91 1.82 1.44 2.10

    Fig. 2-f 1.54 1.70 1.48 1.85

    Fig. 2-g 1.17 1.09 1.47 1.51

    Fig. 2-h 1.62 1.80 2.01 1.39

    Fig. 2-i 1.21 1.23 1.60 0.90

    Fig. 2-j 1.22 1.50 1.50 0.74

    Fig. 2-k 2.01 1.81 2.03 0.95

    Fig. 2-l 1.63 1.58 1.94 1.35

    Fig. 2-m 1.92 1.74 1.60 1.87

  • 7/25/2019 Fracture Characterization

    15/142

    Tayfun Babadagli, PhD, PEng Short Course Reservoir Characterization File-17

  • 7/25/2019 Fracture Characterization

    16/142

    Tayfun Babadagli, PhD, PEng Short Course Reservoir Characterization File-17

  • 7/25/2019 Fracture Characterization

    17/142

    Tayfun Babadagli, PhD, PEng Short Course Reservoir Characterization File-17

    PATTERN

    NUMBER

    SCANLINE

    DIRECTION

    FRACTAL

    DIMENSION

    Fig. 2-a W - E 1.620

    Fig. 2-a N - S 1.383

    Fig. 2-a NW -SE 2.368

    Fig. 2-a NE -SW 1.382

    Fig. 2-b W - E 1.973

    Fig. 2-b N - S 1.919

    Fig. 2-b NW -SE 2.004

    Fig. 2-b NE -SW 1.824

    Fig. 2-c W - E 1.398

    Fig. 2-c N - S 1.414

    Fig. 2-c NW -SE 1.321

    Fig. 2-c NE -SW 1.269

    Fig. 2-d W - E 1.726

    Fig. 2-d N - S 1.547

    Fig. 2-d NW -SE 1.623

    Fig. 2-d NE -SW 1.472

    Fig. 2-e W - E 1.588

    Fig. 2-e N - S 1.442

    Fig. 2-e NW -SE 1.710

    Fig. 2-e NE -SW 1.314

    Fig. 2-f W - E 1.699

    Fig. 2-f N - S 1.724

    Fig. 2-f NW -SE 1.686

    Fig. 2-f NE -SW 1.599

    PATTERN

    NUMBER

    SCANLINE

    DIRECTION

    FRACTAL

    DIMENSION

    Fig. 2-g W - E 1.372

    Fig. 2-g N - S 1.551

    Fig. 2-g NW -SE 1.369

    Fig. 2-g NE -SW 1.402

    Fig. 2-h W - E 1.662

    Fig. 2-h N - S 1.561

    Fig. 2-h NW -SE 1.549

    Fig. 2-h NE -SW 1.554

    Fig. 2-i W - E 1.580

    Fig. 2-i N - S 1.815

    Fig. 2-i NW -SE 1.230

    Fig. 2-i NE -SW 1.219

    Fig. 2-j W - E 1.256

    Fig. 2-j N - S 1.018

    Fig. 2-j NW -SE 1.119

    Fig. 2-j NE -SW 1.226

    Fig. 2-k W - E 1.748

    Fig. 2-k N - S 1.689

    Fig. 2-k NW -SE 1.655

    Fig. 2-k NE -SW 1.644

    Fig. 2-l W - E 1.652

    Fig. 2-l N - S 1.741

    Fig. 2-l NW -SE 1.714

    Fig. 2-l NE -SW 1.676

    Fig. 2-m W - E 1.611

    Fig. 2-m N - S 1.391

    Fig. 2-m NW -SE 1.532

    Fig. 2-m NE -SW 1.546

  • 7/25/2019 Fracture Characterization

    18/142

    Tayfun Babadagli, PhD, PEng Short Course Reservoir Characterization File-17

    FractureNetworks

    KIZILDERE

    FIELD

    GERMENCIK

    FIELD

    Fracture network mapping: WELL DATA and OUTCROP

    How much fractal properties help? Which fractal properties are critical?

    Network Permeability or Single Fracture Permeability

    cmmmmmm

    km

    1.10

    1.30

    1.50

    1.00

    1.20

    1.40

    1.60

    FRACTAL

    DIM

    EN

    SION,D

    Giga(km)

    Mega(m)

    Makro(cm)

    Mikro( m)

    SCALE

  • 7/25/2019 Fracture Characterization

    19/142

    Tayfun Babadagli, PhD, PEng Short Course Reservoir Characterization File-17

    5.00 5.20 5.40 5.60

    log(r)

    2.20

    2.60

    3.00

    2.00

    2.40

    2.80

    log

    N(r)

    Germencik Field(Slope = D = 1.56)

    Kizildere Field(Slope = D = 1.58)

    Babadagli, J. Vol. and Geot. Res., 112, 2001

    KIZILDERE

    FIELD

    GERMENCIK

    FIELD

  • 7/25/2019 Fracture Characterization

    20/142

    Tayfun Babadagli, PhD, PEng Short Course Reservoir Characterization File-17

    DIFFUSION OVER FRACTAL OBJECTS

    dD

    o

    o

    r

    rkrk )( similarly

    dD

    o

    o

    r

    rr

    )(

    01

    2

    2

    t

    Pr

    r

    P

    r

    D

    r

    P

    1lim 10

    r

    PrD

    r

    1

    )1(2

    )2)((

    )2()( t

    DtPw

    2

    D0and=0.5(linearflow),1(radialflow),1.5(sphericalflow)

    conductivityindex,>0forfracturenetworksnotperfectlyconnecteddiffusiondelayedornotnormal

  • 7/25/2019 Fracture Characterization

    21/142

    Tayfun Babadagli, PhD, PEng Short Course Reservoir Characterization File-17

    Acuna and Yortsos, 1995, Water Res. Res.

    After Warren and Root, SPEJ Sept. 1963

  • 7/25/2019 Fracture Characterization

    22/142

    Tayfun Babadagli, PhD, PEng Short Course Reservoir Characterization File-17

    Acuna, Ershaghi, Yortsos, 1991

  • 7/25/2019 Fracture Characterization

    23/142

    Tayfun Babadagli, PhD, PEng Short Course Reservoir Characterization File-17

    FRACTAL WELLS TESTS SPE Form. Eval. Sept, 1995

  • 7/25/2019 Fracture Characterization

    24/142

    Tayfun Babadagli, PhD, PEng Short Course Reservoir Characterization File-17

    FRACTAL WELLS TESTS SPE Form. Eval. Sept, 1995

  • 7/25/2019 Fracture Characterization

    25/142

    FRACTAL WELLS TESTS SPE Res. Eval. And Eng., Feb. 2003Short and long time approximations with matrix participation

    sttP DDwD

    )1)(1(

    )2()(

    12

    )2(

    )2()2()1/(

    223211

    stD

    221

    dmfd

  • 7/25/2019 Fracture Characterization

    26/142

    Tayfun Babadagli, PhD, PEng Short Course Reservoir Characterization File-17

    FRACTAL WELLS TESTS SPE Res. Eval. And Eng., Feb. 2003

    Determination of fractal parameters

    2

    1

    v

    Introduced solutions for v>0

    and v

  • 7/25/2019 Fracture Characterization

    27/142

  • 7/25/2019 Fracture Characterization

    28/142

    Tayfun Babadagli, PhD, PEng Short Course Reservoir Characterization File-17

  • 7/25/2019 Fracture Characterization

    29/142

    Tayfun Babadagli, PhD, PEng Short Course Reservoir Characterization File-17

  • 7/25/2019 Fracture Characterization

    30/142

    Tayfun Babadagli, PhD, PEng Short Course Reservoir Characterization File-17

  • 7/25/2019 Fracture Characterization

    31/142

    Tayfun Babadagli, PhD, PEng Short Course Reservoir Characterization File-17

    SPE 63286, Baker and Kuppe

  • 7/25/2019 Fracture Characterization

    32/142

    Tayfun Babadagli, PhD, PEng Short Course Reservoir Characterization File-16

    2

    CORES:

    Usedto

    determine:

    Origin,geometryandoccurrenceoffractures

    Geomechanicalmodification

    Fractureorientation

    Fracturediprelativetocoreaxisandtobedding,as

    wellasrelativeorientationoffracturesshouldbe

    measured.

    Fractureapertureandheight: Neededforfracture

    density,porosity,etc.

    After Narr, Schechter, Thompson

    Naturally Fractured Reservoir Characterization SPE, 2006

    IMAGE LOGS

  • 7/25/2019 Fracture Characterization

    33/142

    Tayfun Babadagli, PhD, PEng Short Course Reservoir Characterization File-16

    3

    IMAGELOGS

    Directsourceofinformation.

    Twotypes; resistivitybasedandacoustic.

    (a)Openfracturesinresistivityimage(darksinusoids),(b)Coreformthe

    samewell,(c)imageofwholecore

    (CourtesyFrankLim,NFRSPE)

    After Narr, Schechter, Thompson

    Naturally Fractured Reservoir Characterization SPE, 2006

  • 7/25/2019 Fracture Characterization

    34/142

    Tayfun Babadagli, PhD, PEng Short Course Reservoir Characterization File-16 4

    Apparentfractureheightcanbemeasured

    fromimagelogs.

    Openfractures:

    filled

    with

    conductive

    mud

    filtrate

    Closedfractures: filledwithresistive

    mineralization

    Imagelogsaregoodfororientations.

    Aperturecouldalsobecomputed.

    After Narr, Schechter,Thompson

    Naturally Fractured Reservoir

    Characterization SPE, 2006

  • 7/25/2019 Fracture Characterization

    35/142

    Tayfun Babadagli, PhD, PEng Short Course Reservoir Characterization File-16 5

    Othertools:

    StoneleyWavelog

    Photoelectriclog(usedtocorrectdensitylogs)

    Sonicordensitylogs.

