42
Plenary, Indium Phosphide and Related Materials Conference, May 15-18, Matsue, Japan Frequency Limits of InP-based Integrated Circuits Mark Rodwell , E. Lind, Z. Griffith, S. R. Bank, A. M. Crook U Si i tti M Wi t GB kACG d Sponsors U. Singisetti, M. Wistey, G. Burek, A.C. Gossard University of California, Santa Barbara Collaborators (III-V MOS) A. Gossard, S. Stemmer, C. Van de Walle University of California Santa Barbara J. Zolper, S. Pappert, M. Rosker DARPA (TFAST, SWIFT, FLARE) D. Purdy, I. Mack Office of Naval Research Kwok Ng, Jim Hutchby Semiconductor Research P. Asbeck, A. Kummel, Y. Taur, University of California San Diego J. Harris, P. McIntyre, Stanford University C. Palmstrøm, University of Minnesota Semiconductor Research Corporation Collaborators (HBT) M. Urteaga, R. Pierson , P. Rowell, M-J Choe, B. Brar Teledyne Scientific Company X M Fang D Lubyshev Y Wu J M Fastenau W K Liu [email protected] 805-893-3244, 805-893-5705 fax University of Minnesota M. Fischetti University of Massachusetts Amherst X. M. Fang, D. Lubyshev, Y. Wu, J. M. Fastenau, W.K. Liu International Quantum Epitaxy, Inc. S. Mohney Penn State University

Frequency Limits of InP-based Integrated Circuits

  • Upload
    others

  • View
    6

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Frequency Limits of InP-based Integrated Circuits

Plenary, Indium Phosphide and Related Materials Conference, May 15-18, Matsue, Japan

Frequency Limits of InP-based Integrated Circuits

Mark Rodwell , E. Lind, Z. Griffith, S. R. Bank, A. M. CrookU Si i tti M Wi t G B k A C G d

Sponsors

U. Singisetti, M. Wistey, G. Burek, A.C. GossardUniversity of California, Santa Barbara

Collaborators (III-V MOS)A. Gossard, S. Stemmer, C. Van de Walle University of California Santa Barbara

pJ. Zolper, S. Pappert, M. RoskerDARPA (TFAST, SWIFT, FLARE)D. Purdy, I. MackOffice of Naval ResearchKwok Ng, Jim HutchbySemiconductor Research y

P. Asbeck, A. Kummel, Y. Taur, University of California San Diego J. Harris, P. McIntyre,Stanford UniversityC. Palmstrøm,University of Minnesota

Semiconductor Research Corporation

Collaborators (HBT)M. Urteaga, R. Pierson , P. Rowell, M-J Choe, B. BrarTeledyne Scientific CompanyX M Fang D Lubyshev Y Wu J M Fastenau W K Liu

[email protected] 805-893-3244, 805-893-5705 fax

University of MinnesotaM. Fischetti University of Massachusetts Amherst

X. M. Fang, D. Lubyshev, Y. Wu, J. M. Fastenau, W.K. Liu International Quantum Epitaxy, Inc.S. MohneyPenn State University

Page 2: Frequency Limits of InP-based Integrated Circuits

Specific Acknowledgements

(Prof.) Erik Lind125 HBT

Dr. Zach Griffith Dr. Mark Wistey I G A MOSFET125 nm HBTs

process technologytheory / epi design

500 & 250 nm HBTs150 GHz Logic100 GHz op-amps

InGaAs MOSFETprocess technologytheory / epi design

Page 3: Frequency Limits of InP-based Integrated Circuits

THz Transistors are coming soon; both InP & Silicon

InP Bipolars: 250 nm generation: → 780 GHz f 424 GHz f 4 5 V BV

8

10

μm2

InP Bipolars: 250 nm generation: → 780 GHz fmax , 424 GHz fτ , 4-5 V BVCEO

125 nm & 62 nm nodes 30

40

B

U

Z. Griffith

0

2

4

6

0 1 2 3 4 5

mA

/μ→ ~THz devices

0

10

20

109 1010 1011 1012

dB H21

fτ = 424 GHz

fmax

= 780 GHz

Vce

IBM IEDM '06: 65 nm SOI CMOS → 450 GHz fmax , ~1 V operationI t l J '07 45 / hi h K / t l t

10 10 10 10Hz

Intel Jan '07: 45 nm / high-K / metal gate continued rapid progress→ continued pressure on III-V technologies→ continued pressure on III V technologies

If you can't beat them, join them !y junclear if Si MOSFETs will work well at sub-22-nm gate lengthInGaAs/InAs/InP channels under serious investigation for CMOS VLSI.

