Fuels & Combustion

Embed Size (px)

Citation preview

  • 7/30/2019 Fuels & Combustion

    1/154

    FUELS AND

    COMBUSTION

  • 7/30/2019 Fuels & Combustion

    2/154

    Atomic MassMolecular Mass

  • 7/30/2019 Fuels & Combustion

    3/154

    1 kmol + 1kmol 1 kmol

  • 7/30/2019 Fuels & Combustion

    4/154

    1 kmol + 0.5kmol 1 kmol

  • 7/30/2019 Fuels & Combustion

    5/154

    1 kmol + 1kmol 1 kmol

  • 7/30/2019 Fuels & Combustion

    6/154

  • 7/30/2019 Fuels & Combustion

    7/154

    Air 100 m3 100kg

  • 7/30/2019 Fuels & Combustion

    8/154

  • 7/30/2019 Fuels & Combustion

    9/154

    Example

    A sample of coal has 16% ash and 4%moisture. The analysis on dry and ashfree basis is C = 0.88, H=0.06. O=0.04,

    N=0.01, S=0.01. Determine the minimumamount of air needed to burn 3 kg ofcoal. Find the composition of productgas.

  • 7/30/2019 Fuels & Combustion

    10/154

    Element DAF Actual =DAF*0.8

    C : 0.88 : 0.704

    H : 0.06 : 0.048

    O : 0.04 : 0.032

    S : 0.01 : 0.008

    N : 0.01 : 0.008

    Ash : 0.160

    M : 0.040

    Total : 1.000

  • 7/30/2019 Fuels & Combustion

    11/154

    (A/F)s = 9.73 kg/kg

    Air required for 3 kg of fuel = 29.18kg

  • 7/30/2019 Fuels & Combustion

    12/154

    mass of products / kg of fuel

    CO2 = 0.704 *(11/3) = 2.5813 kg (24.44%)

    H2O = 0.048*9 + 0.04 = 0.472 kg (4.47 %)

    SO2 = 0.008*2 = 0.016 kg (0.15 %)

    N2 = 0.008+9.73*0.77 = 7.500 kg (71.02%)

    Total = 10.56 kg

  • 7/30/2019 Fuels & Combustion

    13/154

    mass

    mass = number of moles * Molecular Mass

    m= nM

    n = m/M n is proportional to Volume

  • 7/30/2019 Fuels & Combustion

    14/154

    Volume of products / kg of fuel

    CO2 = 2.5813/44 =0.0586 kmol (16.60%)

    H2O = 0.472/18 =0.026 kmol (07.42%)

    SO2 = 0.01/64 =0.00025 kmol (0.07%)

    N2 = 7.500/28 = 0.267kmol (75.88%)

    TOTAL 0.35296 kmol 100.00%

  • 7/30/2019 Fuels & Combustion

    15/154

    Volumetric (Volume based)

    Analysis

    CO2 = 2.5813/44 =0.0586 kmol (16.71%)

    H2O = 0.432/18 =0.024 kmol (6.8571%)

    SO2 = 0.01/64 =0.00025 kmol (0.0714%)

    N2 = 7.500/28 = 0.267kmol (76.457%)

    TOTAL 0.35065 kmol 100%

  • 7/30/2019 Fuels & Combustion

    16/154

    Equivalence Ratio (or)

    Relative Fuel to Air Ratio

    mixturesrichfor1

    mixturestricStoichiomefor1

    mixturesleanfor1)(

    )(

    s

    a

    AF

    AF

  • 7/30/2019 Fuels & Combustion

    17/154

  • 7/30/2019 Fuels & Combustion

    18/154

    Chemical Reaction

    Equations forStoichiometric combustion

    (OR)Theoretical Combustion

    (OR)Ideal Combustion

  • 7/30/2019 Fuels & Combustion

    19/154

    Example

    Calculate the theoretical A/F for burning

    gasoline in an engine if it is assumed that

    the chemical formula of the gasoline is

    C8H18 .

  • 7/30/2019 Fuels & Combustion

    20/154

    Combustion with oxygen

    C8H18 + O2 = CO2 + H2O (unbalanced)

    C8H18 + 12.5O2 = 8CO2 + 9H2O (balanced)

  • 7/30/2019 Fuels & Combustion

    21/154

    Combustion with Air

    nN2 / nO2 = 79/21 = 3.7619

    C8H18 + 12.5 O2 + (12.5*3.7619) N2= 8CO2 + 9H2O + (12.5*3.7619) N2

    C8H18 + 12.5 O2 + 47.023 N2= 8CO2 + 9H2O + 47.023 N2

  • 7/30/2019 Fuels & Combustion

    22/154

    mass of fuel = 8*12 +18*1 = 114 kg

    mass of air = 12.5*32 + 47.0237*28

    = 1716.6 kg

    (A/F)s = 15.05 kg/kg

  • 7/30/2019 Fuels & Combustion

    23/154

    Gravimetric Compositions

    CO2 : 19.22%

    H2O : 8.85 %

    N2 : 71.92%

  • 7/30/2019 Fuels & Combustion

    24/154

    Volumetric Compositions

    Total Volume = 64.02 kmol

    CO2 : 12.49%

    H2O : 14.057%

    N2 : 73.44%

  • 7/30/2019 Fuels & Combustion

    25/154

    A fuel has the following gravimetriccomposition

    Hexane (C6H14) 40%

    Octane (C8H18) 30%

    Cyclohexane (C6H12) 25%

    Benzene (C6H6) 05%

    Determine the stoichiometric air-fuel ratio.