    Productionlog(PLT): whichfracturesorzonescontributetoflow.

    Lostcirculation

    Gasshowsinmudlog

    Mechnicalindications(caliperlogs)

  • 7/25/2019 Fracture Characterization

    36/142

    Tayfun Babadagli, PhD, PEng Short Course Reservoir Characterization File-16 6

    FRACTUREDENSITY

    Fracturesurfaces

    area/unit

    volume

    Fracturesurfacearea: computedformcoresorimagelogs.

    rr hDV

    2

    2

    r

    n

    i

    fi

    r

    n

    i

    fi

    fDh

    h

    V

    Ad

    ff

    11

    L2/L3 isreducedto1/L. Forasetofparallelfractures,Lisequaltotheiraverage

    spacing(perpendiculardistancebetweenfractures).

    Fracturedensityprovidesfracturespacing

    r

    n

    i

    fifi

    r

    n

    i

    fifi

    f

    Dh

    ha

    V

    Aaff

    11

    afisfractureaperture.

  • 7/25/2019 Fracture Characterization

    37/142

    Tayfun Babadagli, PhD, PEng Short Course Reservoir Characterization File-16

    7

    FracturePermeability

    12

    2

    of

    Wk MuskatEq.

    swk of12

    3

    LambsEquation

    IFs

    wk of

    *12

    3

    Ifwisininches(IF=#fractures/ft) IFwkf **10*54.436

    Ifwisincm(IF=#fractures/ft) IFwkf **10*77.235

    DIRECTPROPORTIONALITY!!!!

  • 7/25/2019 Fracture Characterization

    38/142

    Tayfun Babadagli, PhD, PEng Short Course Reservoir Characterization File-16

    8Nelson, R.A. Geological Analysis of Naturally Fractured Reservoirs, Gulf Publ. 2001

    FRACTURE SPACING

    Calculated in core and outcrops by counting the number of fracturesencountered along a line of some given length perpendicular to the

    fracture set an dividing the length of measurement line.

    In more complex environments, the same is done along lines in specific dimensions.

  • 7/25/2019 Fracture Characterization

    39/142

    Tayfun Babadagli, PhD, PEng Short Course Reservoir Characterization File-16

    FRACTURE (NETWORK) SYSTEM

    Fracture orientation

    Fracture typology (open/closedFracture density (spacing, heights)

    Fracture apertures

    Fracture connectivity

    Fracture continuitySize distribution (Power law)

    Are fracture affecting the reservoir performance?

    If so, can we optimize production or ultimate recovery based onfracture properties.

    9

  • 7/25/2019 Fracture Characterization

    40/142

    Tayfun Babadagli, PhD, PEng Short Course Reservoir Characterization File-16

    QUANTIFICATION OF FRACTURE NETWORK PROPERTIES

    Impedance Factor = # of fractures stopped/Total # of fractures (SPE 59045)

    Fracture Spacing, S = Diameter of core / Fracture occurrence (SPE 25852)

    Diameter of core / Fraction of cores that contained fractur

    Fracture Permeability, kf= 5.4x109

    w2

    keff= kf w2 / Ls

    w = aperture (m) , k = Darcy. Ls = Fracture spacing

    Fracture spacing ratio, (SPE 25612)

    T = bed boundary thickness, l = Transmissibility between matrix and fracture

    8RK

    TKFSR

    2

    ww

    2

    f

    10

  • 7/25/2019 Fracture Characterization

    41/142

    Tayfun Babadagli, PhD, PEng Short Course Reservoir Characterization File-16

    QUANTIFICATION OF FRACTURE NETWORK PROPERTIES

    Fracture density and permeability (multiplier)

    Obtained by history matching and non-linear

    (SPE 58995)

    nf = number of fractures

    1)1nflog(

    )1nflog(9m

    max

    11

  • 7/25/2019 Fracture Characterization

    42/142

    Tayfun Babadagli, PhD, PEng Short Course Reservoir Characterization File-16

    QUANTIFICATION OF FRACTURE NETWORK PROPERTIES

    The Weyburn Field(SPE 63286)

    Medium quality oil from fractured, low perm, carbonate (Midale beds).

    Discovered in 1956.

    Porosity = 26 % (average, ranging between 16 and 38 %)Permeability 1 to 100 md.

    Waterflood began in the early 1960s.

    Ultimate secondary recovery was 25-35 %.

    For waterflood optimization, horizontal wells and assessment of miscibleDisplacement, extensive characterization needed

    12

  • 7/25/2019 Fracture Characterization

    43/142

    Tayfun Babadagli, PhD, PEng Short Course Reservoir Characterization File-16

    QUANTIFICATION OF FRACTURE NETWORK PROPERTIES

    The Weyburn Field(SPE 63286)

    Reservoir performance (production and pressure)

    Geological data

    CoresPetrophysical data

    Injection profile logging

    Pressure transient tests

    Vertical pulse testing

    Vertical and horizontal coresWireline logs

    RFT

    FMS Neighboring Midale field experience

    13

  • 7/25/2019 Fracture Characterization

    44/142

    Tayfun Babadagli, PhD, PEng Short Course Reservoir Characterization File-16

    QUANTIFICATION OF FRACTURE NETWORK PROPERTIES

    The Weyburn Field(SPE 63286)

    Significant differences in intensity for limestone and dolomite

    Three ages of fractures, some filled with anhydrite

    Vertical, subvertical and oriented N45oE.

    Fracture intensity decreased as porosity increased.

    Relationship between lithology and intensity was used for mapping

    Fracture permeability was obtained from fracture spacing (and aperture) data.

    14

  • 7/25/2019 Fracture Characterization

    45/142

    Tayfun Babadagli, PhD, PEng Short Course Reservoir Characterization File-16

    QUANTIFICATION OF FRACTURE NETWORK PROPERTIES

    The Spraberry Field(SPE 63286)

    First developed in the early 1950s

    Many wells with 500 bopd initial production. But diminished rapidly.

    10 billiion bbls OOIP, less than 10% recovered

    60,000 bbls/day from 7,500 wells

    700,000,000 bbls produced

    First waterflood began in 1956,

    Generally unsuccessful due to bypassing matrix oil

    Similar fracture spacing as Weyburn but waterflood recovery is 2-5%

    (Weyburn has 16-25% incremental waterflood recovery15

  • 7/25/2019 Fracture Characterization

    46/142

    Tayfun Babadagli, PhD, PEng Short Course Reservoir Characterization File-16

    QUANTIFICATION OF FRACTURE NETWORK PROPERTIESThe Spraberry Field

    (SPE 63286)

    Low matrix perm was problem (< 1 md) and reservoir was no water-wet resultingin slow imbibition rates.

    Tests conducted include horizontal cores (orientation), pulse/interference,

    tracer tests (orientation),,

    build up and fall off (fracture permeability and connectivity),FMI (specific fracture trends) , outcrop etc.

    Important to quantify fracture spacing for waterflooding and CO2 injection

    Fracture orientation is NE to SW

    Average fracture spacing in three different sets are 3.2, 1.6, and 3,8 ft.

    16

  • 7/25/2019 Fracture Characterization

    47/142

    Tayfun Babadagli, PhD, PEng Short Course Reservoir Characterization File-16

    FRACTURE RESERVOIR CHARACTERIZATIONYATES FIELD

    (Dershowitz et al., SPE Res. Eng. and Eval., April 2000)

    Field discovered in 1926 and 1.3 billion bbls of oil produced until 1993.

    1100 producers and 57 injectors.

    To maximize withdrawals from high-rate, high efficiency wells,400 wells were shut in while keeping the stable daily production rate

    between 1992 and 1994.

    In the same period, more than 30 new short radius wells were drilled.

    A discrete fracture network modeling was used to study the spatial

    distribution of fractures of to optimize location and orientation of new

    horizontal wells.

    17

  • 7/25/2019 Fracture Characterization

    48/142

    Tayfun Babadagli, PhD, PEng Short Course Reservoir Characterization File-16

    FRACTURE RESERVOIR CHARACTERIZATION

    YATES FIELD

    (Dershowitz et al., SPE Res. Eng. and Eval., April 2000)

    DISCRETE FRACTURES Faults deterministically , fractures fromborehole data

    ORIENTATION Seismic For faults, fractures using Fisher distribution

    SIZE DISTRIBUTION Power law distribution D=1.81, min. radius = 0.30 m.

    (Stochastic)INTENSITY 0.105 to 0.21 sq m/cu m depending on shale porosity/content

    (Stochastic)

    TRANSMISSIVITY Log normal distribution,

    faults: log mean=-4, log std. dev. = 1

    fractures: log mean=-4.5, log std. dev. = 1

    APERTURE Correlated to transmissivity by cubic law, a = 0.00117 T0.32

    MODEL DIMENSIONS 2130 x 2130 x 350 m.

    18

  • 7/25/2019 Fracture Characterization

    49/142

    Tayfun Babadagli, PhD, PEng Short Course Reservoir Characterization File-16

    Single FracturePERMEABILITY

    -Is it only the roughness or mean aperture?

    -Whichever it was, can we detect it for whole

    reservoir and its distribution at all?

    kf= 5.4x109 w2 keff= kf w

    2 / Ls

    w = aperture (m)

    Ls = Fracture spacing (# of fractures/area)

    cF= Fraction of pore volume occupied by fissures (fraction) = total porosity (fraction)

    RELATIVE PERMEABILITY

    -Straight line function? No answer yet. There

    exist deviations due to roughness?-Recent studies showed natural porous media

    type kr for steam-water.

    2

    fF wc33k

    19

    Displacement patterns in a single fracture: Effect of roughness

  • 7/25/2019 Fracture Characterization

    50/142

    Tayfun Babadagli, PhD, PEng Short Course Reservoir Characterization File-16

    INVASION

    PERCOLATION

    CLUSTERS

    FBMLATT

    ICESWITH

    DIFFERENTHVALUES

    H=0.5, D=2.5 H=0.7, D=2.3 H=0.9, D=2.1H=0.1, D=2.9

    Displacement patterns in a single fracture: Effect of roughness

    20

    Fracture Networks

  • 7/25/2019 Fracture Characterization

    51/142

    Tayfun Babadagli, PhD, PEng Short Course Reservoir Characterization File-16

    KIZILDERE

    FIELD

    GERMENCIKFIELD

    Fracture network mapping: WELL DATA and OUTCROP

    How much fractal properties help? Which fractal properties are critical?

    Network Permeability or Single Fracture Permeability

    cm-mmm-mm

    km

    1.10

    1.30

    1.50

    1.00

    1.20

    1.40

    1.60

    FRACTALD

    IM

    ENSION,D

    Giga(km)

    Mega(m)

    Makro(cm)

    Mikro( m)

    SCALE

    21

    FRACTURE NETWORK MAPPING: Does Fractal help?

  • 7/25/2019 Fracture Characterization

    52/142

    Tayfun Babadagli, PhD, PEng Short Course Reservoir Characterization File-16

    Acuna and Yortsos, 1995, Water Res. Res.Warren and Root, SPEJ Sept. 1963

    D=2.78 D=2.65 D=2.48

    D=2.85, Isotropic fracture,

    D=1.85 (plane dimension)D=0.85 (Any random hole)

    Sammis and Steacy, in Fractals in the Earth Sciences,

    Barton and LaPointe, 1995

    p

    Fracture orientation

    Fracture typology (open/closed0

    Fracture density-intensity (spacing,

    heights)

    Fracture aperturesFracture connectivity

    Fracture continuity

    Size distribution (Power law)

    NETWORK CHARACTERISTICS

    22

    FRACTURE NETWORK MAPPING: Does Fractal help?

  • 7/25/2019 Fracture Characterization

    53/142

    Tayfun Babadagli, PhD, PEng Short Course Reservoir Characterization File-16

    WELL #1 WELL #2

    Mega-Giga Scale Outcrops

    23

    Characterization of Fracture Network System of the Midale Field

  • 7/25/2019 Fracture Characterization

    54/142

    Tayfun Babadagli, PhD, PEng Short Course Reservoir Characterization File-181

    MidaleField History

    CharacterizationofFractureNetworkSystemoftheMidaleField

    (CIPC2007,BogatkovandBabadagli)

    Discovery 1953

    Waterflood 1962

    Infilldrilling mid1980s

    Horizontaldrilling late1980s

    CO2floodpilot 1984

    MidaleCO2

    Flood

    DemonstrationProject(10%ofUnit) 1992

    Multileggedperpendicular

    Horizontalwellsdrilled mid1990s

    AcquisitionofthefieldbyApache 2000

    Infilldrilling(hor.wells),injection&throughputx3,CO2feasibility

    study

    Midale

  • 7/25/2019 Fracture Characterization

    55/142

    Tayfun Babadagli, PhD, PEng Short Course Reservoir Characterization File-182

    MidaleField FractureSystem Suggestedfracturelengths:

    100m,

  • 7/25/2019 Fracture Characterization

    56/142

    Tayfun Babadagli, PhD, PEng Short Course Reservoir Characterization File-183

    Data

    Mining Datacollectedtodate beinganalyzed

    CO2FloodPilotArea:

    Logs,cores

    (pictures)

    for

    all

    wells

    Coreanalysis(petrophysical)reports

    Thinsectionstudies

    Wellfiles

    Simulationstudies

    Projects,etc.

    Restof

    field

    Logs,cores,maps

    Simulationstudies,petrophysicalstudiesetc.

  • 7/25/2019 Fracture Characterization

    57/142

    Tayfun Babadagli, PhD, PEng Short Course Reservoir Characterization File-184

    Data

    Analysis

    Analysistodate(asdictatedbyFRACA):

    Stratigraphicparameters

    Layers,thicknesses,depths

    Formationproperties

    Porosity,permeability,

    compressibility,

    saturations

    Result:simplestructuralmodelinFRACA

    Layercake:9parallellayerswithdistinctparameters

    Area=200x200m 200x200x9blocks

  • 7/25/2019 Fracture Characterization

    58/142

    Tayfun Babadagli, PhD, PEng Short Course Reservoir Characterization File-18 5

    DataAnalysis

    Facies

    Layer

    Depth

    (m below

    datum)2

    Thickness1

    (m)

    Porosity1

    (fraction)

    kh(mD)1

    kv/kh4,5 Swi

    1,3 kro6,7

    Sigma

    for

    Thickness8

    Formation

    compressibility

    (bar-1)9

    M1 1393.50 1.50 0.225 4.2 0.366 0.600 0.02 0.282 1.10E-07

    M2 1395.00 1.40 0.113 0.4 0.335 0.918 0.00 0.302 2.20E-07

    M3 1396.40 1.67 0.311 23.7 0.548 0.516 0.20 0.127 7.99E-08

    M4 1398.07 0.88 0.132 0.6 0.428 0.707 0.00 0.411 1.88E-07

    V1 1398.95 2.39 0.104 6.4 0.286 0.882 0.00 0.579 2.39E-07

    V2 1401.34 2.01 0.065 0.6 0.196 0.793 0.00 0.500 3.82E-07

    V3 1403.35 2.33 0.103 12.2 0.244 0.634 0.10 0.707 2.41E-07

    V4 1405.68 1.05 0.063 0.5 0.190 0.932 0.00 0.574 3.95E-07

    V5 1406.73 2.09 0.139 4.9 0.310 0.692 0.04 0.588 1.79E-07

    F t M d l i FRACA

  • 7/25/2019 Fracture Characterization

    59/142

    Tayfun Babadagli, PhD, PEng Short Course Reservoir Characterization File-186

    FractureModelinFRACA

    Fracture Model in FRACA

  • 7/25/2019 Fracture Characterization

    60/142

    Tayfun Babadagli, PhD, PEng Short Course Reservoir Characterization File-18

    7

    FractureModelinFRACA

    DFNmodel

  • 7/25/2019 Fracture Characterization

    61/142

    Tayfun Babadagli, PhD, PEng Short Course Reservoir Characterization File-18811/23/2011 8

    DFNmodelcalibration

  • 7/25/2019 Fracture Characterization

    62/142

    Tayfun Babadagli, PhD, PEng Short Course Reservoir Characterization File-18911/23/2011 9

    Perform

    welltestsimulation

    Populate

    withfractures

    Prepare

    apetrophysicalmodel

    Check

    againstreal

    data

    Sensitivitystudyresults

  • 7/25/2019 Fracture Characterization

    63/142

    Tayfun Babadagli, PhD, PEng Short Course Reservoir Characterization File-181011/23/2011 10

    Most influential parameters (for history match)

    S1 I2 I3 I4

    Parameter #1 Matrix Matrix Matrix MatrixRelative effect, % 96.368 98.940 93.144 93.525

    Parameter #2 Fr. cond. Matrix*Fr. length Matrix*Fr. length Fr. cond.

    Relative effect, % 3.632 0.291 2.743 1.942

    Parameter #3 N/A Matrix*Fisher strike Matrix*Fr. cond. Fr. length

    Relative effect, % N/A 0.197 2.571 0.882

    1. Strongmatrixeffect:

    Matriximportantsource,probablymatrixflowispresent,

    Fracturesenhancepermeability,facilitateinterwellconnectivity;

    2. Matrix/fractureinteraction

    is

    important:

    probably

    the

    controlling

    parameter;

    3. Individualfracturescanbeveryimportant,howeverdifficulttopredict.

    Sensitivitystudyresults

  • 7/25/2019 Fracture Characterization

    64/142

    Tayfun Babadagli, PhD, PEng Short Course Reservoir Characterization File-181111/23/2011 11

    Design-Expert SoftwareOriginal ScaleI2-MRE

    5

    3.3

    X1 = A: Frac spacing, MX2 = B: Frac spacing, V

    Actual FactorsC: Fracture length = 100

    D: Fisher strike = 1E+020E: Frac cond = 10.0F: Matrix = Mediocre

    0.3

    0.5

    0.8

    1.0

    1.2

    0.3

    0.50.7

    0.9

    1.1

    3.3

    3.8

    4.2

    4.6

    5.1

    I2-MRE

    A: Frac spacing, M

    B: Frac spacing, V

    ResponsesurfaceforWellI2:MRE(A,B)

    020

    4060

    80100

    S1

    I2

    I3

    I4

    96.37

    98.94

    93.14

    93.52

    3.63

    1.10E-07

    0.27

    1.94

    Relative effect, %

    Wellna

    me

    Matrix quality and fracture conductivityfactors in fitted MRE models

    Fracture conductivity

    Matrix

    Transienttestsimulation

  • 7/25/2019 Fracture Characterization

    65/142

    Tayfun Babadagli, PhD, PEng Short Course Reservoir Characterization File-181211/23/2011 12

    0

    20

    40

    60

    80

    100

    120

    140

    160

    0 2 4 6 8

    Wellbottomholepressure(bar)

    Time(day)

    WellS1producer

    0

    20

    40

    60

    80

    100

    120

    140

    160

    0 2 4 6 8

    Wellbottomholepressure(bar)

    Time(day)

    WellI2diagonalobserver

    0

    20

    40

    60

    80

    100

    120

    140

    160

    0 2 4 6 8

    Wellbottomhole

    pressure(bar)

    Time(day)

    WellI3diagonalobserver

    0

    20

    40

    60

    80

    100

    120

    140

    160

    0 2 4 6 8

    Wellbottomhole

    pressure(bar)

    Time(day)

    WellI4diagonalobserverRealtest

    Discrete

    simulation

    Single

    continuum

    simulation

    Dual

    continuum

    simulation

    D:13.45% SP:6.73% DK:13.13% D:6.21% SP:2.38% DK:1.79%

    D:0.92% SP:5.37% DK:5.25% D:1.47% SP:2.36% DK:3.30%

    Tracertestsimulation

  • 7/25/2019 Fracture Characterization

    66/142

    Tayfun Babadagli, PhD, PEng Short Course Reservoir Characterization File-181311/23/2011 13

    Injection

    well ID Salt

    Concentration

    (mole fraction) Vslug, m3

    I1 KI 0.0203 4.1

    I2 NH4SC 0.1022 2.2

    I3 N3H4NO 0.1041 6.7

    I4 KBr 0.0275 4.1

    Totaltest

    time:

    240

    days

    Tracerslugfollowedby

    continuouswaterinjection.

    Tracertestsimulation

  • 7/25/2019 Fracture Characterization

    67/142

    Tayfun Babadagli, PhD, PEng Short Course Reservoir Characterization File-181411/23/2011 14

    0.00

    0.50

    1.00

    1.50

    2.00

    2.50

    3.00

    FS1 S1 S2 S3

    0.500

    1.400 1.400

    3.000

    0.0800.210

    Breakthroughtime(da

    y)

    Producer well

    Iodide

    0.00

    0.10

    0.20

    0.30

    0.40

    0.50

    FS1 S1 S2 S3

    0.100

    0.500

    0.0400.080

    0.1700.130

    Breakthroughtime(day)

    Producer well

    Thiocyanate

    0

    3

    6

    9

    12

    15

    FS1 S1 S2 S3

    13.400

    9.400

    0.1000.080 0.080Breakthrough

    time(day)

    Producer well

    Nitrate

    0.000

    2.000

    4.000

    6.000

    8.000

    10.000

    FS1 S1 S2 S3

    8.500 8.500

    0.4000.210 0.130

    Breakthroughtime(day)

    Producer well

    BromideReal testSimulated

    No

    BT

    No

    BT

    No

    BT

    No

    BT

    No BTNo BTNo

    BT

    No

    BT

    Tracertestsimulation

  • 7/25/2019 Fracture Characterization

    68/142

    Tayfun Babadagli, PhD, PEng Short Course Reservoir Characterization File-181511/23/2011 15

    0

    100

    200

    0 100 200

    (axes in m)

    Wellconnectivity

    N

    main trend

    S2

    S1

    S3

    I4

    I3

    FS1

    I2

    I1

    basedonsimulatedtracerbreakthrough time(day)

    Thiocyanate

    Iodide

    Bromide

    Nitrate

    0.08

    0.08

    0

    100

    200

    0 100 200

    (axes in m)

    Wellconnectivity

    N

    main trend

    S2

    S1

    S3

    I4

    I3

    FS1

    I2

    I1

    basedontracerbreakthrough time(day)

    Thiocyanate

    Iodide

    Bromide

    Nitrate

    0.1

    1.4

    9

    38

    Sensitivitystudy

  • 7/25/2019 Fracture Characterization

    69/142

    Tayfun Babadagli, PhD, PEng Short Course Reservoir Characterization File-181611/23/2011 16

    Aim:

    Tostudy

    the

    effects

    of

    various

    matrix

    and

    fracturepropertiesonthetracertransport.

    Parameters:

    1.Fracturedensity,

    2.Fracturepermeability,

    3.Dispersioncoefficients,

    4.Matrixpermeability,

    5.Matrixfracturetransmissibility,

    6.Relativepermeability.

    Tools:

    Tracertestsimulation.

    Sensitivitystudy

  • 7/25/2019 Fracture Characterization

    70/142

    Tayfun Babadagli, PhD, PEng Short Course Reservoir Characterization File-181711/23/2011 17

    0

    100

    200

    0 100 200

    (axes in m)

    Wellconnectivity

    N

    main trend

    S2

    S1

    S3

    I4

    I3

    FS1

    I2

    I1

    basedonsimulatedtracerbreakthrough time(day)

    Thiocyanate

    Iodide

    Bromide

    Nitrate

    0.08

    0.08

    0

    100

    200

    0 100 200

    (axes in m)

    Wellconnectivity

    N

    main trend

    S2

    S1

    S3

    I4

    I3

    FS1

    I2

    I1

    basedonsimulatedtracerbreakthrough time(day)

    Thiocyanate

    Iodide

    Bromide

    Nitrate

    23

    Sensitivitystudy

  • 7/25/2019 Fracture Characterization

    71/142

    Tayfun Babadagli, PhD, PEng Short Course Reservoir Characterization File-181811/23/2011 18

    0

    100

    200

    0 100 200

    (axes in m)

    Wellconnectivity

    N

    main trend

    S2

    S1

    S3

    I4

    I3

    FS1

    I2

    I1

    basedonsimulatedtracerbreakthrough time(day)

    Thiocyanate

    Iodide

    Bromide

    Nitrate

    0.08

    0.08

    0

    100

    200

    0 100 200

    (axes in m)

    Well

    connectivity

    N

    main trend

    S2

    S1

    S3

    I4

    I3

    FS1

    I2

    I1

    basedonsimulatedtracerbreakthrough time(day)

    Thiocyanate

    Iodide

    Bromide

    Nitrate

    0.17

    Fracturenetworkrepresentation

  • 7/25/2019 Fracture Characterization

    72/142

    Tayfun Babadagli, PhD, PEng Short Course Reservoir Characterization File-181911/23/2011 19

    Idealised fracture network Realistic fracture network

    Dualporositymodels:1. Fracturenetworkasaregularmesh;

    2. Fracturedip,strike,heightarenotvariable;

    Discretemodels:1. MorerealisticrepresentationofNFN

    2. Anydesireddegreeofvariabilityavailable;

  • 7/25/2019 Fracture Characterization

    73/142

    Tayfun Babadagli, PhD, PEng Short Course Reservoir Characterization File-18

    Non

    classical

    techniques Manydifferentapproaches

    Stochastic

    Involverandomness

    20

  • 7/25/2019 Fracture Characterization

    74/142

    Tayfun Babadagli, PhD, PEng Short Course Reservoir Characterization File-18

    What

    is

    Random

    Walk? Fluidflowrepresentedbymovementof

    walkers

    Eachwalker

    represents

    certain

    volume

    or

    mass

    Walkersmoverandomly;randomnessdefinedbyphysicsofthesystem:Probability ofparticle

    tomove

    in

    certain

    direction

    is

    defined

    by

    physicsoftheprocess(pressures,saturation,permeabilities,viscosities)

    If

    we

    are

    modeling

    two

    phase

    flow,

    we

    will

    considertwotypeofparticlesmoving.

    21

  • 7/25/2019 Fracture Characterization

    75/142

    Tayfun Babadagli, PhD, PEng Short Course Reservoir Characterization File-18

    What

    is

    Random

    Walk?

    22

    Movement=convective

    +random

    Convectivecomponent

    followsDarcysLaw

    Random

    component

    satisfiesADE

    (Delayetal.2005)

    v solutionofDarcyseqn

    z~N(0,1)

    D dispersioncoefficient

  • 7/25/2019 Fracture Characterization

    76/142

    Tayfun Babadagli, PhD, PEng Short Course Reservoir Characterization File-18

    FieldCase:

    Sensitivity

    23

    Highesteffect:Ontrendfracturewidths

    Ch=(offtrendsp)/(ontrendsp)

    FieldCase:HistoryMatching

  • 7/25/2019 Fracture Characterization

    77/142

    Tayfun Babadagli, PhD, PEng Short Course Reservoir Characterization File-18

  • 7/25/2019 Fracture Characterization

    78/142

    Tayfun Babadagli, PhD, PEng Short Course Reservoir Characterization File-18

    FieldCase:

    History

    Matching

    25

    Shortcomputationaltime=>automatedHM

    Small

    #

    of

    parameters

    or

    flexibility?Result:qualitativeHM

    observed RWPT DP

    from:Bogatkov,M.Sc.thesis.

    ASensitivityAnalysisforEffective

  • 7/25/2019 Fracture Characterization

    79/142

    Tayfun Babadagli, PhD, PEng Short Course Reservoir Characterization File-191

    Parameterson

    Fracture

    Network

    Permeability

    Jafari, A.R. and Babadagli, T.: A Sensitivity Analysis for Effective Parameters on 2-D Fracture Network Permeability,

    SPE Res. Eval. and Eng., vol. 12, no. 3, June 2009, 455-469.

    Jafari, A. and Babadagli, T.: Effective Fracture Network Permeability of Geothermal Reservoirs, Geothermics, vol. 40,

    25-38, 2011.

    Jafari, A.R. and Babadagli, T.: Generating 3-D Permeability Map of Fracture Networks Using Well, Outcrop, and Pressure

    Transient Data, SPE Res. Eval. and Eng, vol. 14, no. 2, April 2011, 215-224.

    Jafari, A. and Babadagli, T.: Equivalent Fracture Network Permeability of Multi-Layer-Complex Naturally Fractured Reservoirs,

    Tran. in Porous Media, 2011 (in print).

    Jafari, A.: Permeability Estimation of Fracture Networks, Ph.D. Thesis, Univ. of Alberta, Oct. 2010

    SyntheticPatterns:DifferentScenarios

  • 7/25/2019 Fracture Characterization

    80/142

    Tayfun Babadagli, PhD, PEng Short Course Reservoir Characterization File-19 2

    Length (m)

    20

    40

    60

    80

    Density (#/domain)

    100

    50

    150

    200

    250

    Orientation

    NS&WE

    NWSE&NESW

    Random

    Topology:RandomOrientation

  • 7/25/2019 Fracture Characterization

    81/142

    Tayfun Babadagli, PhD, PEng Short Course Reservoir Characterization File-19

    3

    Topology:NWSE&NESWOrientation

  • 7/25/2019 Fracture Characterization

    82/142

    Tayfun Babadagli, PhD, PEng Short Course Reservoir Characterization File-19

    4

    Dataset#1:NWSE&NESW

  • 7/25/2019 Fracture Characterization

    83/142

    Tayfun Babadagli, PhD, PEng Short Course Reservoir Characterization File-19

    5

    L(m)

    Density(#/square)

    FD

    using Box

    Counting

    FD

    using Sand

    boxFD using

    ScanningLine in X

    direction

    FD using

    ScanningLine in Y

    direction

    ConnectivityIndex

    Maximum

    Touch with XScanning Line

    Maximum

    Touch with YScanning Line

    FD

    using Box

    Counting Permeability(md)

    I. P. M. P. I. P. M. P. Lines

    20 50 1.080 1.408 1.328 1.555 1.605 1.437 0.616 7072.2 7070.8 1.293 6.575

    20 100 1.555 1.638 1.604 1.707 1.318 1.324 1.199 14142.2 14145.9 1.465 10.553

    20 150 1.740 1.733 1.551 1.503 1.338 1.317 1.812 21212.8 21216.3 1.552 36.958

    20 200 1.835 1.817 1.681 1.491 1.347 1.370 2.477 28282.4 28283.2 1.620 62.765

    20 250 1.878 1.857 1.856 1.541 1.363 1.365 2.976 35350 35354.3 1.648 84.162

    40 50 1.564 1.401 1.650 1.366 1.131 1.145 2.902 14140.2 14142.5 1.429 28.059

    40 100 1.803 1.647 1.565 1.404 1.112 1.113 5.911 28283.3 28285 1.583 82.722

    40 150 1.867 1.745 1.671 1.428 1.118 1.115 8.776 42427 42426.6 1.651 144.026

    40 200 1.911 1.817 1.886 1.352 1.132 1.134 11.499 56569.2 56571.8 1.700 201.535

    40 250 1.915 1.854 1.935 1.403 1.126 1.122 14.575 70714.1 70710.6 1.737 261.725

    60 50 1.703 1.398 1.590 1.265 0.930 0.932 7.444 21213.1 21213.2 1.457 66.995

    60 100 1.812 1.641 1.531 1.198 0.940 0.934 14.875 42426.5 42424.9 1.596 112.958

    60 150 1.841 1.754 1.700 1.241 0.929 0.932 22.666 63638.5 63639.4 1.682 184.213

    60 200 1.849 1.823 1.620 1.342 0.934 0.936 30.224 84852.2 84850.3 1.722 264.453

    60 250 1.855 1.859 1.632 1.286 0.928 0.929 37.907 106066.6 106062.6 1.760 342.236

    80 50 1.727 1.401 1.903 1.501 0.860 0.859 12.064 28282.7 28284.9 1.456 76.150

    80 100 1.780 1.638 1.773 1.903 0.859 0.859 24.008 56568.4 56567.6 1.586 139.468

    80 150 1.800 1.754 1.771 2.122 0.859 0.859 36.095 84852.8 84855 1.665 210.461

    80 200 1.801 1.817 1.671 1.788 0.859 0.859 47.925 113136.7 113137.6 1.705 296.081

    80 250 1.804 1.860 1.740 1.808 0.859 0.859 59.979 141420.9 141422.2 1.730 352.534

    Exponential:

    Ln(Y)=a*exp(b*x1)+c*ln(x2)+d*ln(x3)+e*ln(x4)+f*ln(x5)+g*ln(x6)+h

    EFRP Correlations

  • 7/25/2019 Fracture Characterization

    84/142

    Tayfun Babadagli, PhD, PEng Short Course Reservoir Characterization File-19 6

    EXLnDXLnCXBAKLn )(.)(.).exp(.)( 321

    FXLnEXLnDXLnCXBAKLn )(.)(.)(.).exp(.)( 4321

    GXLnFXLnEXLnDXLnCXBAKLn )(.)(.)(.)(.).exp(.)( 54321

    HXLnGXLnFXLnEXLnDXLnCXBAKLn )(.)(.)(.)(.)(.).exp(.)( 6543210.4276

    0.5695

    0.4034

    0.0653

    R-squaredDerived EquationIndependent

    Variables

    ( ) p( ) ( ) ( ) ( ) ( ) g ( )

    Powerlaw:

    Log(Y)=a*x1^b+c*log(x2)+d*log(x3)+e*log(x4)+f*log(x5)+g*log(x6)+h

    Thefirst

    type

    was

    found

    superior

    to

    the

    second

    one

    and

    further

    parametricanalysiswasperformedusingthistypeofcorrelation.

    ExperimentalDesign:Analysis2

  • 7/25/2019 Fracture Characterization

    85/142

    Tayfun Babadagli, PhD, PEng Short Course Reservoir Characterization File-19

    7

    variable Optimistic(1) Pesimistic(-1)

    Length 80 20

    Density 250 50

    Orientation N-S&E-W NW-SE&NE-SW

    Conductivity 2000 500

    Orientation

    Length/Orientation

    Length/Density/Conductivity

    Length/Conductivity

    Density/Conductivity

    Length/DensityConductivity

    LengthDensity

    Orientation/Conductivity

    Density/Orientation/Conductivity

    Length/Oriention/ConductivityLength/Density/Orientation/Conductivity

    Density/Orientation

    Length/Density/Orientation

    0 100 200 300 400 500 600

    Absolute Effect

    ExperimentalDesign:Analysis3

  • 7/25/2019 Fracture Characterization

    86/142

    Tayfun Babadagli, PhD, PEng Short Course Reservoir Characterization File-19

    8

    variable Optimistic(1) Pesimistic(-1)

    Length 80 20

    Density 250 50

    Conductivity 1500 1000

    Length/Density/Conductivity

    Density/Conductivity

    Length/Conductivity

    Conductivity

    Length/Density

    Density

    Length

    0 200 400 600 800 1000 1200 1400 1600

    Absolute Effect

    ExperimentalDesign:Analysis4

  • 7/25/2019 Fracture Characterization

    87/142

    Tayfun Babadagli, PhD, PEng Short Course Reservoir Characterization File-19

    9

    variable Optimistic(1) Pesimistic(-1)

    Length 60 40

    Density 150 50

    Conductivity 2000 500

    Length/Density/Conductivity

    Length/Density

    Length/Conductivity

    Length

    Density/Conductivity

    Density

    Conductivity

    0 50 100 150 200 250

    Absolute Effect

    300

  • 7/25/2019 Fracture Characterization

    88/142

    Tayfun Babadagli, PhD, PEng Short Course Reservoir Characterization File-19 10

    0

    50

    100

    150

    200

    250

    300

    0 10 20 30 40 50 60 70 80 90 100

    Leng th o f dom ain s ides (X and Y), m

    Permeability,mD

    Permeability in X-direction, Kx

    Permeability in Y-direction, Ky

    VERIFICATION PATTERNS

  • 7/25/2019 Fracture Characterization

    89/142

    Tayfun Babadagli, PhD, PEng Short Course Reservoir Characterization File-19 11

    Independent

    Variables Derived Equation

  • 7/25/2019 Fracture Characterization

    90/142

    Tayfun Babadagli, PhD, PEng Short Course Reservoir Characterization File-19

    12

    4 Ln(K) = a*exp(b*x1)+c*ln(x2)+d*ln(x3)+ln(x4)+f

    5 Ln(K) = a*exp(b*x1)+c*ln(x2)+d*ln(x3)+e*ln(x4)+f*ln(x5)+g

    6 Ln(K) = a*exp(b*x1)+c*ln(x2)+d*ln(x3)+e*ln(x4)+f*ln(x5)+g*ln(x6)+h

    0

    1

    2

    3

    4

    5

    6

    0 1 2 3 4 5 6

    LnK(actual), mD

    LnK(estimat

    ed),mD

    ActualEFNPsvs.estimatedonesusingtheJafari

    andBabadagli(2008)equationwith4

    independentvariablesfornaturalpatterns.

    ActualEFNPsvs.estimatedonesusingtheequation

    with4independentvariablesfornaturalpatterns.

    0

    1

    2

    3

    4

    5

    6

    0 1 2 3 4 5 6

    LnK(actual), mD

    LnK(estimated),mD

    80

    100

    120

    y,m

    D

    Welltest K

    Fraca Kx

    ADDITION OF WELL TEST DATA

  • 7/25/2019 Fracture Characterization

    91/142

    Tayfun Babadagli, PhD, PEng Short Course Reservoir Characterization File-19

    13

    0

    20

    40

    60

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19Pattern

    Permebaility

    ComparisonofactualEFNP(FRACAKx)intheXdirectionandaverage

    permeabilityobtainedfromdrawdownwelltest.

    0

    20

    40

    60

    80

    100

    120

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

    Pattern

    Permeability,mD

    Welltest K

    Fraca Ky

    ComparisonofactualEFNP(FRACAKy)intheYdirectionandaveragepermeability

    obtainedfromdrawdownwelltest.

    Image log Outcrop

  • 7/25/2019 Fracture Characterization

    92/142

    Tayfun Babadagli, PhD, PEng Short Course Reservoir Characterization File-19 14

    Image log

    (1D data)

    Outcrop

    (2D data)

    DFN (3D permeability

    map)

    Courtesyof

    Steve

    Hansen,

    Schlumberger

    Bourbiauxetal.1998

    Bourbiauxet

    al.

    1998

    Integrating 1D, 2D and 3D DataWelltest Analysis

    Integrating1D,2D,and3DDataCont.

    FD (Box- Max Max FD (Box-

  • 7/25/2019 Fracture Characterization

    93/142

    Tayfun Babadagli, PhD, PEng Short Course Reservoir Characterization File-19

    Pattern

    (

    Counting) Connectivity

    Index

    Touch

    with X

    Scanning

    Line

    Touch

    with Y

    Scanning

    Line

    (

    Counting) Welltest

    Permeability,

    mD

    Fracture

    spacing

    Fracture-

    wellbore

    Intersection

    Kx,

    mDIntersection

    PointLines

    1 1.867 1.064 15608 21143 1.557 29.769 1.970 4 29.545

    2 1.820 1.704 15396 17481 1.521 45.348 2.737 3 118.545

    3 1.892 1.516 19585 24571 1.598 56.999 1.122 7 120.077

    4 1.750 1.407 13331 15887 1.443 51.362 2.444 4 78.485

    5 1.774 1.465 15486 16721 1.487 53.660 3.731 2 112.141

    6 1.870 1.422 18933 24001 1.576 53.659 7.071 1 112.141

    7 1.872 1.275 15916 31323 1.630 50.514 1.729 5 115.117

    8 1.800 1.271 13364 16592 1.528 43.774 4.092 2 56.001

    9 1.769 1.745 16978 17563 1.567 51.395 2.459 3 71.010

    10 1.770 1.496 14366 18920 1.562 49.397 3.235 3 81.104

    11 0.797 1.091 114 266 1.264 19.264 4.981 2 38.542

    12 1.672 1.218 4720 5612 1.484 16.949 3.049 3 36.981

    13 1.660 1.149 4071 3094 1.493 19.649 3.550 2 9.825

    14 1.378 1.020 860 1210 1.481 28.733 7.071 1 88.872

    15 1.577 1.041 4697 2680 1.513 26.524 2.538 3 15.212

    16 1.893 2.611 4767 5473 1.682 60.970 2.088 4 169.827

    17 1.647 1.369 1687 1758 1.583 33.349 2.739 3 23.733

    18 1.653 1.558 996 1281 1.515 28.947 4.311 2 53.588

    Integrating 1 D 2 D and 3 D Data Cont

  • 7/25/2019 Fracture Characterization

    94/142

    Tayfun Babadagli, PhD, PEng Short Course Reservoir Characterization File-19 16

    Only1D

    and

    3D

    data:

    435.297)(734.19

    )(884.28)(412.88)(

    3

    21

    XLn

    XLnXLnKxLn

    Integrating 1-D, 2-D, and 3-D Data Cont.

    Kx:Equivalentfracturenetworkpermeability

    X1:WelltestPermeability

    X2:Fracturespacing

    X3:Numberoffracturesintersectingwellbore

    Integrating 1 D 2 D and 3 D Data Cont

  • 7/25/2019 Fracture Characterization

    95/142

    Tayfun Babadagli, PhD, PEng Short Course Reservoir Characterization File-19 17

    Kx:Equivalentfracturenetworkpermeability

    X1:FD ofintersectionpointsusing boxcountingdimension

    X2:Connectivityindex

    X3,X4:MaximumtouchwithscanninglinesintheXandYdirection

    X5:

    FD of

    fracture

    lines

    using

    box

    counting

    X6:WelltestPermeability

    64.17)6(132.1)(362.1)(112.1

    )(111.1)(894.0)011.0exp(37.17)(

    54

    321

    XLnXLnXLn

    XLnXLnXKxLn

    Only 2-D and 3-D data:

    Integrating 1-D, 2-D, and 3-D Data Cont.

    Integrating 1-D 2-D and 3-D Data Cont

  • 7/25/2019 Fracture Characterization

    96/142

    Tayfun Babadagli, PhD, PEng Short Course Reservoir Characterization File-19 18

    677.14)8(763.0)7(555.0)6(979.0)(277.1

    )(280.1)(218.1)(182.1)004.0exp(858.15)(

    5

    4321

    XLnXLnXLnXLn

    XLnXLnXLnXKxLn

    All 1-D, 2-D and 3-D data:

    Kx:Equivalentfracturenetworkpermeability

    X1:FD ofintersectionpointsusing boxcountingdimension

    X2: Connectivityindex

    X3,X4:MaximumtouchwithscanninglinesintheXandYdirection

    X5:

    FD of

    fracture

    lines

    using

    box

    counting

    X6:WelltestPermeability

    X7:Fracturespacing

    X8:Numberoffracturesintersectingwellbore

    Integrating 1-D, 2-D, and 3-D Data Cont.

    100

    120

    140

    160

    180

    200

    ability,mD

    Welltest K

    Fraca Kx

    Predicted Kx using 6 independents

    Predicted Kx using 5 independents

  • 7/25/2019 Fracture Characterization

    97/142

    Tayfun Babadagli, PhD, PEng Short Course Reservoir Characterization File-19 19

    0

    20

    40

    60

    80

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

    Pattern

    Permea

    0

    20

    40

    60

    80

    100

    120

    140

    160

    180

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

    Pattern

    Permeability,mD

    Welltest KFraca KxPredicted Kx using 8 independentsPredicted Kx using 6 independents

    Predicted Kx using 3 independents

    Multi-Layer Naturally Fractured Reservoirs

  • 7/25/2019 Fracture Characterization

    98/142

    Tayfun Babadagli, PhD, PEng Short Course Reservoir Characterization File-19

    20

    Multi-Layer Naturally Fractured Reservoirs Cont.

  • 7/25/2019 Fracture Characterization

    99/142

    Tayfun Babadagli, PhD, PEng Short Course Reservoir Characterization File-19

    FracturedReservoir

    Configurations

    21

    Multi-Layer Naturally Fractured ReservoirsCont

  • 7/25/2019 Fracture Characterization

    100/142

    Tayfun Babadagli, PhD, PEng Short Course Reservoir Characterization File-19

    Only1DData:

    22

    076.8)(367.1)(063.1)( 21 XLnXLnKLn ave

    Multi Layer Naturally Fractured ReservoirsCont.

    Kx:Equivalentfracturenetworkpermeability

    X1: Numberoffracturesintersectingwellbore

    X2:Fracturespacing

    Multi-Layer Naturally Fractured ReservoirsCont

  • 7/25/2019 Fracture Characterization

    101/142

    Tayfun Babadagli, PhD, PEng Short Course Reservoir Characterization File-19 23

    026.2)(278.0)(168.0

    )(301.0)(098.0)(142.0)(

    54

    321

    XLnXLn

    XLnXLnXLnKLn ave

    Only 3-D Data:

    Kx:Equivalentfracturenetworkpermeability

    X1:WelltestpermeabilityfromWell#1

    X2: WelltestpermeabilityfromWell#2

    X3: WelltestpermeabilityfromWell#3

    X4:

    Welltest

    permeability

    from

    Well#4

    X5:WelltestpermeabilityfromWell#5

    Multi Layer Naturally Fractured ReservoirsCont.

    Multi-Layer Naturally Fractured ReservoirsCont

  • 7/25/2019 Fracture Characterization

    102/142

    Tayfun Babadagli, PhD, PEng Short Course Reservoir Characterization File-19 24

    12.8)(02.1)(69.1)(59.0

    )(26.0)(5.0)(143.0)(41.0)(

    765

    4321

    XLnXLnXLn

    XLnXLnXLnXLnKLnave

    1-D and 3-D Data:

    Kx:Equivalentfracturenetworkpermeability

    X1:WelltestpermeabilityfromWell#1

    X2: WelltestpermeabilityfromWell#2

    X3: WelltestpermeabilityfromWell#3

    X4:

    Welltestpermeability

    from

    Well#4

    X5:WelltestpermeabilityfromWell#5

    X6: Numberoffracturesintersectingwellbore

    X7:Fracturespacing

    Multi Layer Naturally Fractured ReservoirsCont.

    Multi-Layer Naturally Fractured ReservoirsCont

  • 7/25/2019 Fracture Characterization

    103/142

    Tayfun Babadagli, PhD, PEng Short Course Reservoir Characterization File-19 25

    12.2)(0856.0)(187.0

    )(14.0)(113.0)(09.0)(012.0)(

    65

    4321

    XLnXLn

    XLnXLnXLnXLnKLnave

    2-D and 3-D Data:

    Kx:Equivalentfracturenetworkpermeability

    X1:WelltestpermeabilityfromWell#1

    X2: WelltestpermeabilityfromWell#2

    X3: WelltestpermeabilityfromWell#3

    X4:Welltest

    permeability

    from

    Well#4

    X5:WelltestpermeabilityfromWell#5

    X6:Connectivityindex

    y yCont.

    Multi-Layer Naturally Fractured Reservoirs

    Cont.

  • 7/25/2019 Fracture Characterization

    104/142

    Tayfun Babadagli, PhD, PEng Short Course Reservoir Characterization File-19

    26

    07.1)(1.0)(1.0)(4.0

    )(02.0)(09.0)(02.0)(06.0)(14.0)(

    876

    54321

    XLnXLnXLn

    XLnXLnXLnXLnXLnKLnave

    1-D, 2-D and 3-D Data:

    Kx:Equivalentfracturenetworkpermeability

    X1:

    Welltestpermeability

    from

    Well#1

    X2:WelltestpermeabilityfromWell#2

    X3:WelltestpermeabilityfromWell#3

    X4:WelltestpermeabilityfromWell#4

    X5:WelltestpermeabilityfromWell#5

    X6:Numberof

    fractures

    intersecting

    wellbore

    X7:Fracturespacing

    X8:Connectivityindex

    Independent

    VariablesDerived Equation R1 R2 R3

    3 Ln(K) =A.exp(B.X1)+C.Ln(X2)+D.Ln(X3)+E 0.73 0.87 0.865 Ln(K) = A.exp(B.X1)+C.Ln(X2)+D.Ln(X3)+E.Ln(X4)+F.Ln(X5)+G 0.93 0.93 0.90

    Jafari and Babadagli, Geothermics, 2010

  • 7/25/2019 Fracture Characterization

    105/142

    Tayfun Babadagli, PhD, PEng Short Course Reservoir Characterization File-19

    27

    6 Ln(K) =A.exp(B.X1)+C.Ln(X2)+D.Ln(X3)+E.Ln(X4)+F.Ln(X5)+G.Ln(X6)+H 0.93 0.94 1.0

  • 7/25/2019 Fracture Characterization

    106/142

    Tayfun Babadagli, PhD, PEng Short Course Reservoir Characterization File-20

    SCALING EQUATIONS FOR FRACTURED SYSTEMS

    0.5

    0.4e)

  • 7/25/2019 Fracture Characterization

    107/142

    Tayfun Babadagli, PhD, PEng Short Course Reservoir Characterization File-20

    50 150 250 3500 100 200 300 400

    0.1

    0.3

    0.0

    0.2

    0.4

    Water Injected (Pore Volume)

    Oi

    lProduced(Po

    reVolume

    q=0.60 cc/min

    q=0.50 cc/min

    q=0.35 cc/min

    q=0.20 cc/min

    q=0.05 cc/min

    q=0.02 cc/min

    Colton Sandstone

  • 7/25/2019 Fracture Characterization

    108/142

    Tayfun Babadagli, PhD, PEng Short Course Reservoir Characterization File-20

    0.5

    0.4e)

  • 7/25/2019 Fracture Characterization

    109/142

    Tayfun Babadagli, PhD, PEng Short Course Reservoir Characterization File-20

    100 300 500 7000 200 400 600 800

    0.1

    0.3

    0.0

    0.2

    0.4

    Time, minutes

    OilProduced(Po

    reVolume

    q=0.60 cc/min

    q=0.50 cc/min

    q=0.35 cc/min

    q=0.20 cc/min

    q=0.05 cc/min

    q=0.02 cc/min

    Colton Sandstone

    Babadagli, Tran. in Porous Media, Oct. 2000

    Capillary

    Imbibition

    Transfer

    During

    Continuous

    Flow

    of

    WaterinFracture

    DYNAMIC CONDITIONS

  • 7/25/2019 Fracture Characterization

    110/142

    Tayfun Babadagli, PhD, PEng Short Course Reservoir Characterization File-20

    Water

    EFFICIENCY

  • 7/25/2019 Fracture Characterization

    111/142

    Tayfun Babadagli, PhD, PEng Short Course Reservoir Characterization File-20

    Needtoknowtotalamounttobeinjected

    DynamicexperimentsareneededBUT

    ThermalismoreefficienteventhoughhigherCAPEXisrequiredanditisalwaysEFFECTIVEwithalsootheradditional

    mechanisms.

    0.5

    0.6

    20 min.

    Berea Sandstone

  • 7/25/2019 Fracture Characterization

    112/142

    Tayfun Babadagli, PhD, PEng Short Course Reservoir Characterization File-20

    0.2 0.6 1.00.0 0.4 0.8 1.2

    Injection Rate, cc/min

    0.1

    0.3

    0.0

    0.2

    0.4

    OilProduced(PoreVolume)

    2 min.

    5 min.

    7 min.

    10 min.

    Babadagli, Tran. in Porous Media, Oct. 2000

    0.5

    0.6

    175 min.

    Aust in Chalk

  • 7/25/2019 Fracture Characterization

    113/142

    Tayfun Babadagli, PhD, PEng Short Course Reservoir Characterization File-20

    0.05 0.15 0.25 0.350.00 0.10 0.20 0.30 0.40

    Injection Rate, cc/min

    0.1

    0.3

    0.0

    0.2

    0.4

    OilProduced(PoreVolume)

    15 min.

    45 min.

    60 min.

    100 min.

    Babadagli, Tran. in Porous Media, Oct. 2000

    0.5

    0.4

    0.5

    Colton Sandstone

  • 7/25/2019 Fracture Characterization

    114/142

    Tayfun Babadagli, PhD, PEng Short Course Reservoir Characterization File-20

    0.10 0.30 0.50 0.700.00 0.20 0.40 0.60

    Injection Rate, cc/min

    0.1

    0.2

    0.3

    0.4

    0.0

    0.1

    0.2

    0.3

    OilProduced(PoreVolume)

    25 min.

    60 min.

    120 min.

    225 min.

    300 min.

    Babadagli, Tran. in Porous Media, Oct. 2000

    1.0

    0.8

    x(OPF

    M)

    IW)

    Berea Sandstone Experiments

    Austin Chalk Experiments

    Colton Sandstone Experiments

  • 7/25/2019 Fracture Characterization

    115/142

    Tayfun Babadagli, PhD, PEng Short Course Reservoir Characterization File-20

    1 3 50 2 4 6

    0.2

    0.6

    0.0

    0.4

    Injection Rate, cc/min

    OilP

    roducedFromMatrix

    T

    otalInjectedWater(T

    Numerical Results

    Critical rates for each sample.

    Babadagli, Tran. in Porous Media, Oct. 2000

    3

    4

    in

    Berea

    Sandstone

  • 7/25/2019 Fracture Characterization

    116/142

    Tayfun Babadagli, PhD, PEng Short Course Reservoir Characterization File-20

    10 30 50 700 20 40 60

    1

    0

    2

    CriticalRa

    te,

    cc/m

    P k , (psi-md)c,max m

    ColtonSandstone

    Aust in

    Chalk

    Babadagli, Tran. in Porous Media, Oct. 2000

    1.0

    1.2

    Berea Sandstone

    Austin Chalk

    Colton Sandstone(O

    PFM

    )

    IW)

  • 7/25/2019 Fracture Characterization

    117/142

    Tayfun Babadagli, PhD, PEng Short Course Reservoir Characterization File-20

    0.01 0.10 1.00 10.00 100.00

    0.2

    0.6

    0.0

    0.4

    0.8

    O

    ilProducedFromMatrix(

    TotalInjected

    Water(TI

    Fracture Capillary Number, Nca,f

    mc

    fw

    cafkP

    kv

    Nmax,

    ,

    Babadagli, Tran. in Porous Media, Oct. 2000

    )(

    Cos

    vN wca CAPILLARY NUMBER :

  • 7/25/2019 Fracture Characterization

    118/142

    Tayfun Babadagli, PhD, PEng Short Course Reservoir Characterization File-20

    From Abrams, SPEJ Oct. 1975

    m

    i

    c k

    SJ

    P

    )(cos max.

    m

    fw

    VCfA

    Av

    capillary

    viscousN

    cos,

  • 7/25/2019 Fracture Characterization

    119/142

    Tayfun Babadagli, PhD, PEng Short Course Reservoir Characterization File-20

    mwiSJ )(

    )()()()(

    )()/()527.1(

    2max,

    ,

    cmAmdkSJpsiP

    cphrccqEN

    m

    m

    m

    wi

    c

    winj

    VCf

    m

    m

    m

    wi

    c

    winj

    VCf

    AkSJ

    P

    qN

    )(

    max,

    ,

    )()(

    )(

    )(

    )()/()505.9(

    2max,

    ,

    ftAmdk

    SJ

    psiP

    cpdaySTBqEN

    m

    m

    m

    wi

    c

    winj

    VCf

    FromPutraetal.,2001,SPE

  • 7/25/2019 Fracture Characterization

    120/142

    Tayfun Babadagli, PhD, PEng Short Course Reservoir Characterization File-20

    Modelusedinthenumericalsimulationof

    singlematrixoilrecovery

    = 300 cp

  • 7/25/2019 Fracture Characterization

    121/142

    Tayfun Babadagli, PhD, PEng Short Course Reservoir Characterization File-20

    (0.115cc/min)

    o

    300cp

    L AYER 1

    L AYER 2

    LAYER 3 (Fracture)Injection

    Production

    2.5 ft

    0.75 ft.(0.55 ft)(0.95 ft)(1.25 ft)

    (1.50 ft)

    0.75 ft.

    (0.05 ft.)

    1.00

    0.80t=10 min.

    ure(T

    n)

  • 7/25/2019 Fracture Characterization

    122/142

    Tayfun Babadagli, PhD, PEng Short Course Reservoir Characterization File-20

    0 4 8 12 16 201/FHTI (uL / ), dimensionless

    0.20

    0.60

    0.00

    0.40

    t=30 min.

    t=50 min.

    m m

    Critical FHTINormalizedTemp

    eratu

    EFFECTIVENESS

    ~

    EFFICIENCY INJECTIONRATEstb/day

    OPTIMUM

    ?

  • 7/25/2019 Fracture Characterization

    123/142

    Tayfun Babadagli, PhD, PEng Short Course Reservoir Characterization File-20

    EFFECTIVENESS

    :

    Oil

    recovery

    /

    time

    EFFICIENCY:Oilrecovery/Steaminjected

    ?

    DISCOUNTEDCUMULATIVENETGAIN

    (DCNG)

  • 7/25/2019 Fracture Characterization

    124/142

    Tayfun Babadagli, PhD, PEng Short Course Reservoir Characterization File-20

    1 MMBtu = 2.4 US $Discount Rate = 10 %

    DCNG = Amount gained by OIL RECOVERY - Cost of STEAM

    (only the cost of steam, no operational cost)

    40000

    50000

    ain,

    US

    $ q=25 STB/day

    q=60 STB/day

    q = 100 STB/day

  • 7/25/2019 Fracture Characterization

    125/142

    Tayfun Babadagli, PhD, PEng Short Course Reservoir Characterization File-20

    1 10 100 1000Time,days

    0

    10000

    20000

    30000

    Discoun

    tedcumulativenetga q 100STB/day

    q=150STB/day

    Continuousfracturecase

    50000

    40000

    ain,

    US

    $

    q=150STB/day

    q=100

    STB/day

    q=60 STB/day

  • 7/25/2019 Fracture Characterization

    126/142

    Tayfun Babadagli, PhD, PEng Short Course Reservoir Characterization File-20

    1 10 100 1000Time,days

    10000

    30000

    0

    20000

    Discountedcumulative

    netga

    Continuousfracturecase

    q=25 STB/day

    B b d li T O ti St I j ti St t i f N t ll F t d

  • 7/25/2019 Fracture Characterization

    127/142

    Tayfun Babadagli, PhD, PEng Short Course Reservoir Characterization File-20

    Babadagli,T.:OptimumSteamInjectionStrategiesforNaturallyFractured

    Reservoirs,PetroleumScienceandTechnology,vol.18,no.34,375405,2000.

    Babadagli,T.:EfficiencyofSteamfloodinginNaturallyFracturedReservoirsSPE

    38329,67thSPEWesternRegionalMeeting,LongBeach,CA2527June,1997,665

    675.

    Babadagli,T.:

    Effect

    of

    Fracture

    Properties

    on

    Steam

    Efficiency

    in

    Naturally

    Fractured

    Reservoirs,No:1998.020,7thUNITARInt.Conf.onHeavyCrudeandTarSands,2730

    Oct.,1998,Beijing,China,pp:179188.

  • 7/25/2019 Fracture Characterization

    128/142

    Tayfun Babadagli, PhD, PEng Short Course Reservoir Characterization File-20

    FracturedvsHomogeneous

  • 7/25/2019 Fracture Characterization

    129/142

    Tayfun Babadagli, PhD, PEng Short Course Reservoir Characterization File-20

    fw kv

    ImprovedModelingofOilWaterFlowinNFRs

    mc, kP max fw

    kv

    3

    1

  • 7/25/2019 Fracture Characterization

    130/142

    Tayfun Babadagli, PhD, PEng Short Course Reservoir Characterization File-20

    mc, kP max fw kv mc, kP max310*127.1

    orwi

    wiw

    SS

    SSS

    1

    )1( nro Sk

    m

    rw Sk 22 ))/1)(log(1113.0()log( n 1863.0))/1)(log(3421.0(

    2))/1)(log(0604.0()log( m 2554.0))/1)(log(2999.0(

  • 7/25/2019 Fracture Characterization

    131/142

    Tayfun Babadagli, PhD, PEng Short Course Reservoir Characterization File-20

  • 7/25/2019 Fracture Characterization

    132/142

    Tayfun Babadagli, PhD, PEng Short Course Reservoir Characterization File-20

    ktt

    A Practical Approach for Field Scale Performance Estimation of

    Water Injection in Fractured Oil Reservoirs

    2

    mawL

  • 7/25/2019 Fracture Characterization

    133/142

    Tayfun Babadagli, PhD, PEng Short Course Reservoir Characterization File-20

    2

    Ltt

    w

    D

    mawDk

    2

    max,

    m

    r

    fw

    mc

    L

    L

    kv

    kP

    2

    max,310*127.1

    1

    r

    m

    mc

    fw

    L

    L

    kP

    kv

    2

    max,

    2.01

    rm

    mc L

    L

    kP

    q

    Teflon heat-shrinkable tub

    Matrix

    Silicon

    Plaxy glass core-holder

    MISCIBLE

  • 7/25/2019 Fracture Characterization

    134/142

    Tayfun Babadagli, PhD, PEng Short Course Reservoir Characterization File-20

    Matrix

    MatrixFracture

    Silicon

    ISCO

    Pump

    Refractometer

    Production Line

    Heptane

    Source

    Core

    Holder

    TrivediandBabadagli,SPE100411

    0.2

    0.4

    0.6

    0.8

    1

    TotalOilP

    roduced

    (PV)

    6 ml/hr

    3 ml/hr

    1 ml/hr

    0.2

    0.4

    0.6

    0.8

    1

    TotalOilP

    roduced(PV) 6 ml/hr6 ml/hr

    3 ml/hr

    1 ml/hr

  • 7/25/2019 Fracture Characterization

    135/142

    Tayfun Babadagli, PhD, PEng Short Course Reservoir Characterization File-20

    Gravity Effect

    Gravity Effect -

    Ultimate RecoverySlower rate - Minimal

    Higher rate- Profound

    Time Recovery

    High rate : Faster/Lower

    Slow rate : Slower /High

    0

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    0.8

    0.9

    1

    0 1 2 3 4 5Tota

    lSoluteRecovere

    d(PV)

    Total Solvent Injected (Pore Volume)

    BSH-3 BSH-6 BV-3 BV-6

    0

    0 1 2 3 4

    Total Solvent Injected (PV)BSV-1 BSV-3 BSV-6

    0

    0 50 100 150 200

    Time (hr)BSV - 1 BSV - 3 BSV - 6

    FDI=

    High solvent injection rate : Most of the recovery is from the fracture

    max,

    ,*

    **

    cm

    wf

    CafPk

    vkN

    om

    sf

    Dk

    fvk

    **

    *)(**

  • 7/25/2019 Fracture Characterization

    136/142

    Tayfun Babadagli, PhD, PEng Short Course Reservoir Characterization File-20

    Highsolventinjectionrate:Mostoftherecoveryisfromthefracturethroughviscousflowandrecoveryfrommatrixislowduetopoor

    diffusioninto

    matrix

    higher

    FDI.

    Lowerinjectionrates:ThediffusiondominatestherecoveryLowerFDI.

    HigherFDI:indicatesafasterrecoverywithmoresolventinjectionandpresumably

    less

    ultimate

    recovery

    from

    the

    matrix.

    LowerFDI:Indicatesslowbutmoreefficientrecovery.Thismightyieldhigherultimaterecoveriesfromthematrix,theprocessbeingslowduetolowinjectionrate.

    31

  • 7/25/2019 Fracture Characterization

    137/142

    Tayfun Babadagli, PhD, PEng Short Course Reservoir Characterization File-20

    TrivediandBabadagli,SPE100411

    Horizontal Berea Sandstone

    1

  • 7/25/2019 Fracture Characterization

    138/142

    Tayfun Babadagli, PhD, PEng Short Course Reservoir Characterization File-20

    0

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    0.8

    0.9

    2 3 4 5 6 7 8 9 10

    Flow rate (ml/hr)

    To

    talOilProducted(PV)

    20 hrs 30 hrs 40 hrs 80 hrs

    TrivediandBabadagli,SPE100411

    Horizontal Indiana Limestone

    0.5

  • 7/25/2019 Fracture Characterization

    139/142

    Tayfun Babadagli, PhD, PEng Short Course Reservoir Characterization File-20

    0

    0.05

    0.1

    0.15

    0.2

    0.25

    0.3

    0.35

    0.4

    0.45

    2 3 4 5 6 7 8 9 10

    Flow Rate (ml/hr)

    T

    otalOilProduced(PV

    )

    10 hrs 20 hrs 25 hrs 50 hrs 70 hrs

    TrivediandBabadagli,SPE100411

    Horizontal Aged Berea Sandstone

    0.7

    0.8

    )

  • 7/25/2019 Fracture Characterization

    140/142

    Tayfun Babadagli, PhD, PEng Short Course Reservoir Characterization File-20

    0

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    2 3 4 5 6 7 8

    Flow Rate (ml/hr)

    TotalOilProduced(PV)

    10 hr 20 hr 35 hr 50 hr

    TrivediandBabadagli,SPE100411

    0.5

    0.6

    0.7

    tInjected(PV)

  • 7/25/2019 Fracture Characterization

    141/142

    Tayfun Babadagli, PhD, PEng Short Course Reservoir Characterization File-20

    0

    0.1

    0.2

    0.3

    0.4

    0.5

    0 1 2 3 4 5 6 7 8

    FDI

    TotalOilProduced(PV)/Total

    Solvent

    om

    sf

    Dkfvk

    ***)(**

    TrivediandBabadagli,SPE100411

    (NMFD)v/s(TOP/TSI)

    37

    Ng

    ArPe

    r

    L

    gDk

    buN M

    mmF

    TFDM

    *20

    0.45

    0.5

    cted

  • 7/25/2019 Fracture Characterization

    142/142

    Tayfun Babadagli, PhD, PEng Short Course Reservoir Characterization File-20

    R2= 0.8247

    0

    0.05

    0.1

    0.15

    0.2

    0.25

    0.3

    0.35

    0.4

    0.E+00 2.E+07 4.E+07 6.E+07 8.E+07 1.E+08 1.E+08 1.E+08 2.E+08

    Matrix-Fracture Diffus ion Group (NM-FD)

    To

    talOilP

    roduced(

    PV)/TotalSolven

    tInjec

    (PV)