Datta, DelAlamo, Sadana, ...

Page 4: Frequency Limits of InP-based Integrated Circuits

THz InP vs. near-THz CMOS: different opportunities

65 / 45 / 33 / 22 CMOS65 / 45 / 33 / 22 ... nm CMOSvast #s of very fast transistors

having low breakdown sloppy DC parameters ... having low breakdown, sloppy DC parameters what NEW mm-wave applications will this enable ?

massive monolithic mm-wave arrays→ 1 Gb/s over ~1 km mm-wave MIMO

DC parameters limit analog precision...

Page 5: Frequency Limits of InP-based Integrated Circuits

THz InP vs. near-THz CMOS: different opportunities

InP HBT: THz bandwidths good breakdown analog precision InP HBT: THz bandwidths, good breakdown, analog precision

8

10

μm2

10-6

10-4

10-2

(A)

Ic

Ib

30

40

B

U

&0

2

4

6

0 1 2 3 4 5

mA

10-12

10-10

10-8

10 6

0 0 25 0 5 0 75 1

I c , I

b b

0

10

20

109 1010 1011 1012

dB H21

fτ = 424 GHz

fmax

= 780 GHz &0 1 2 3 4 5

Vce

0 0.25 0.5 0.75 1

Vbe

(V)

340 GHz, 70 mW amplifiers (design)In future: 700 or 1000 GHz amplifiers ?

10 10 10 10Hz

p

200 GHz digital logic (design)

M. Jones

g gIn future: 450 GHz clock rate ?

Z. Griffith

30-50 GHz gain-bandwidth op-amps→ low IM3 @ 2 GHz In future: 200 GHz op-amps for low-IM3 10 GHz amplifiers?M. Urteaga

(Teledyne)

Z. Griffith

Page 6: Frequency Limits of InP-based Integrated Circuits

Transistor Benchmarks

f BVCEO i t th l lt li itfmax matters40

H

no gain above 10

BVCEO is not the only voltage limit

10

20

30

dB

U

H21 218 GHz

4

6

8

(mA

/μm

2 )

6.8 V BVCEO

4

6

8

(mA

/μm

2 ) !0

10

9 10 11 12

ft = 660 GHz

fmax

= 218 GHz0

2

4

0 1 2 3 4 5 6 7 8

J e

0

2

4

0 1 2 3 4 5 6 7 8

J e

109 1010 1011 1012

Hz

Tuned amplifiers: fmax sets bandwidth

0 1 2 3 4 5 6 7 8V

ce (V)

0 1 2 3 4 5 6 7 8V

ce (V)

Need Safe Operating Areaat least BV /2 at J /2

Mixed-signal: CcbΔV/ Ic , CjeΔV/ Ic , RexIc/ΔV , RbbIc/ΔV ,

...at least BVceo/2 at Jmax/2

thermal resistance, high-current breakdownhigh temperature operation ( 75 C) ?ex c bb c

τf high-temperature operation (~75 C) ?

Goal is >1 THz fτ and fmax<50 fs CΔV / I charging delays

→ emphasize InP-collector DHBTs

Page 7: Frequency Limits of InP-based Integrated Circuits

HBT Scaling LawsHBT Scaling Laws

Page 8: Frequency Limits of InP-based Integrated Circuits
Page 9: Frequency Limits of InP-based Integrated Circuits

InP DHBTs: May 2007

700

800RSC

500 GHz400 GHz300 GHz200 GHz maxffτ=600 GHz

Teledyne 2/) (alone or

max

max

ffff

τ :metrics popular

250 300nm

600

700 UIUC DHBT

NTT

Fujitsu HEMT)

)11(

1

max

max

ff

ff

+ −τ

τ

250-300nm

400

500 SFU

UIUC SHBT

UCSB

max

(GH

z)

mW/ gain, associated PAE,

:amplifierspower

:metrics better much600nm

200

300 NGST

Pohang SHBT

HRL

f m

:digital gain, associated ,F

:amplifiers noise low mW/

min

300-400nm

0

100

0 100 200 300 400 500 600 700 800

IBM SiGe

VitesseUpdated March 2007

),/( ),/(

hence , g

cex

ccb

clock

VIRIVC

f

ΔΔ

0 100 200 300 400 500 600 700 800

ft (GHz) )(

),/(

cb

cbb

ττVIR

Page 10: Frequency Limits of InP-based Integrated Circuits

HBT Scaling RoadmapsHBT Scaling Roadmaps

Page 11: Frequency Limits of InP-based Integrated Circuits

2005: InP DHBTs @ 500 nm Scaling Generation

emitter 500 nm width16 Ω⋅μm2 contact ρ

✓✓

base 300 width, 20 Ω⋅μm2 contact ρ ✓

✓collector 150 nm thick, 5 mA/μm2 current density5 V, breakdown

✓✓✓

fτ 400 GHzfmax 500 GHz

power amplifiers 250 GHz di it l l k t 160 GH

✓✓

✓✓

(178 GHz)(150 GH )digital clock rate 160 GHz

(static dividers)✓ (150 GHz)

Page 12: Frequency Limits of InP-based Integrated Circuits

2006: 250 nm Scaling Generation, 1.414:1 faster

emitter 500 250 nm width 16 9 Ω⋅μm2 access ρ

✓✓

base 300 150 width, 20 10 Ω⋅μm2 contact ρ ✓

✓collector 150 100 nm thick, 5 10 mA/μm2 current density5 3.5 V, breakdown

✓✓✓

fτ 400 500 GHzfmax 500 700 GHz

power amplifiers 250 350 GHz di it l l k t 160 230 GH

✓✓(425 GHz)

(780 GHz)

digital clock rate 160 230 GHz(static dividers)

Page 13: Frequency Limits of InP-based Integrated Circuits

2007: 125 nm Scaling Generation → almost-THz HBT

emitter 500 250 125 nm width16 9 4 Ω⋅μm2 access ρ ✓

base 300 150 75 width, 20 10 5 Ω⋅μm2 contact ρ ✓

✓collector 150 100 75 nm thick, 5 10 20 mA/μm2 current density5 3.5 3 V, breakdown

✓✓

fτ 400 500 700 GHzfmax 500 700 1000 GHz

power amplifiers 250 350 500 GHz di it l l k t 160 230 330 GHdigital clock rate 160 230 330 GHz(static dividers)

Page 14: Frequency Limits of InP-based Integrated Circuits

2008-9: 65 nm Scaling Generation→beyond 1-THz HBT

emitter 500 250 125 63 nm width16 9 4 2.5 Ω⋅μm2 access ρ ✓

base 300 150 75 70 nm width, 20 10 5 5 Ω⋅μm2 contact ρ ✓

collector 150 100 75 53 nm thick, 5 10 20 35 mA/μm2 current density5 3.5 3 2.5 V, breakdown

fτ 400 500 700 1000 GHzfmax 500 700 1000 1500 GHz

power amplifiers 250 350 500 750 GHz di it l l k t 160 230 330 450 GHdigital clock rate 160 230 330 450 GHz(static dividers)

Page 15: Frequency Limits of InP-based Integrated Circuits

HBT Scaling HBT Scaling ChallengesChallenges

Page 16: Frequency Limits of InP-based Integrated Circuits

Scaling challenges: What looks easy, what looks hard ?key device parameter required changekey device parameter required change

collector depletion layer thickness decrease 2:1

base thickness decrease 1.414:1

emitter junction width decrease 4:1

ll t j ti idth d 4 1collector junction width decrease 4:1

emitter resistance per unit emitter area decrease 4:1

current density increase 4:1

base contact resistivity(if contacts lie above collector junction)

decrease 4:1

base contact resistivity(if contacts do not lie above collector junction)

unchanged

Hard:Hard:Thermal resistance (ICs)Emitter contact + access resistanceYield in deep submicron processesp pContact electromigration (?), dark-line defects (?)

Probably not as hard :Probably not as hard :Maintaining adequate breakdown for 3 V operation...

Page 17: Frequency Limits of InP-based Integrated Circuits

Temperature Rise: Transistor, Substrate, Packageflowheatlcylindrica flowspherical flowplanar

⎟⎠⎞

⎜⎝⎛ −

⋅+⎟⎟⎠

⎞⎜⎜⎝

⎛−+⎟⎟

⎞⎜⎜⎝

⎛≅Δ 2substrate

2/11lnDDT

KP

DLKP

WL

LKPT sube

ππ

junctionnear flowheat lcylindrica

eLr >for flowspherical

2/for flowplanar

HBTDr >

⎠⎝⎟⎠

⎜⎝

⎟⎠

⎜⎝ DKDLKWLK InPEInPeEInP ππ

callylogarithmi increases

variationantinsignific

constant is iflly quadraticaincreases

subT

chipCu

chippackage WK

PT ⎟

⎠⎞

⎜⎝⎛ +≅Δ

211

π

lenghts,Wiring100

150

se, K

elvi

n

total)/GHz 150( m 40 clocksub fT ⋅= μ

eddemonstrat from scaled etc.

densities,power rates,clock

g ,g

50

100

on te

mpe

ratu

re ri

package

substrate: cylindrical + spherical regions

ICs digital GHz 150

eddemonstrat

0100 200 300 400 500 600 700

junc

tio

master-slave D-Flip-Flop clock frequency, GHz

substrate: planar regionpackage

Page 18: Frequency Limits of InP-based Integrated Circuits

HBTs:HBTs:500 G ti500 nm Generation

Page 19: Frequency Limits of InP-based Integrated Circuits

500 nm Generation in Manufacturing: Teledyne Self-aligned Dielectric Sidewall Process

Emitter Contact

Dielectric

No short-circuits from liftoff defects.Emitter can be much thinner

Base Contact

Dielectric Sidewall

Emitter can be much thinner→ small etch undercut.

30

40

e) (d

B)

fτ = 405GHzfmax = 392 GHz

10

20

|(red

), U

(blu

e

JE = 6.5 mA/um2

VCE = 1.5 V

emitterEB grade

base

emittermetal

basemetal

dielectricsidewallspacer base contact

window

10 11 120

Frequency (GHz)

|H21

RF Gains Electroplate emitter contactEtch emitter semiconductor

Dielectric sidewall depositionBase contact patterning

Selectively deposit base metal

M. Urteaga et al, 2004 IEEE Device Research Conference, June 21-23, 2004

c.f. also Minh Le et al IEDM 2006 (Vitesse)

Page 20: Frequency Limits of InP-based Integrated Circuits

Example ICs in 500 nm HBT

142 GHz 800 mW 128 GHz 206 mW 175 GHz 7 5 mW

V. PaidiZ. Griffith

M. UrteagaP. Rowell

D. PiersonB. Brar142 GHz, 800 mW

master/slave latch128 GHz, 206 mW master/slave latch

175 GHz, 7.5 mW medium-power amp.

Fe

N+S.I.

N+N+ N+Fe

mesa HBT sidewall /pedestal HBTmesa HBT mesa HBT UCSB

sidewall /pedestal HBTTeledyne

mesa HBT UCSB

Other Results:160 Gb/s multiplexer (T. Swahn et al, Chalmers / Vitesse)~5000-HBT direct-digital frequency synthesis ICs (Vitesse, Teledyne)

Page 21: Frequency Limits of InP-based Integrated Circuits

HBTs: HBTs: 250 G ti250 nm Generation

Page 22: Frequency Limits of InP-based Integrated Circuits

250 nm scaling generation InP DHBTs

Emitter contact resistance 5 Ω⋅μm2

B t t i t i 5 Ω 2Base contact resistance is < 5 Ω⋅μm2

Z. GriffithE. Lind

Page 23: Frequency Limits of InP-based Integrated Circuits

DHBTs: 250 nm Scaling Generation

150 nm thick collector 60 nm thick collector

Z. GriffithE. Lind

30

40

U

H21

150 nm thick collector 60 nm thick collector

30

40

B

U

10

20dB

f 660 GHfmax

= 218 GHz10

20dB H21

f = 424 GHz

fmax

= 780 GHz

0109 1010 1011 1012

Hz

ft= 660 GHz

30

0109 1010 1011 1012

Hz

fτ = 424 GHz

6

8

10

A/μ

m2

20

30

μm2

0

2

4mA

10mA

0 1 2 3 4 5V

ce

00 1 2 3

Vce

Emitter access: 5.1 Ω⋅μm2

Base contact: 6.3 Ω⋅μm2

Page 24: Frequency Limits of InP-based Integrated Circuits

Example IC Designs in 250 nm HBT M. JonesZ. Griffith

200 GHz master-slave latches

340 GHz, 70 mW, medium-power amplifiers

...fabrication on hold......fabrication planned summer/fall 2007

Page 25: Frequency Limits of InP-based Integrated Circuits

125 nm InP HBT125 nm InP HBTdevelopmentdevelopment

Page 26: Frequency Limits of InP-based Integrated Circuits

Emitter Access Resistance

125 ti i 5 Ω 2 itt i ti iti

Erik LindAdam Crook

Seth BankUttam Singisetti

125 nm generation requires 5 Ω - μm2 emitter resistivities 65 nm generation requires 1-2 Ω - μm2

Recent Results:ErAs/Mb MBE in-situ 1.5 Ω - μm2

Mb MBE in-situ 0.6 Ω - μm2Mb MBE in situ 0.6 Ω μmTiPdAu ex-situ 0.5 Ω - μm2

TiW ex-situ 0.7 Ω - μm2

Degeneracy contributes 1 Ω - μm2

102

20 nm emitter-base depletion layer contributes 1 Ω - μm2 resistance

10-1

100

101

J(m

A/u

m^2

)

Fermi-Dirac

Te=0 nm

10 nm steps

10-3

10-2

-0.3 -0.2 -0.1 0 0.1 0.2V

be- φ

Equivalent series resistance approximation

Boltzmann

)()(

xqnJ

xxE fn −

=∂

∂ Te=100 nm

p

Page 27: Frequency Limits of InP-based Integrated Circuits

Epitaxial Layer Development for 125 nm Generation

I G A b l h t i ti it l t it ti b t ll t t b d d

Erik Lind

InGaAs base: low sheet resistivity, low transit time, but collector must be graded

low-current breakdown d i t d b

B-C grade redesign: thin the setback, thin the grade

102

104

106

)1.5

dominated by tunneling in setback layer 1) less superlattice periods...

0.51

1.5

10-4

10-2

100

Cur

rent

(A/c

m2)

1 5-1.0-0.50.00.51.0

eV

collectorbase

calculation-2.5-2

-1.5-1

-0.50

eV

1 2 3 4 510-6

Vcb (V)

Vcb

= 0.0 V-2.0-1.5

0 10 20 30 40 50 60 70 80nm

30

2) thinner (sub-monolayer) superlattice periods→ random alloy grade

: Zach Griffith

calculation0 20 40 60 80 100nm

10

20

mA

/μm

2

3) thin GaAs/InGaAs strained-layer grade

00 1 2 3

Vce

DC data shows expected increase in breakdown.Transport (RF) data is pending.

Page 28: Frequency Limits of InP-based Integrated Circuits

125 nm Emitter Process

Bl k t tt d iti TiW itt t t t l

Erik Lind

Blanket sputter deposition TiW emitter contact metalOptical lithography → ICP reactive-ion etchingICP RIE etch of InGaAs/InP semiconductorICP RIE etch of InGaAs/InP semiconductor,Selective wet etch to base

125 nm emitter 500 nm undercut at emitter ends

61 nm junction:40 nm lateral undercut

Page 29: Frequency Limits of InP-based Integrated Circuits

UCSB 125 nm DHBT DevelopmentErik Lind

Adam Crook

125 nm emitter processemitter contact resistivity~ 0 7 Ω μm2

EmitterMetal

~ 0.7 Ω - μm2

base contact resistivityInGaAs/InP

base contact resistivity~ 3-5 Ω -μm2

Target performance ~ 700-900 GHz simultaneous ft & fmax , 3-4 V breakdown

Page 30: Frequency Limits of InP-based Integrated Circuits

How might we build the 62.5 nm HBT ?

Mesa process: control of etch undercut with dry+wet process

Alternatives:dielectric sidewall process- dielectric sidewall process

- sidewall process with extrinsic base regrowth: allows thinner base

Page 31: Frequency Limits of InP-based Integrated Circuits

InP-based FETs; InP based FETs; MOSFET & HEMTMOSFETs & HEMTs

Page 32: Frequency Limits of InP-based Integrated Circuits

InP-based HEMTs & MOSFETs : Why ?

6

7

8

dB GHz 200=τf

InGaAs/InP HEMTs: mm-wave low-noise amplifiers

⎟⎟⎠

⎞⎜⎜⎝

⎛⋅Γ+++≈ffRRRgF igsmi )(1min

3

4

5

6

imu

m N

ois

e F

igu

re,

A ~2.5:1 fτ / fsignal ratio provides 3 dB noise figure.

Low-noise 100-300 GHz

⎠⎝ τf

20 40 60 80 100 120 140 160 1800 200

1

2

0

Frequency, GHz

Min

i

GHz 500=τfLow-noise 100-300 GHz

preamplification is a key application for 1-THz-fτ HEMTs

Frequency, GHz

InGaAs/InP MOSFETs: post-22-nm VLSI (?)Higher mobility and peak electron velocity than in Silicon

→ higher ( Id / Wg ) and lower ( CΔV / I ) at sub-22-nm scaling (?)

Page 33: Frequency Limits of InP-based Integrated Circuits
Page 34: Frequency Limits of InP-based Integrated Circuits
Page 35: Frequency Limits of InP-based Integrated Circuits

Some Encouraging Initial Data . . .-- non-parabolic bands (variable m*) significantly increase feasible sheet chargenon parabolic bands (variable m ) significantly increase feasible sheet charge

Asbeck / Fischetti / Taur simulate drive currents much larger than for constant-m* model

-- mobilities seem to be acceptable even in thin wellsmobilities seem to be acceptable even in thin wells

M. Wisteypreliminary data

and o r c rrent de ice designs . . . and our current device designs . . .

metal gatesource contact drain contact

well: 2.5 nm InGaAs, 2.5 nm InP

barrier

undoped

InGaAs channeldielectric

N+ regrowth N+ regrowth

source contact drain contact

undoped

InP sub-channel

device design and fabrication:Asbeck group: UCSD

N+ InGaAs/InAs extrinsic source & drain by regrowth

P + substrateundopedsubstrate

undopedsubstrate

Asbeck group: UCSDTaur group: UCSDFischetti group: U. MassRodwell group: UCSBPalmstrøm group: U. Minn

Page 36: Frequency Limits of InP-based Integrated Circuits

Frequency Limits of InP-based Integrated Circuits

Scaling limits: contact resistivities, device and IC thermal resistances.InP Bipolar Transistors

62 (1 TH f 1 5 TH f ) li ti i f ibl62 nm (1 THz fτ , 1.5 THz fmax ) scaling generation is feasible.700 GHz amplifiers, 450 GHz digital logic

Is the 32 nm (1 THz amplifiers) generation feasible ?Is the 32 nm (1 THz amplifiers) generation feasible ?

InP Field-Effect TransistorsInP Field Effect TransistorsLow electron effective mass → difficulties with further scalingGuarded optimism regarding 22 nm generation for VLSIGuarded optimism regarding 22 nm generation for VLSISerious difficulties beyond.

Page 37: Frequency Limits of InP-based Integrated Circuits

(end)

Page 38: Frequency Limits of InP-based Integrated Circuits

non-animated non animated versions of the three versions of the three

key scaling slideskey scaling slides

Page 39: Frequency Limits of InP-based Integrated Circuits

HBT scaling laws

WGoal: double transistor bandwidth when used in any circuiteW

bcWcTbT

y→ keep constant all resistances, voltages, currents→ reduce 2:1 all capacitances and all transport delays

vTDT bnbb /22 +=τ → thin base ~1.414:1

vTcc 2=τ

cccb /TAC ∝AR /

→ thin collector 2:1

→ reduce junction areas 4:1reduce emitter contact resistivity 4:1

( )ELlength emitter ecex AR /ρ=

2, / ceKirkc TAI ∝

→ reduce emitter contact resistivity 4:1(current remains constant, as desired )

PLP ⎞⎛ need to reduce junction areas 4:1

EInPe

e

EInP LKP

WL

LKPT

ππ+⎟⎟

⎞⎜⎜⎝

⎛≅Δ ln

need to reduce junction areas 4:1reduce widths 2:1 & reduce length 2:1 → doubles ΔTreducing widths 4:1, keep constant length→ small ΔT increase ✓

contacts

c

e

bcs

e

esbb AL

WLWR ρρρ

++≅612

→ reduce base contact resistivity 4:1

reduce widths 2:1 & reduce length 2:1 → constant Rbbreducing widths 4:1, keep constant length → reduced Rbb

✓✓✓g , p g bb

Linewidths scale as the inverse square of bandwidth because thermal constraints dominate.

Page 40: Frequency Limits of InP-based Integrated Circuits

Back-of-Envelope FET ScalingGoal double transistor bandwidth when used in any circuit

→ reduce 2:1 all capacitances and all transport delays→ keep constant all resistances, voltages, currents

)(~ VVVWvcI thgsgexiteqd Δ−−

μ/LvVΔ

2/1*)/(~ mkTvexit (non-degenerate)

μ/~ gexit LvVΔ

thi l 2 1wellwoxoxeq TTc εε 2//~/1 + ceq doubledthin layers 2:1

gexiteqm Wvcg ~ ✓gm , Id held constant reduce Wg 2:1

✓C reduced 2:1WWLcC ~ α+ reduce Lg 2:1 ✓Cgs reduced 2:1 gggeqgs WWLcC 1~ α+dielectric fringing

✓(Cgd , Cs-b , Cd-b ) all reduced 2:1 ( ) gbdbsgd WCCC toalproportion all , , −−

g

✓(Rs , Rd ) held constant g

DSs

DSg

cs W

LLW

R /

/

ρρ+= reduce Ls/d 2:1 ,reduce ρc 4:1

2:1 vertical scaling → 2:1 increased ( gm / Wg ) → 2:1 reduced Wg→ 2:1 reduced fringing capacitances

Page 41: Frequency Limits of InP-based Integrated Circuits

FETs no longer scale well

t li th h id hi h K di l t i (if f ibl )tunneling through oxide → high-K dielectrics (if feasible)

Thin layers & low effective mass limit channel sheet charge density( ) *( ) */mqnEE swellf ∝−

( ) *2 /1 mTEE wellcwell ∝−

high sheet charge in thin wellinfinite well approximation

Low density of states limits drive current Solomon & Laux, 2001 IEDM

high sheet-charge in thin well→ populate higher-mass band minima

Low density of states limits drive current

density-of-states term dominates , limits ( gm / Wg )and ( Id / Wg ) f i i & b t t it l l d i t C

wellwoxoxeeqgeqm TTmqcWvcg εεπ 2///)2(~/1 where~ *22 ++⋅ h

→ fringing & substrate capacitances no longer scale, can dominate over Cgs

Thin quantum wells have low mobilityLi SST 2005; Gold et al, SSC 1987; Sakaki et al, APL 1987

( ) 62/ wellTWE ∝∂∂∝ −μ

; , ; ,

Page 42: Frequency Limits of InP-based Integrated Circuits

InP DHBT: 500 nm Scaling GenerationZ. Griffith

30

40U

h21

10

20dB ft = 450 GHz,

fmax

= 490 GHz

0109 1010 1011 1012

Hz

600 nm wide emitter, 120 nm thick collector, 30 nm thick base