    example

  • 7/30/2019 Fuels & Combustion

    26/154

    Molecular mass of

    Hexane (C6H14) 86 kg/kmol

    Octane (C8H18) 114Cyclohexane (C6H12) 84

    Benzene (C6H6) 78

  • 7/30/2019 Fuels & Combustion

    27/154

    n = m/M

    Molar volume of 100 kg of fuel

    Hexane (C6H14) 0.4651 kmol

    Octane (C8H18) 0.2631Cyclohexane (C6H12) 0.2976

    Benzene (C6H6) 0.0641

  • 7/30/2019 Fuels & Combustion

    28/154

    0.465(C6H14)+0.2631(C8H18)+0.2976(C6H12)+0.064(C6H6) + a O2+3.76a N2

    = bCO2 + d H2O + e N2

    C : 0.465*6 +0.2631*8 + 0.2976*6+0.064*6 = b

    b = 7.064

    H : 0.465*14 +0.2631*18 + 0.2976*12+0.064*6 = 2d

    d = 7.6029O : 2a = 2b + d a = 10.8683

    N : 3.76*2*a = 2e e = 40.86

    Chemical Reaction for 100 kg of

    fuel

  • 7/30/2019 Fuels & Combustion

    29/154

    0.465(C6H14)+0.2631(C8H18)+0.2976(C6H12)+0.064(C6H6) + 10.8683 O2 + 40.86 N2

    = 7.064CO2 + 7.6029 H2O + 40.86 N2

    mass of air = 1491.86 kg

    mass of fuel = 100 kg

    (A/F)s = 14.9186 kg/kg

    Chemical Reaction for 100 kg of

    fuel

  • 7/30/2019 Fuels & Combustion

    30/154

    Excess Air combustion

  • 7/30/2019 Fuels & Combustion

    31/154

    Need for Excess Air

  • 7/30/2019 Fuels & Combustion

    32/154

  • 7/30/2019 Fuels & Combustion

    33/154

    Example

    Octane is burnt with 30% excess air.

    Calculate the amount of air needed and

    the volumetric analysis of resultant dry

    flue gases

  • 7/30/2019 Fuels & Combustion

    34/154

    Stoichiometric Combustion with

    oxygen

    C8H18 + O2 = CO2 + H2O

    C8H18 + 12.5 O2 = 8CO2 + 9H2O

  • 7/30/2019 Fuels & Combustion

    35/154

    Stoichiometric Combustion with Air

    nN2 / nO2 = 79/21 = 3.7619

    C8H18 + 12.5 O2 + (12.5*3.7619) N28CO2 + 9H2O + (12.5*3.7619) N2

    C8H

    18+ 12.5 O

    2+ 47.023 N

    2

    8CO2 + 9H2O + 47.023 N2

  • 7/30/2019 Fuels & Combustion

    36/154

    mass of fuel = 8*12 +18*1 = 114 kg

    mass of air = 12.5*32 + 47.0237*28

    = 1716.6 kg

    (A/F)s = 15.05 kg/kg

  • 7/30/2019 Fuels & Combustion

    37/154

    Combustion with Excess Air

    C8H18 + (1.3) 12.5 O2 + (1.3) (47.0237)N2

    aCO2 + bH2O + d N2 + eO2.

    C : 8=a

    H : 18=2b

    N : (1.3)(47.0237)(2)=2dO : (1.3)(12.5)(2)=2e+2a+b

  • 7/30/2019 Fuels & Combustion

    38/154

    Combustion with Excess Air

    C8H18 + (1.3) 12.5 O2 + (1.3) (47.0237)N2

    8CO2 + 9H2O + 61.13 N2 + 3.75O2.

    C : a = 8

    H : b = 9

    N : d = 61.13O : e = 3.75

  • 7/30/2019 Fuels & Combustion

    39/154

    Volumetric Compositions of total

    Product gas

    CO2 : 9.77 %

    H2O : 10.99 %

    N2 : 74.66 %

    O2 : 4.50%

  • 7/30/2019 Fuels & Combustion

    40/154

    Volumetric Compositions of Dry

    Product gas

    CO2 : 10.97 %

    N2 : 83.88 %

    O2 : 5.146 %

  • 7/30/2019 Fuels & Combustion

    41/154

    Example

    Octane is burnt with 30% insufficient air.

    Calculate the amount of air needed and

    the volumetric analysis of resultant dry

    flue gases

  • 7/30/2019 Fuels & Combustion

    42/154

    Stoichiometric Combustion with

    oxygen

    C8H18 + O2 = CO2 + H2O

    C8H18 + 12.5 O2 = 8CO2 + 9H2O

  • 7/30/2019 Fuels & Combustion

    43/154

    Stoichiometric Combustion with Air

    nN2 / nO2 = 79/21 = 3.7619

    C8H18 + 12.5 O2 + (12.5*3.7619) N28CO2 + 9H2O + (12.5*3.7619) N2

    C8

    H18

    + 12.5 O2

    + 47.023 N2

    8CO2 + 9H2O + 47.023 N2

  • 7/30/2019 Fuels & Combustion

    44/154

    mass of fuel = 8*12 +18*1 = 114 kg

    mass of air = 12.5*32 + 47.0237*28

    = 1716.6 kg

    (A/F)s = 15.05 kg/kg

  • 7/30/2019 Fuels & Combustion

    45/154

    Combustion with Insufficient Air

    C8H18 + (0.7) 12.5 O2 + (0.7) (47.0237)N2

    aCO2 + bH2O + d N2 + eCO.

    C : 8=a+e

    H : 18=2b

    N : (0.7)(47.0237)(2)=2dO : (0.7)(12.5)(2)=2a+b+e

  • 7/30/2019 Fuels & Combustion

    46/154

    Combustion with insufficient Air

    C8H18 + (1.3) 12.5 O2 + (1.3) (47.0237)N2

    8CO2 + 9H2O + 32.9166 N2 +7.5O2.

    C : a = 0.5

    H : b = 9

    N : d = 32.9166O : e = 7.5

    V l t i C iti f T t l

  • 7/30/2019 Fuels & Combustion

    47/154

    Volumetric Compositions of Total

    Product gas

    CO2 : 1.00%

    H2O : 18.03%

    N2 : 65.943%

    CO : 15.025%

    V l t i C iti f D

  • 7/30/2019 Fuels & Combustion

    48/154

    Volumetric Compositions of Dry

    Product gas

    CO2 : 1.22%

    N2 : 80.44%

    O2 : 18.33%

  • 7/30/2019 Fuels & Combustion

    49/154

    The fuel supplied to petrol engine isassumed to have the composition C2H16.

    Calculate (a) the stoichiometric air-fuel

    ratio by mass, (b) the percentage

    volumetric composition of the products of

    combustion if 50% excess air is supplied

    and combustion is complete. Assume air

    contains 21% O2 by volume

    Example

  • 7/30/2019 Fuels & Combustion

    50/154

    Combustion with oxygen

    C2H16 + O2 = CO2 + H2O

    C2H16 + 6 O2 = 2CO2 + 8H2O

  • 7/30/2019 Fuels & Combustion

    51/154

    Combustion with Stoichiometric Air

    nN2 / nO2 = 79/21 = 3.7619

    C2H16 + 6 O2 + 6*3.7619 N2

    = 2CO2 + 8H2O + 22.57 N2

    mass of Air = 823.68 kg

    mass of fuel = 40 kg

    (A/F)s= 20.592

  • 7/30/2019 Fuels & Combustion

    52/154

    (A/F)a = 1.5 (A/F)s

    = 30.89 kg/kg

  • 7/30/2019 Fuels & Combustion

    53/154

    Combustion with Excess Air

    C2H16 + (1.5) 6 O2 + (1.5) 6*3.7619 N2

    = aCO2 + bH2O + d N2 + eO2.

    C : a = 2

    H : b = 8

    N : d = 33.85O : e = 3

  • 7/30/2019 Fuels & Combustion

    54/154

    Combustion with Excess Air

    C2H16 + 9 O2 + 33.85 N2

    = 2CO2 + 8H2O + 33.85 N2 + 3O2.

  • 7/30/2019 Fuels & Combustion

    55/154

    mass of Air = kg

    mass of fuel = kg

    (A/F)s =

  • 7/30/2019 Fuels & Combustion

    56/154

    Example

    Find the percentage volumetric compositionof the pre combustion and combustionmixtures when heptane (C7H16) is burnt

    with 20% excess air. Find also molecularweight, the specific volume and the gasconstant at S.T.P of the post combustionmixture. Assume that air contains 21%

    oxygen and 79% Nitrogen by volume. Thevolume of the kg mole at S.T.P. is 22.41m3. [8].

  • 7/30/2019 Fuels & Combustion

    57/154

    In this case :

    Std Temperature = 273 K

  • 7/30/2019 Fuels & Combustion

    58/154

    Stoichiometric Combustion

    C 7H16+aO2+3.76aN2 bCO2+dH2O+eN2

  • 7/30/2019 Fuels & Combustion

    59/154

    a = 11

    b = 7

    d = 8

    e = 41.36

    C 7H16+ 11O2+ 41.36N2 7CO2+8H2O+41.36N2

  • 7/30/2019 Fuels & Combustion

    60/154

    (A/F)s = 15.10

    (A/F)a

    = 1.2*15.10 = 18.10

  • 7/30/2019 Fuels & Combustion

    61/154

    C7H16+aO2+3.76aN2

    bCO2+dH2O+eO2+fN2

    (A/F)a =(32a+3.76*28*a)/(7*12+16) = 18.10

    a = 13.2

    Actual Combustion

  • 7/30/2019 Fuels & Combustion

    62/154

    a = 13.200

    b = 7.000

    d = 8.000

    e = 2.200

    f = 49.632

    Volumetric composition of Pre

  • 7/30/2019 Fuels & Combustion

    63/154

    Volumetric composition of Pre

    Combustion Mixture

    Total volume = 1+a +3.76a = 63.83 kmol

    C7H16 1.56%

    O2 20.67%

    N2 77.77%

  • 7/30/2019 Fuels & Combustion

    64/154

    Post Combustion Mixture

    Total volume= b+d+e+f = 66.83 kmol

    CO2 10.49%

    H2O 11.99%

    O2 3.27%

    N2 74.25%

  • 7/30/2019 Fuels & Combustion

    65/154

    M= 28.6

    R=0.29

    Given T = 273

    v= 0.7826 m3/kg

  • 7/30/2019 Fuels & Combustion

    66/154

    Example

    One kg of Octane burns in 12 kg of air. If

    there is no free oxygen in the products,

    calculate the percentage of CO2 in the

    dry flue gases

    Stoichiometric Combustion with

  • 7/30/2019 Fuels & Combustion

    67/154

    Stoichiometric Combustion with

    oxygen

    C8H18 + O2 = CO2 + H2O

    C8H18 + 12.5 O2 = 8CO2 + 9H2O

  • 7/30/2019 Fuels & Combustion

    68/154

    Stoichiometric Combustion with Air

    nN2 / nO2 = 79/21 = 3.7619

    C8

    H18

    + 12.5 O2

    + (12.5*3.7619) N2

    8CO2 + 9H2O + (12.5*3.7619) N2

    C8H18 + 12.5 O2 + 47.023 N2

    8CO2 + 9H2O + 47.023 N2

  • 7/30/2019 Fuels & Combustion

    69/154

    mass of fuel = 8*12 +18*1 = 114 kg

    mass of air = 12.5*32 + 47.0237*28

    = 1716.6 kg

    (A/F)s = 15.05 kg/kg

  • 7/30/2019 Fuels & Combustion

    70/154

    Combustion with Insufficient Air

    C8H18 + a O2 + 3.76aN2

    bCO2 + dH2O + e N2 + f CO.

    (A/F)a = (32a+3.76a*28)/(8*12 + 18) = 12

    a = 9.968

  • 7/30/2019 Fuels & Combustion

    71/154

    Combustion with Insufficient Air

    C8H18 + a O2 + 3.76aN2

    bCO2 + dH2O + e N2 + fCO.

    C : 8 = b + f

    H : 18 = 2d

    N : 2*3.76a = 2eO : 2a = 2b + d + f

  • 7/30/2019 Fuels & Combustion

    72/154

    Combustion with Insufficient AirC8H18 + a O2 + 3.76aN2

    bCO2 + dH2O + e N2 + fCO.

    C : 8 = b + f

    H : 18 = 2d

    N : 2*3.76a = 2eO : 2a = 2b + d + f

    b = 2.93

    d = 9e = 37.468

    f = 5.07

  • 7/30/2019 Fuels & Combustion

    73/154

    Combustion with Insufficient Air

    C8H18 + 9.968 O2 +37.468N2

    2.93CO2 + 9 H2O + 37.468 N2 + 5.07 CO.

  • 7/30/2019 Fuels & Combustion

    74/154

    Combustion with Insufficient Air

    C8H18 + 9.968 O2 +37.468N2 2.93CO2 + 9 H2O + 37.468 N2 + 5.07 CO.

    Volume of CO2 = 2.93 kmol

    volume of dry flue gases = 2.93+37.468+5.07 = 45.45 kmol

    Volumetric % of CO2 = 2.93/45.45 = 6.45%

  • 7/30/2019 Fuels & Combustion

    75/154

    Example

    A Diesel engine is supplied with fuel of

    average composition of C12H16. The air

    coefficient (actual A/F / Stoichiometric A/F)

    during idling is 4.5 and during full loadrunning is 1.35. Determine stoichiometric

    fuel air ratio. Also Determine the fuel air

    ratio for each of the above cases and thegravimetric analysis of the products of

    combustion at full load.

  • 7/30/2019 Fuels & Combustion

    76/154

    Combustion with St. Air

    C12H16 + 16O2 + 16*3.76 N2 12 CO2 + 8 H2O + 16*3.76 N2

    mass of air = ma = 16*32 + 16*3.76*28 = 2196.4 kg

    mass of fuel = mf = 12*12 + 16*1 = 160 kg

    (A/F)s = 13.72

  • 7/30/2019 Fuels & Combustion

    77/154

    Idling

    Idling(A/F)a / (A/F)s = 4.5

    (A/F)a =4.5*13.728 = 61.776

    (F/A)a =0.016

    % of excess air = (61.776 13.72)/13.72

    = 350%

    Combustion with 350% Excess Air

  • 7/30/2019 Fuels & Combustion

    78/154

    or

    Combustion with 450% St. Air

    C12H16 + (4.5)16O2 + (4.5) 16*3.76 N2

    a CO2 + b H2O + d N2 + eO2

    C ( )16O ( ) 16*3 6

  • 7/30/2019 Fuels & Combustion

    79/154

    C12H16 + (4.5)16O2 + (4.5) 16*3.76 N2

    a CO2 + b H2O + d N2 + eO2

    C : 12 = a

    H : 16 = 2b

    N : 4.5*16*3.76*2 = 2d

    O : 4.5*16*2 = 2a + b + 2e

    a = 12

    b = 8

    d = 270.72e = 56

    F ll O L d

  • 7/30/2019 Fuels & Combustion

    80/154

    Full O Load

    Idling

    (A/F)a / (A/F)s = 1.35

    (A/F)a = 1.35 *13.728 = 18.53

    (F/A)a =0.052

    % of excess air = (18.53 13.72)/13.72= 35%

    Combustion with 35% Excess Air

  • 7/30/2019 Fuels & Combustion

    81/154

    Combustion with 35% Excess Air

    or

    Combustion with 135% St. Air

    C12H16 + (1.35)16O2 + (1.35) 16*3.76 N2

    a CO2 + b H2O + d N2 + eO2

    C H (1 35)16O (1 35) 16*3 76 N

  • 7/30/2019 Fuels & Combustion

    82/154

    C12H16 + (1.35)16O2 + (1.35) 16*3.76 N2

    a CO2 + b H2O + d N2 + eO2

    C : 12 = a

    H : 16 = 2b

    N : 1.35*16*3.76*2 = 2d

    O : 1.35*16*2 = 2a + b + 2e

    a = 12

    b = 8

    d = 81.22e = 5.6

    C H (1 35)16O (1 35) 16*3 76 N

  • 7/30/2019 Fuels & Combustion

    83/154

    C12H16 + (1.35)16O2 + (1.35) 16*3.76 N2

    12 CO2 + 8 H2O + 81.22 N2 + 5.6O2

    Proportional

    mass of CO2 = 12*44 = 528 kg 16.89%

    mass of H2O = 8*18 = 144 kg 4.60

    mass of N2 = 81.22*28 = 2275.182 kg 72.76%mass of O2 = 5.6*32 = 179.22 kg 5.73%

    TOTAL =3125.36 kg 100%

  • 7/30/2019 Fuels & Combustion

    84/154

    Molar coeff Mass mass%

    O2 21.59

    Co2 12 528 16.89

    H2o 8 144 4.6

    O2 5.6 179.2 5.73

    N2 81.216 2274.048 72.76

    total 3125.248

    P1 D98 6

  • 7/30/2019 Fuels & Combustion

    85/154

    P1D98 6

    Fuel for a SI engine contains 84% C and16% H2. The F/A is 1:14. Assuming

    complete combustion of H2 and no

    Carbon residue Calculate(i) The mass of C burning to CO

    (ii) The mass of C burning to CO2

    (iii) The mass of individual constituent gasesin the product

    E l

  • 7/30/2019 Fuels & Combustion

    86/154

    Example

    Fuel for a SI engine contains 84% C and16% H2. The F/A is 1:14. Assuming

    complete combustion of H2 and no

    Carbon residue Calculate(i) The mass of C burning to CO

    (ii) The mass of C burning to CO2

    (iii) The mass of individual constituent gasesin the product

  • 7/30/2019 Fuels & Combustion

    87/154

    167827

    2H

    c

    HCHC

    8n

    7n

    nMm

    kg16H2ofmass

    84KgCofmass

  • 7/30/2019 Fuels & Combustion

    88/154

    304.15F

    A

    0016.08)84.0(3

    8

    23

    100

    F

    A

    S8

    OH8C

    3

    8

    23

    100

    F

    A

    s

    s

    s

  • 7/30/2019 Fuels & Combustion

    89/154

    (A/F)s =15.304 kg/kg

    Given value < 15.304

    Insufficient Air combustion

    A i 100 k f f l

  • 7/30/2019 Fuels & Combustion

    90/154

    Assuming 100 kg of fuel,

    mc = 84 kg 1

    mH2 = 16 kg 2

    nM = m

    n1 = 7 kmoln2 = 8 kmol

  • 7/30/2019 Fuels & Combustion

    91/154

    7C + 8 H2 + a O2 + 3.76 a N2

    b CO2 + d H2O +e N2 + f CO

    (A/F)a = [32 a + 3.76 a *28] /100 = 14

    a = 10.19

  • 7/30/2019 Fuels & Combustion

    92/154

    7C + 8 H2 + a O2 + 3.76 a N2 b CO2 + d H2O +e N2 + f CO

    C : 7 = b + f

    H : 16 = 2d

    O : 2a = 2b +d +f

    N : 2*3.76a = 2e

  • 7/30/2019 Fuels & Combustion

    93/154

    7C + 8 H2 + a O2 + 3.76 a N2 b CO2 + d H2O +e N2 + f CO

    a = 10.19 (from Actual A/F)b = 5.39

    d = 8

    e = 38.31

    f = 1.6

  • 7/30/2019 Fuels & Combustion

    94/154

    7C + 8 H2 + 10.19 O2 + 38.31 N2

    5.39 CO2 + 8 H2O +38.31 N2 + 1.6 CO

  • 7/30/2019 Fuels & Combustion

    95/154

    Mass of C CO2 : [(Vco2)/(Vco2+Vco)]. mc

    : {(5.39)/(5.39+1.6)}*0.84

    : 0.647 kg of C/kg of Fuel

    Mass of C CO : {(Vco)/(Vco2+Vco)}. mc

    : {(1.6)/(5.39+1.6)}*0.84

    : 0.192 kg of C/kg of Fuel

    The mass of individual constituent

  • 7/30/2019 Fuels & Combustion

    96/154

    gases in the product

    CO2 : b*44/100 : 2.3716 kg/kg

    H2O : d*18/100 : 1.44 kg/kg

    N2 : e*28/100 : 10.78

    CO : f* 28/100 : 0.448

    ComBUSTOR

    1` kg of fuel

    14 kg of fuel

    15 kg of fuel

    Alternative method

  • 7/30/2019 Fuels & Combustion

    97/154

    Alternative method

    Based on 100 kmol of fuel

  • 7/30/2019 Fuels & Combustion

    98/154

    Vol of C = 7 kmol

    Vol of H = 16 kmol

    Vol % of C = 30.43%Vol % of H = 69.57%

    Stoichiometric Combustion

  • 7/30/2019 Fuels & Combustion

    99/154

    Stoichiometric Combustion

    30.43C+69.56H+aO2+3.76aN2==>bCO2+dH2O+eN2

    a = 47.8225b= 30.43

    d= 34.785

    e=179.81

    (A/F)s= 15.1

    Actual Combustion

  • 7/30/2019 Fuels & Combustion

    100/154

    Actual Combustion

    30.43C+69.56H+aO2+3.76aN2==>bCO2+dH2O+eN2+fCO

    a = 44.26b= 23.41

    d= 34.785

    f =6.965e = 166.68

  • 7/30/2019 Fuels & Combustion

    101/154

    Mf mco = 0.1926

    Mf mco2 = 0.6740

    Mass of combustion gas

  • 7/30/2019 Fuels & Combustion

    102/154

    Mass of combustion gas

    Mfg = 14.94 kg/kg

    mco2 = 2.376 kgof co2/kg of F

    Mh2o = 1.4

    Mco = 0.4494

    Mn2 = 10.73

    LOSS DUE TO INCOMPLETE COMBUSTION

  • 7/30/2019 Fuels & Combustion

    103/154

    HHV

    kJ/Kg

    LHV

    C 33900 33900

    CO 10170 10170

    S 9295 9295

    H2 144000 121500

    LOSS DUE TO INCOMPLETE COMBUSTION

    For 1 kg of Fuel

  • 7/30/2019 Fuels & Combustion

    104/154

    For 1 kg of Fuel

    Heat loss due to incomplete combustion0.1926 (33900-10170)= 4570.39kJ

    Total heat released= 0.647*33900

    +0.1926*10170+0.16*144000 = 46932.04kJ

    % of heat loss = 9.73%

    ???????????

  • 7/30/2019 Fuels & Combustion

    105/154

    ???????????

    Q = 51516 kJ/kg

    Q = 49577

    Loss = 3.76%

  • 7/30/2019 Fuels & Combustion

    106/154

    A/F from EG Composition

    Example

  • 7/30/2019 Fuels & Combustion

    107/154

    The Orsat analysis of the exhaust gasesfrom a diesel engine using a hydrocarbon

    fuel is 7.4% CO2, 8.8O2, 1.1 CO. The

    pressure of the exhaust gases is 10Pa(bar). Calculate (a) A/F (b) the mass

    analysis of fuel the wet product analysis.

    Take molecular mass of air as 29. Aircontains 21% O2 and 79% N2.

    Example

    C bH2 dO2 3 6dN2

  • 7/30/2019 Fuels & Combustion

    108/154

    aC+bH2+dO2+3.76dN27.4CO2+8.8O2+1.1CO+82.7N2+eH2O

    C a = 7.4 + 1.1

    H 2b = 2eO 2d = 2*7.4 +2*8.8+1.1+e

    N 2*3.76*d=2*82.7

    Molar coeff Mass Mass%

    C a= 8 5 Co2 325 6 10 36

  • 7/30/2019 Fuels & Combustion

    109/154

    C a 8.5 Co2 325.6 10.36

    H2 b=10.489 O2 281.6 8.96

    O2 d=21.99 CO 30.8 0.98

    N2 82.7 H2O 189 6.014

    e = 10.48 N2 2315.6 73.68

    Total 3142.6 100

    mass of air = (21.99*32)+ (3.7621.99*28)=3019.28kg

    mc=102 kg

    mH2 =20.96 kg

    mf =122.96

    (A/F)a =24.55

    C 82.95%, H 17.05%

    NOTE 1

  • 7/30/2019 Fuels & Combustion

    110/154

    NOTE 1

  • 7/30/2019 Fuels & Combustion

    111/154

    170569105.1791.652.8291.6

    2H

    c

    HCHCHC

    52.8n

    91.6n

    nMm

    kg17.05H2ofmass

    82.95KgCofmass

  • 7/30/2019 Fuels & Combustion

    112/154

    5.15F

    A

    S8OH8C

    38

    23100

    FA

    s

    s

    Dew Point Temperature

  • 7/30/2019 Fuels & Combustion

    113/154

    Dew Point Temperature

    Volumetric % of H2O = 9.5 % = 0.095

    the partial pressure of H2O = 0.095*10 bar

    = 0.95 bar

    dew point temperature

    98.2 deg C

    Example

  • 7/30/2019 Fuels & Combustion

    114/154

    Example

    Octane (C8H18) is burnt with dry air. Thevolumetric analysis of the dry products of

    combustion is: CO2=10.02%;

    CO = 0.88% and N2 = 83.48%;O2=5.62% Determine : (a) AirFuel ratio

    (b) % of (theoretical) air used.

    For 100 kmol of dry product gas

  • 7/30/2019 Fuels & Combustion

    115/154

    For 100 kmol of dry product gas

    aC8H18+ bO2 + 3.76b N210.02CO2 + 0.88 CO+5.62 O2 + 83.48N2 + dH2O

    C a=1.36O b = 22.2

    H d = 12.26

    N To check

  • 7/30/2019 Fuels & Combustion

    116/154

    (A/F)a = 19.61

    (A/F)s = 15.05

    % of actual air = 19.61/15.05*100= 130.3%

    Example

  • 7/30/2019 Fuels & Combustion

    117/154

    Example

    Coal having ultimate analysis of 0.65 C,0.05H, 0.05 O, 0.05 H2O (rest ash) is

    burnt with 10% excess air. The Orsat

    analysis shows no CO 9% CO2, 10.5%O2 and rest Nitrogen. Determine the air

    fuel ratio and percent excess air

    Enthalpy of Reaction

  • 7/30/2019 Fuels & Combustion

    118/154

    Enthalpy of Reaction

    Generally, a chemical reaction is performedin a steady flow device at a constant

    pressure with no work transfer, as shown

    in fig.

    FUEL

    AIR

    Gases

    Q1 2

  • 7/30/2019 Fuels & Combustion

    119/154

    For this steady flow process, neglecting thechanges in kinetic and potential energies,

    we have

    QR = HP - HR= H2 - H1 = (H)RWhere

    H2 = Enthalpy of products at section 2

    H1 = Enthalpy of reactants at section 1

    Chemical Reactions

  • 7/30/2019 Fuels & Combustion

    120/154

    Chemical Reactions

    C + O2 CO2

    H2 + 0.5 O2 H2O

    CO+0.5O2 CO2

    CaCO3 CaO + CO2

    If the reactants and products are both at the

  • 7/30/2019 Fuels & Combustion

    121/154

    same temperature, the quantity (H)R is

    called the enthalpy of react ion.

    The enthalpy of react ion or heat ofreaction of any chemical reaction atconstant pressure, is the heat released(per unit quantity of fuel) in a steady-flowprocess in which the reactants and

    products are both at the sametemperature.

  • 7/30/2019 Fuels & Combustion

    122/154

    When a chemical reaction takes place there isusually l iberat ion o r absorp t ion o f heat

  • 7/30/2019 Fuels & Combustion

    123/154

    usually l iberat ion o r absorp t ion o f heat.

    Chemical reactions which liberate energy in theform of heat are known as exothermicreact ionsand those which absorb energy arecalled endothermic react ions.

    In the above equation, if Q is positive, heat isadded to the system and Hp2 > HR1, the reactionis endothermic reaction.

    If Q is negative, heat is released by the system,the reaction is exothermic and Hp2 < HR1,.

    Combustion Reaction

  • 7/30/2019 Fuels & Combustion

    124/154

    Combustion Reaction

    It is a fast, exothermic, oxidation, chemicalreaction.

    Enthalpy of combust ion

  • 7/30/2019 Fuels & Combustion

    125/154

    py

    The enthalpy of Combus t ion or heat ofCombustion of any combustion reactionat constant pressure, is the heat released(or enthalpy change) per quantity unit offuel in a steady-flow combustion processin which the reactants and products areboth at the same temperature.

    Units : kJ/kg or kJ/kmol

    Combustion Reactions

  • 7/30/2019 Fuels & Combustion

    126/154

    C + O2 CO2

    H2 + 0.5 O2 H2O

    CO+0.5O2 CO2

    CaCO3 CaO + CO2

  • 7/30/2019 Fuels & Combustion

    127/154

    gOHgO21gH

    lOHgO2

    1gH

    222

    222

  • 7/30/2019 Fuels & Combustion

    128/154

  • 7/30/2019 Fuels & Combustion

    129/154

    During combustion reactions energy isliberated in the form of heat.

    Here Q is negative, because heat isreleased by the system, the reaction is

    exothermic and Hp2 < HR1,.

    Enthalpy of Formation

  • 7/30/2019 Fuels & Combustion

    130/154

    py

    The enthalpy of formation of a compound issimply the enthalpy of reaction for the

    formation of one unit of compound from its

    most stable elements at the standardconditions (at 25C and 1 atm).

    Formation Reactions

  • 7/30/2019 Fuels & Combustion

    131/154

    C + O2 CO2

    H2 + 0.5 O2 H2O

    CO+0.5O2 CO2

    CaCO3 CaO + CO2

  • 7/30/2019 Fuels & Combustion

    132/154

    Consider the reaction of burning carbon with

    oxygen to yield carbon dioxide as the product

  • 7/30/2019 Fuels & Combustion

    133/154

    oxygen to yield carbon dioxide as the product.

    The chemical equations is

    C(g) + O2 (g) CO2(g)

    Although this is a combustion process, this may

    also be considered as forming carbon dioxide

    from its elements carbon and oxygen.

    For this carbon oxygen reaction at constant pressure of 1atm and 25C the heat transferred from the system is

  • 7/30/2019 Fuels & Combustion

    134/154

    atm and 25 C, the heat transferred from the system isstandard enthalpy of reaction.

    If the enthalpies of the elements are set equal to zero, theenthalpy of reaction (from the table) for this process isfound to be (393741 kJ/kg-mole.

    Thus the enthalpy of formation of carbon dioxideis393741kJ/kg-mole.

    That is, ( ) CO2 = -393741 kJ/kg-mole of CO2.

    22 OCCO0R0pC25 hhhHHHQ

    fh

    NOTE

  • 7/30/2019 Fuels & Combustion

    135/154

    The enthalpy of a reaction can be calculatedif the enthalpies of formation of all the

    reactants and products are known.

    The enthalpy of formation data can often be

    used to compute enthalpy of combustion .

    NOTE

  • 7/30/2019 Fuels & Combustion

    136/154

    Enthalpy of formation of elements atStandard conditions is taken as zero

    ADIABATIC FLAME

    TEMPERATURE

  • 7/30/2019 Fuels & Combustion

    137/154

    TEMPERATURE

    It is the temperature of the products if no heat is transferredfrom the combustion system and all the energy madeavailable is used to increase the temperature of theproducts.

    It is thus the maximum possible temperature of theproducts.

    There are a number of systems of industrial interest inwhich the energy released during a reaction is stored in

    the products.

    In these it is important to know the maximum resultingtemperature.

  • 7/30/2019 Fuels & Combustion

    138/154

    Features of AFT (Tf)

  • 7/30/2019 Fuels & Combustion

    139/154

    f

    Example

  • 7/30/2019 Fuels & Combustion

    140/154

    Determine the adiabatic flame temperature that

    can be obtained by the combustion of n-Pentane(C5H12) with stoiciometric air. Both the fuel and

    air enter at 25 C and 1 atm. Assume complete

    combustion. Given the following data :

    [PTO]

  • 7/30/2019 Fuels & Combustion

    141/154

    Given the following data :

    Average molar specific heat of

    CO2 (g) : 62.75 J/mol.K

    H2O (g) : 52.96 J/mol.K

    O2(g) : 38.67 J/mol.K

    N2(g) : 37.13 J/mol.K

    Standard heat of formation of

    CO2 (g) : -393510 J/mol

    H2O (g) : -241820 J/mol

    C5H12 (g) : -146760 J/mol

    O2 and N2 : 0.00 J/mol

    [PTO]

  • 7/30/2019 Fuels & Combustion

    142/154

    C5H12+8O2+(8*3.76)N2

    5CO2+6H2O+30.08N2

  • 7/30/2019 Fuels & Combustion

    143/154

    Enthalpy of the Reactants

    HR= 1 (-146760) + 8 (0) + (8*3.76)(0)

  • 7/30/2019 Fuels & Combustion

    144/154

    Enthalpy of the Products:Hp = 5*(-393510) +5*(62.75) (T-25)

    +6*(-241820)+6*(52.96)(T-25)+30.06*(0)+30.06*(37.13)(T-25)

    = (-3462179.5)+1748.38T

  • 7/30/2019 Fuels & Combustion

    145/154

    T =1897 deg.C

    Example

  • 7/30/2019 Fuels & Combustion

    146/154

    Determine the adiabatic flame temperaturethat can be obtained by the combustion of

    n-Pentane (C5H12) with 25 % excess air.

    Both the fuel and air enetr at 25 C and 1atm. Assume complete combustion. Given

    the following data :

    [PTO]

  • 7/30/2019 Fuels & Combustion

    147/154

  • 7/30/2019 Fuels & Combustion

    148/154

    Types of Heating Values

  • 7/30/2019 Fuels & Combustion

    149/154

    Higher Heating Value (HHV) (or)Higher Calorific Value (HCV)

    (OR)

    Gross Heating Value (GHV) (or)

    Gross Calorific Value (GCV)

    Lower Heating Value (LHV) (or)Lower Calorific Value (LCV)

    (OR)

    Net Heating Value (NHV) (or)Net Calorific Value (NCV)

    FUEL (1 k )

  • 7/30/2019 Fuels & Combustion

    150/154

    FUEL (1 kg)

    Products

    With H2O

    as Liquid

    HHV

    Products

    With H2O

    as vapour

    LHV

    Air (15 kg or more)48 MJ/kg

    4 MJ

    44 MJ/kg

    Higher Heating Value (HHV) (or)

    Higher Calorific Value (HCV)

  • 7/30/2019 Fuels & Combustion

    151/154

    Higher Calorific Value (HCV)

    HHV of a fuel is the amount of heat released duringthe complete combustion of unit quantity of fuelwhen the water formed during the combustion is

    present in the form of Liquid in the products ofCombustion

    lOH9)g(CO8gO5.12lHC 222188

    Lower Heating Value (LHV) (or)

    Lower Calorific Value (LCV)

  • 7/30/2019 Fuels & Combustion

    152/154

    Lower Calorific Value (LCV)

    LHV of a fuel is the amount of heat releasedduring the complete combustion of unit quantity

    of fuel when the water formed during the

    combustion is present in the form of vapour

    in the products of Combustion

    gOH9)g(CO8gO5.12lHC 222188

  • 7/30/2019 Fuels & