70
FRCR: Physics Lectures Diagnostic Radiology Lecture 8 Mammography and tomosynthesis Dr Tim Wood Clinical Scientist

FRCR: Physics Lectures Diagnostic Radiology Lecture 8 Mammography and tomosynthesis Dr Tim Wood Clinical Scientist

Embed Size (px)

Citation preview

Page 1: FRCR: Physics Lectures Diagnostic Radiology Lecture 8 Mammography and tomosynthesis Dr Tim Wood Clinical Scientist

FRCR: Physics Lectures

Diagnostic Radiology

Lecture 8 Mammography and tomosynthesis

Dr Tim Wood

Clinical Scientist

Page 2: FRCR: Physics Lectures Diagnostic Radiology Lecture 8 Mammography and tomosynthesis Dr Tim Wood Clinical Scientist

Overview

• Introduction to mammography

• The mammography X-ray set

• The physics of mammography– X-ray spectra for mammo

• Film/screen vs digital mammography

• The NHS Breast Screening programme

• Tomosynthesis

Page 3: FRCR: Physics Lectures Diagnostic Radiology Lecture 8 Mammography and tomosynthesis Dr Tim Wood Clinical Scientist

An introduction to mammography• The aims of mammography are:

– Demonstrate microcalcifications – features with high inherent contrast, but 100 μm or less in diameter

– Demonstrate low contrast masses within the breast tissue – these may be relatively large, but are often very low contrast as glandular and adipose tissue have very similar atomic number (7.4 and 6.5, respectively)

• Hence, require good spatial and contrast resolution

• Also used for screening so must be lowest dose possible (more on this later)

• Presents a different technical challenge compared with everything discussed so far

Page 4: FRCR: Physics Lectures Diagnostic Radiology Lecture 8 Mammography and tomosynthesis Dr Tim Wood Clinical Scientist

An introduction to mammography

Page 5: FRCR: Physics Lectures Diagnostic Radiology Lecture 8 Mammography and tomosynthesis Dr Tim Wood Clinical Scientist

The mammography X-ray set

• Highly specialised X-ray systems required for mammography

• Older sets based on a film-screen system

• Modern sets utilise flat panels (typically direct conversion)

• Sectra (now Philips) MicroDose uses a scanning fan beam geometry (see later)

Page 6: FRCR: Physics Lectures Diagnostic Radiology Lecture 8 Mammography and tomosynthesis Dr Tim Wood Clinical Scientist

The mammo unit• Cathode-anode axis is

perpendicular to chest wall (CW)– Cathode is positioned at the CW

• Fall off in intensity due to anode-heel effect is at the nipple edge (NE)– More tissue at the CW, so

requires more intense X-ray beam

– NE tends to be thinner due to shape of anatomy (despite compression) so requires less Farr’s Physics for Medical Imaging

2nd Edition

Page 7: FRCR: Physics Lectures Diagnostic Radiology Lecture 8 Mammography and tomosynthesis Dr Tim Wood Clinical Scientist

The mammo unit• Focal spot is located directly

above the CW edge• Dual focus tubes are used

– ~0.4 mm for general mammo– ~0.1-0.15 mm for magnification

• Due to small focal spots, tube current tends to be limited to ~100 mA– Avoid melting the anode

• kVp tends to be in the range 24-35 kV– Maximise radiographic contrast Farr’s Physics for Medical Imaging

2nd Edition

Page 8: FRCR: Physics Lectures Diagnostic Radiology Lecture 8 Mammography and tomosynthesis Dr Tim Wood Clinical Scientist

The mammo unit• Breast is positioned on the

support platform• Compression is applied to;

– Hold the breast still during exposure (exposure times can be quite long due to low mA) – reduce motion unsharpness

– Reduce the thickness of tissue so lower exposure factors can be used (lower dose)

– Spread the anatomy out to minimise overlaying structures (improve contrast) Farr’s Physics for Medical Imaging

2nd Edition

Page 9: FRCR: Physics Lectures Diagnostic Radiology Lecture 8 Mammography and tomosynthesis Dr Tim Wood Clinical Scientist

The mammo unit• Compression is applied to;

– Equalise thickness to ensure homogenous density on the radiograph

– Bring the structures closer to the detector to reduce geometric unshaprness

Farr’s Physics for Medical Imaging2nd Edition

Page 10: FRCR: Physics Lectures Diagnostic Radiology Lecture 8 Mammography and tomosynthesis Dr Tim Wood Clinical Scientist

The mammo unit• A moving anti-scatter grid is

incorporated in the support platform (bucky) to improve image contrast

• AEC detectors on film-screen systems are positioned behind the film cassette (as opposed to in front, like in general radiography), as they will be seen on the resulting image due to the low kV used Farr’s Physics for Medical Imaging

2nd Edition

Page 11: FRCR: Physics Lectures Diagnostic Radiology Lecture 8 Mammography and tomosynthesis Dr Tim Wood Clinical Scientist

Figure 1.  Typical process of x-ray mammography.

Mahesh M Radiographics 2004;24:1747-1760

©2004 by Radiological Society of North America

Page 12: FRCR: Physics Lectures Diagnostic Radiology Lecture 8 Mammography and tomosynthesis Dr Tim Wood Clinical Scientist

The mammo unit• The film/screen AEC chamber

position can be moved to accommodate different sized women– Slides back and forth along the

central axis

• Digital systems use the signal incident on the detector as the AEC, and can use quite complex algorithms to determine the region of the image to use

Farr’s Physics for Medical Imaging2nd Edition

Page 13: FRCR: Physics Lectures Diagnostic Radiology Lecture 8 Mammography and tomosynthesis Dr Tim Wood Clinical Scientist

The X-ray tube

• In mammography, to maximise contrast use the lowest kV possible

• Typical compressed breast thickness is 40-50 mm, and rarely greater than 80 mm

• Ideal mono-energetic X-ray beam would be 16-22 keV

• Hence, the use of the full range of the Bremsstrahlung spectrum from a tungsten target with aluminium filters is not ideal for mammo

• Use a range of different combinations of target and filter for different breast thicknesses and/or detectors

Page 14: FRCR: Physics Lectures Diagnostic Radiology Lecture 8 Mammography and tomosynthesis Dr Tim Wood Clinical Scientist

The mammography X-ray spectrum

• Traditional film-screen mammography relies on the spectrum from a Molybdenum (Mo) target with a Mo filter for small to average sized breast (up to about 50-60 mm)

• Alternative filters such as Rhodium (Rh) can be used for thicker breasts, and some (but not many) systems use a Rh target as well

• Tungsten targets are also used for thicker breasts, but in conjunction with the Rh filter (not Al like general radiography)

• W/Rh is also primary target filter combination in digital systems (plus some other filters such as silver and very thin aluminium)

Page 15: FRCR: Physics Lectures Diagnostic Radiology Lecture 8 Mammography and tomosynthesis Dr Tim Wood Clinical Scientist

The mammography X-ray spectrum

• So why use these combinations for mammography?...

• Mo – K-edge at 20 keV – Characteristic X-rays at 17.4 and 19.6 keV

• Rh – K-edge at 23.2 keV – Characteristic X-rays at 20.2 and 22.8 keV

Page 16: FRCR: Physics Lectures Diagnostic Radiology Lecture 8 Mammography and tomosynthesis Dr Tim Wood Clinical Scientist

K-edge (revision)

20 keV

Page 17: FRCR: Physics Lectures Diagnostic Radiology Lecture 8 Mammography and tomosynthesis Dr Tim Wood Clinical Scientist

Mo/Mo Spectrum

Page 18: FRCR: Physics Lectures Diagnostic Radiology Lecture 8 Mammography and tomosynthesis Dr Tim Wood Clinical Scientist

Mo target - unfiltered

0.00E+005.00E+031.00E+041.50E+042.00E+042.50E+043.00E+043.50E+044.00E+044.50E+045.00E+045.50E+046.00E+046.50E+047.00E+047.50E+048.00E+048.50E+049.00E+049.50E+041.00E+051.05E+051.10E+051.15E+051.20E+051.25E+051.30E+051.35E+051.40E+051.45E+051.50E+051.55E+051.60E+051.65E+051.70E+051.75E+051.80E+051.85E+051.90E+051.95E+052.00E+052.05E+052.10E+052.15E+05

0 5 10 15 20 25 30

kV

Inte

nsity

Mo no filter

Page 19: FRCR: Physics Lectures Diagnostic Radiology Lecture 8 Mammography and tomosynthesis Dr Tim Wood Clinical Scientist

Mo target – Mo filter

0.00E+005.00E+031.00E+041.50E+042.00E+042.50E+043.00E+043.50E+044.00E+044.50E+045.00E+045.50E+046.00E+046.50E+047.00E+047.50E+048.00E+048.50E+049.00E+049.50E+041.00E+051.05E+051.10E+051.15E+051.20E+051.25E+051.30E+051.35E+051.40E+051.45E+051.50E+051.55E+051.60E+051.65E+051.70E+051.75E+051.80E+051.85E+051.90E+051.95E+052.00E+052.05E+052.10E+052.15E+05

0 5 10 15 20 25 30

kV

Inte

nsity

Mo no filter

Mo/Mo

‘Soft’ X-rays absorbed by filter (as for general X-ray set)

K-edge at 20 keV absorbs most of ‘hard’ X-rays

Page 20: FRCR: Physics Lectures Diagnostic Radiology Lecture 8 Mammography and tomosynthesis Dr Tim Wood Clinical Scientist

Mo/Rh Spectrum

Page 21: FRCR: Physics Lectures Diagnostic Radiology Lecture 8 Mammography and tomosynthesis Dr Tim Wood Clinical Scientist

Mo target - unfiltered

0.00E+005.00E+031.00E+041.50E+042.00E+042.50E+043.00E+043.50E+044.00E+044.50E+045.00E+045.50E+046.00E+046.50E+047.00E+047.50E+048.00E+048.50E+049.00E+049.50E+041.00E+051.05E+051.10E+051.15E+051.20E+051.25E+051.30E+051.35E+051.40E+051.45E+051.50E+051.55E+051.60E+051.65E+051.70E+051.75E+051.80E+051.85E+051.90E+051.95E+052.00E+052.05E+052.10E+052.15E+05

0 5 10 15 20 25 30

kV

Inte

nsity

Mo no filter

Page 22: FRCR: Physics Lectures Diagnostic Radiology Lecture 8 Mammography and tomosynthesis Dr Tim Wood Clinical Scientist

Mo target – Rh filter

0.00E+005.00E+031.00E+041.50E+042.00E+042.50E+043.00E+043.50E+044.00E+044.50E+045.00E+045.50E+046.00E+046.50E+047.00E+047.50E+048.00E+048.50E+049.00E+049.50E+041.00E+051.05E+051.10E+051.15E+051.20E+051.25E+051.30E+051.35E+051.40E+051.45E+051.50E+051.55E+051.60E+051.65E+051.70E+051.75E+051.80E+051.85E+051.90E+051.95E+052.00E+052.05E+052.10E+052.15E+05

0 5 10 15 20 25 30

kV

Inte

nsity

Mo no filter

Mo/Rh

K-edge at 23.2 keV absorbs less of the ‘hard X-rays’ than Mo filter – hence, higher mean energy

Page 23: FRCR: Physics Lectures Diagnostic Radiology Lecture 8 Mammography and tomosynthesis Dr Tim Wood Clinical Scientist

Mo target – both filters

0.00E+005.00E+031.00E+041.50E+042.00E+042.50E+043.00E+043.50E+044.00E+044.50E+045.00E+045.50E+046.00E+046.50E+047.00E+047.50E+048.00E+048.50E+049.00E+049.50E+041.00E+051.05E+051.10E+051.15E+051.20E+051.25E+051.30E+051.35E+051.40E+051.45E+051.50E+051.55E+051.60E+051.65E+051.70E+051.75E+051.80E+051.85E+051.90E+051.95E+052.00E+052.05E+052.10E+052.15E+05

0 5 10 15 20 25 30

kV

Inte

nsity

Mo no filter

Mo/Mo

Mo/Rh

Page 24: FRCR: Physics Lectures Diagnostic Radiology Lecture 8 Mammography and tomosynthesis Dr Tim Wood Clinical Scientist

Mammography X-ray spectra

• Traditionally, mammography relies on the characteristic X-rays and K-edges of target/filter materials to produce a low energy spectrum around the ideal 16-22 keV

• Thicker breasts, however, require more penetrating beams, so W or Rh target may be used

• Result in higher mean energy of X-ray beam• For thinner to thicker breasts, systems tend to

use:– Mo/Mo then Mo/Rh then Rh/Rh or W/Rh

Page 25: FRCR: Physics Lectures Diagnostic Radiology Lecture 8 Mammography and tomosynthesis Dr Tim Wood Clinical Scientist

Rh/Rh Spectrum

Page 26: FRCR: Physics Lectures Diagnostic Radiology Lecture 8 Mammography and tomosynthesis Dr Tim Wood Clinical Scientist

Rh target – unfiltered

0.00E+00

5.00E+03

1.00E+04

1.50E+04

2.00E+04

2.50E+04

3.00E+04

3.50E+04

4.00E+04

4.50E+04

5.00E+04

5.50E+04

6.00E+04

6.50E+04

7.00E+04

7.50E+04

8.00E+04

8.50E+04

0 5 10 15 20 25 30

kV

Inte

nsity

Rh no filter

Page 27: FRCR: Physics Lectures Diagnostic Radiology Lecture 8 Mammography and tomosynthesis Dr Tim Wood Clinical Scientist

Rh target – Rh filter

0.00E+00

5.00E+03

1.00E+04

1.50E+04

2.00E+04

2.50E+04

3.00E+04

3.50E+04

4.00E+04

4.50E+04

5.00E+04

0 5 10 15 20 25 30

kV

Inte

nsity

Rh/Rh

Page 28: FRCR: Physics Lectures Diagnostic Radiology Lecture 8 Mammography and tomosynthesis Dr Tim Wood Clinical Scientist

Rh target – Rh filter

0.00E+00

5.00E+03

1.00E+04

1.50E+04

2.00E+04

2.50E+04

3.00E+04

3.50E+04

4.00E+04

4.50E+04

5.00E+04

5.50E+04

6.00E+04

6.50E+04

7.00E+04

7.50E+04

8.00E+04

8.50E+04

0 5 10 15 20 25 30

kV

Inte

nsity

Rh no filter

Rh/Rh

Page 29: FRCR: Physics Lectures Diagnostic Radiology Lecture 8 Mammography and tomosynthesis Dr Tim Wood Clinical Scientist

W target

0.00E+005.00E+031.00E+041.50E+042.00E+042.50E+043.00E+043.50E+044.00E+044.50E+045.00E+045.50E+046.00E+046.50E+047.00E+047.50E+048.00E+048.50E+049.00E+049.50E+041.00E+051.05E+051.10E+051.15E+051.20E+051.25E+051.30E+051.35E+051.40E+051.45E+051.50E+051.55E+051.60E+051.65E+051.70E+051.75E+051.80E+051.85E+051.90E+051.95E+052.00E+052.05E+052.10E+052.15E+052.20E+052.25E+052.30E+052.35E+052.40E+052.45E+052.50E+052.55E+052.60E+052.65E+052.70E+052.75E+052.80E+052.85E+052.90E+052.95E+053.00E+053.05E+053.10E+053.15E+053.20E+053.25E+053.30E+053.35E+053.40E+053.45E+053.50E+053.55E+053.60E+053.65E+053.70E+053.75E+053.80E+053.85E+053.90E+053.95E+054.00E+054.05E+054.10E+054.15E+054.20E+054.25E+054.30E+054.35E+054.40E+054.45E+054.50E+054.55E+054.60E+054.65E+054.70E+054.75E+054.80E+054.85E+054.90E+054.95E+055.00E+055.05E+055.10E+055.15E+055.20E+055.25E+055.30E+055.35E+055.40E+055.45E+055.50E+055.55E+055.60E+055.65E+055.70E+055.75E+055.80E+055.85E+055.90E+055.95E+056.00E+056.05E+056.10E+056.15E+056.20E+056.25E+056.30E+056.35E+056.40E+056.45E+056.50E+056.55E+056.60E+056.65E+056.70E+056.75E+056.80E+056.85E+056.90E+056.95E+057.00E+057.05E+057.10E+057.15E+057.20E+057.25E+057.30E+057.35E+057.40E+057.45E+057.50E+057.55E+057.60E+057.65E+057.70E+057.75E+057.80E+057.85E+057.90E+057.95E+058.00E+058.05E+058.10E+058.15E+058.20E+058.25E+058.30E+058.35E+058.40E+058.45E+058.50E+058.55E+058.60E+058.65E+058.70E+058.75E+058.80E+058.85E+058.90E+058.95E+059.00E+059.05E+059.10E+059.15E+059.20E+059.25E+059.30E+059.35E+059.40E+059.45E+059.50E+059.55E+059.60E+059.65E+059.70E+059.75E+059.80E+059.85E+059.90E+059.95E+051.00E+061.01E+061.01E+061.02E+061.02E+061.03E+061.03E+061.04E+061.04E+061.05E+061.05E+061.06E+061.06E+061.07E+061.07E+061.08E+06

0 5 10 15 20 25 30

kV

Inte

nsity

W no filter

Page 30: FRCR: Physics Lectures Diagnostic Radiology Lecture 8 Mammography and tomosynthesis Dr Tim Wood Clinical Scientist

W target – Rh filter

0.00E+00

5.00E+03

1.00E+04

1.50E+04

0 5 10 15 20 25 30

kV

Inte

nsity

W/Rh

Page 31: FRCR: Physics Lectures Diagnostic Radiology Lecture 8 Mammography and tomosynthesis Dr Tim Wood Clinical Scientist

W target – Rh filter

0.00E+005.00E+031.00E+041.50E+042.00E+042.50E+043.00E+043.50E+044.00E+044.50E+045.00E+045.50E+046.00E+046.50E+047.00E+047.50E+048.00E+048.50E+049.00E+049.50E+041.00E+051.05E+051.10E+051.15E+051.20E+051.25E+051.30E+051.35E+051.40E+051.45E+051.50E+051.55E+051.60E+051.65E+051.70E+051.75E+051.80E+051.85E+051.90E+051.95E+052.00E+052.05E+052.10E+052.15E+052.20E+052.25E+052.30E+052.35E+052.40E+052.45E+052.50E+052.55E+052.60E+052.65E+052.70E+052.75E+052.80E+052.85E+052.90E+052.95E+053.00E+053.05E+053.10E+053.15E+053.20E+053.25E+053.30E+053.35E+053.40E+053.45E+053.50E+053.55E+053.60E+053.65E+053.70E+053.75E+053.80E+053.85E+053.90E+053.95E+054.00E+054.05E+054.10E+054.15E+054.20E+054.25E+054.30E+054.35E+054.40E+054.45E+054.50E+054.55E+054.60E+054.65E+054.70E+054.75E+054.80E+054.85E+054.90E+054.95E+055.00E+055.05E+055.10E+055.15E+055.20E+055.25E+055.30E+055.35E+055.40E+055.45E+055.50E+055.55E+055.60E+055.65E+055.70E+055.75E+055.80E+055.85E+055.90E+055.95E+056.00E+056.05E+056.10E+056.15E+056.20E+056.25E+056.30E+056.35E+056.40E+056.45E+056.50E+056.55E+056.60E+056.65E+056.70E+056.75E+056.80E+056.85E+056.90E+056.95E+057.00E+057.05E+057.10E+057.15E+057.20E+057.25E+057.30E+057.35E+057.40E+057.45E+057.50E+057.55E+057.60E+057.65E+057.70E+057.75E+057.80E+057.85E+057.90E+057.95E+058.00E+058.05E+058.10E+058.15E+058.20E+058.25E+058.30E+058.35E+058.40E+058.45E+058.50E+058.55E+058.60E+058.65E+058.70E+058.75E+058.80E+058.85E+058.90E+058.95E+059.00E+059.05E+059.10E+059.15E+059.20E+059.25E+059.30E+059.35E+059.40E+059.45E+059.50E+059.55E+059.60E+059.65E+059.70E+059.75E+059.80E+059.85E+059.90E+059.95E+051.00E+061.01E+061.01E+061.02E+061.02E+061.03E+061.03E+061.04E+061.04E+061.05E+061.05E+061.06E+061.06E+061.07E+061.07E+061.08E+06

0 5 10 15 20 25 30

kV

Inte

nsity

W no filter

W/Rh

Page 32: FRCR: Physics Lectures Diagnostic Radiology Lecture 8 Mammography and tomosynthesis Dr Tim Wood Clinical Scientist

Mammography X-ray spectra

• Digital mammography tends to use W/Rh combination as digital gives much better contrast than the fixed dynamic range of film– Hence, the poorer contrast due to the harder X-ray

beam is less significant than the gain due to the use of digital (window and level, image processing, etc)

– Allows lower doses to be used for the same image quality

– In practice, contrast resolution in digital is much better than film

Page 33: FRCR: Physics Lectures Diagnostic Radiology Lecture 8 Mammography and tomosynthesis Dr Tim Wood Clinical Scientist

Film-screen

• Film-screen mammography requires high spatial resolution– As using lower kV,

thinner screens may be used to improve resolution

– Single screen and emulsion layer to minimise crossover and parallax

Page 34: FRCR: Physics Lectures Diagnostic Radiology Lecture 8 Mammography and tomosynthesis Dr Tim Wood Clinical Scientist

Film-screen

• The screen is positioned on the distal side of the film– Hence, highest proportion of photon interactions will

be on the side of the screen in contact with the film– This minimises the spread of light from the screen to

the film

• Film-screen mammo system is capable of ~15 lp mm-1 or better – Compared with ~7 lp mm-1 for general radiography

Page 35: FRCR: Physics Lectures Diagnostic Radiology Lecture 8 Mammography and tomosynthesis Dr Tim Wood Clinical Scientist

General radiography screen-unsharpness

Film

Phosphor

Object

Page 36: FRCR: Physics Lectures Diagnostic Radiology Lecture 8 Mammography and tomosynthesis Dr Tim Wood Clinical Scientist

Mammography screen-unsharpness

Film

Phosphor

Object

Page 37: FRCR: Physics Lectures Diagnostic Radiology Lecture 8 Mammography and tomosynthesis Dr Tim Wood Clinical Scientist

Film-screen

• Film-screen system is still limited by the fixed dynamic range of film

• High contrast (gamma) films are used

• Critical to ensure exposure factors are matched to the film– AEC setup and QA

very important

Page 38: FRCR: Physics Lectures Diagnostic Radiology Lecture 8 Mammography and tomosynthesis Dr Tim Wood Clinical Scientist

Figure 3.  Limitations of SFM in imaging a breast composed of a wide range of tissues.

Mahesh M Radiographics 2004;24:1747-1760

©2004 by Radiological Society of North America

Page 39: FRCR: Physics Lectures Diagnostic Radiology Lecture 8 Mammography and tomosynthesis Dr Tim Wood Clinical Scientist

The automatic exposure control

• AECs are implemented in different ways by different manufacturers– Manual selection of kV and

T/F based on exposure chart– Automatic select everything

based on breast thickness and/or pre-pulse of X-rays

Page 40: FRCR: Physics Lectures Diagnostic Radiology Lecture 8 Mammography and tomosynthesis Dr Tim Wood Clinical Scientist

Film-screen versus digital

• The advantaged and limitations of the film-screen system:

Page 41: FRCR: Physics Lectures Diagnostic Radiology Lecture 8 Mammography and tomosynthesis Dr Tim Wood Clinical Scientist

Figure 2.  Typical response curves for SFM and digital mammography.

Mahesh M Radiographics 2004;24:1747-1760

©2004 by Radiological Society of North America

Page 42: FRCR: Physics Lectures Diagnostic Radiology Lecture 8 Mammography and tomosynthesis Dr Tim Wood Clinical Scientist

Film-screen versus digital• Digital mammography tends to use direct

conversion flat panel detectors– Better spatial resolution than indirect detectors, but

still limited to ~7-10 lp mm-1

– Hence, limiting spatial resolution is poorer c.f. film• BUT, image processing and window/level

controls result in better contrast resolution• Lower dose as more efficient (better DQE) and

higher beam qualities used• Higher throughput as instant image on screen

– Particularly valuable on ‘vans’• Plus all the other advantages of digital (and

disadvantages, such as cost!)

Page 43: FRCR: Physics Lectures Diagnostic Radiology Lecture 8 Mammography and tomosynthesis Dr Tim Wood Clinical Scientist

Digital Mammography

• Directly acquire the data in digital format

• Main technologies:– Phosphor coupled to a

read out device – Indirect conversion flat panels

– a-Se/TFT array – Direct conversion flat panels

– Photon counting scanning detector

HKD1 (Centenary)

HGA1 & 2(Grimsby)

HSU (Health Central), HKD3 (Room 3), HKD4 (Cromwell Road), HMU1-3,

HKD2 (Room 2)

Page 44: FRCR: Physics Lectures Diagnostic Radiology Lecture 8 Mammography and tomosynthesis Dr Tim Wood Clinical Scientist

Direct conversion flat panels• Amorphous Selenium (a-Se)

is a photoconductor – Converts X-rays directly to

electrons

• Deposited directly onto amorphous silicon TFT array

• No phosphor, hence no light spread

• Resolution governed by effective pixel pitch

• Every mammography set manufacturer (except GE) use this technology

Page 45: FRCR: Physics Lectures Diagnostic Radiology Lecture 8 Mammography and tomosynthesis Dr Tim Wood Clinical Scientist

MicroDose ‘photon counting’• Photon counting detector = no

electronic noise or analogue-to-digital conversion

• Uses a scanning fan beam rather than a full field digital flat panel

• Hence, much less scatter is generated in the breast– Do not need a moving anti-scatter grid,– Improves image quality, and/or– Reduces patient dose

• Doses tend to be lower for this type of system than flat panel sets (~50%!)

• BUT, the tubes are worked much harder

Page 46: FRCR: Physics Lectures Diagnostic Radiology Lecture 8 Mammography and tomosynthesis Dr Tim Wood Clinical Scientist

The MicroDose system

The output from ‘Collimator 1’

Page 47: FRCR: Physics Lectures Diagnostic Radiology Lecture 8 Mammography and tomosynthesis Dr Tim Wood Clinical Scientist

Photon counting• Detector counts photons

as they hit the detector• Large number of

crystalline Si strips in edge-on geometry (ensure long enough to absorb X-rays)

• X-ray interactions excite electron-hole pairs (several thousand)

• Bias voltage applied to induce current

• Fast read-out electronics to count the pulses (2 ms)

Page 48: FRCR: Physics Lectures Diagnostic Radiology Lecture 8 Mammography and tomosynthesis Dr Tim Wood Clinical Scientist

Photon counting

Page 49: FRCR: Physics Lectures Diagnostic Radiology Lecture 8 Mammography and tomosynthesis Dr Tim Wood Clinical Scientist

Photon counting

• Flat panels = integrating systems– Sum the electrical charge from all X-ray photon interactions– High energy photon = more electrical signal = greater weighting

in the image = poorer contrast

• Photon counting– High energy = larger pulse– Low energy = smaller pulse– Can separate ‘high’ and ‘low’ energy photons– Can apply equal weighting to improve contrast– Opens up the possibility of dual energy mammography (next

version of MicroDose has this functionality, with glandularity calculation as standard)

Page 50: FRCR: Physics Lectures Diagnostic Radiology Lecture 8 Mammography and tomosynthesis Dr Tim Wood Clinical Scientist

Patient dose

• Patient dose optimisation particularly important in mammography (see later)

• Systems designed to only expose the breast• Hence, effective dose is not a particularly useful

quantity• The mean glandular dose (in mGy) is used

instead– Typical values fall in the range 1.5-3 mGy per film– In the UK, the dose to the standard breast (4.5 cm

Perspex, equivalent to 5.3 cm breast) must be less than 2.5 mGy

– Doses in digital will be much lower than this– 2 mGy ~ 1 in 50,000 risk of fatal cancer (age 50-65)

Page 51: FRCR: Physics Lectures Diagnostic Radiology Lecture 8 Mammography and tomosynthesis Dr Tim Wood Clinical Scientist

Magnification• Sometimes referred to as

macroradiography• Mammo only modality that

routinely uses magnification views

• Use a raised platform to support the breast about half way between focus and film i.e. not in close(ish) contact anymore

• Magnification is the result of the diverging X-ray beams travelling in straight lines

Page 52: FRCR: Physics Lectures Diagnostic Radiology Lecture 8 Mammography and tomosynthesis Dr Tim Wood Clinical Scientist

Magnification imaging• Magnifies image by a factor of

between 1.5-1.8• Magnification increases

geometric unsharpness so small focal spot is used– Increases exposure times due to

lower mA• Can remove grid to lower

exposure factors (and patient dose) as scatter is reduced by the air gap

• Overall patient dose is higher– Magnification requires

individual justification

Object

Film/ detector

Focal spot

Penumbra

Page 53: FRCR: Physics Lectures Diagnostic Radiology Lecture 8 Mammography and tomosynthesis Dr Tim Wood Clinical Scientist

The NHS Breast Screening Programme

• Based on the Forrest Report (1986), the first breast screening programme in the world was setup in England in 1988

• All women in the age range 50-70 invited every 3 years for mammogram– Two views of each breast– Age range recently extend to between late 40s-73

• However, the fundamental principle of screening programme means that healthy women are exposed to radiation– What about justification?

Page 54: FRCR: Physics Lectures Diagnostic Radiology Lecture 8 Mammography and tomosynthesis Dr Tim Wood Clinical Scientist

Justification of the NHSBSP• The vast majority of women X-rayed in the

NHSBSP show no signs of cancer, and have no symptoms prior to attending– Women who display symptoms should go to their GP

and be referred to the symptomatic unit at their local hospital (outside the scope of the NHSBSP, but in Hull these are the same)

• On an individual basis, justification is difficult• Justification for the NHSBSP is based on the net

benefit to the population, not the individual• However, this makes patient dose optmisation

and quality assurance (QA) critical to effectiveness of the programme– QA also important due to the basic principles of

mammography e.g. low kV, high spatial resolution, etc

Page 55: FRCR: Physics Lectures Diagnostic Radiology Lecture 8 Mammography and tomosynthesis Dr Tim Wood Clinical Scientist

QA and the NHSBSP

• QA is a fundamental principle of the Breast Screening Programme

• You are X-raying ‘healthy’ women, with no symptoms, so the JUSTIFICATION for the exposure (under IR(ME)R) is based on the net benefit to the population (rather than each individual), versus the risk of irradiating a large number of healthy women– This is a very current issue, given the recent publications about

risk-benefit and overdiagnosis in the NHSBSP…

• OPTIMISATION (under IR(ME)R) to ensure doses are ALARP is therefore incredibly important, so must make sure the X-ray equipment is fit for use!

Page 56: FRCR: Physics Lectures Diagnostic Radiology Lecture 8 Mammography and tomosynthesis Dr Tim Wood Clinical Scientist

The NHSBSP and QA

• The national NHSBSP is split into localities (e.g. Humberside BSP) that then belong to regions (e.g. North East, Yorkshire and Humberside)

• Quality Assurance Reference Centres (QARCs) are regional bodies that ensure the local BSP is fulfilling their obligations under national guidance for the NHSBSP

• Inspect whole of local BSP (including surgery, etc)• For mammography, there are national guidance

documents outlining the QA required, split into daily, weekly and monthly Radiographer tests and 6 monthly Physics QA

Page 57: FRCR: Physics Lectures Diagnostic Radiology Lecture 8 Mammography and tomosynthesis Dr Tim Wood Clinical Scientist

Physics QA

• Test/measure (6 monthly):– kV accuracy – X-ray tube output for all T/F and range of kV/mAs– Half-value layers– AEC performance– Mean glandular dose to the standard breast– Image quality with phantoms– Beam alignments– Uniformity– Focal spot sizes– Compression force– Etc…

Page 58: FRCR: Physics Lectures Diagnostic Radiology Lecture 8 Mammography and tomosynthesis Dr Tim Wood Clinical Scientist

Radiographer QA…• Daily

– AEC consistency (B1)– Visual check of acquisition and reporting monitors (B2)– Inspection of breast support table and associated equipment (B3)

• Weekly– Contrast-to-noise ratio (CNR) (B5)– Image quality (B6)– Artefacts and uniformity (B7)

• Monthly– Image quality (B6)– AEC consistency with varying thickness including CNR (B10)– Mechanical safety and beam function (B11)– Compression force (B12)

• Other (weekly/before use)– Stereo-tactic localising device (B8)

Page 59: FRCR: Physics Lectures Diagnostic Radiology Lecture 8 Mammography and tomosynthesis Dr Tim Wood Clinical Scientist
Page 60: FRCR: Physics Lectures Diagnostic Radiology Lecture 8 Mammography and tomosynthesis Dr Tim Wood Clinical Scientist

The QARC website

Page 61: FRCR: Physics Lectures Diagnostic Radiology Lecture 8 Mammography and tomosynthesis Dr Tim Wood Clinical Scientist

Tomosynthesis

• Digital tomosynthesis can be considered a half-way house between tomography and CT

• There are applications (and systems available) in general radiography, but most common implementation is in digital mammography

• The basic principle is that a number of projections are acquired over a narrow range of angles, and the images are processed to give a series of ‘planes’ through the breast (strictly speaking they are not slices like in CT)

Page 62: FRCR: Physics Lectures Diagnostic Radiology Lecture 8 Mammography and tomosynthesis Dr Tim Wood Clinical Scientist

Tomosynthesis equipment

Page 63: FRCR: Physics Lectures Diagnostic Radiology Lecture 8 Mammography and tomosynthesis Dr Tim Wood Clinical Scientist

Tomosynthesis

• Wider angle of projections = better 3D resolution• More projections = slower to acquire• Data processing is manufacturer specific;

– Back projection/shift and add for Hologic (see Ben Johnson slides from UKMPG 2011)

– Filtered back projection (like CT) for Siemens– Iterative reconstruction for IMS (like new CTs)

Page 64: FRCR: Physics Lectures Diagnostic Radiology Lecture 8 Mammography and tomosynthesis Dr Tim Wood Clinical Scientist

Ben Johnson, Barts and the London NHS Trust, UKMPG 2011

Page 65: FRCR: Physics Lectures Diagnostic Radiology Lecture 8 Mammography and tomosynthesis Dr Tim Wood Clinical Scientist

Ben Johnson, Barts and the London NHS Trust, UKMPG 2011

Page 66: FRCR: Physics Lectures Diagnostic Radiology Lecture 8 Mammography and tomosynthesis Dr Tim Wood Clinical Scientist

Ben Johnson, Barts and the London NHS Trust, UKMPG 2011

Page 67: FRCR: Physics Lectures Diagnostic Radiology Lecture 8 Mammography and tomosynthesis Dr Tim Wood Clinical Scientist

Ben Johnson, Barts and the London NHS Trust, UKMPG 2011

Page 68: FRCR: Physics Lectures Diagnostic Radiology Lecture 8 Mammography and tomosynthesis Dr Tim Wood Clinical Scientist

Ben Johnson, Barts and the London NHS Trust, UKMPG 2011

Page 69: FRCR: Physics Lectures Diagnostic Radiology Lecture 8 Mammography and tomosynthesis Dr Tim Wood Clinical Scientist

Ben Johnson, Barts and the London NHS Trust, UKMPG 2011

Page 70: FRCR: Physics Lectures Diagnostic Radiology Lecture 8 Mammography and tomosynthesis Dr Tim Wood Clinical Scientist

Tomosynthesis

• Like tomography, the basic idea is that in plane structures are in focus, out of plane structures blurred

• Unlike tomography, reconstruct a number of different projections to get a series of images through the volume (like CT)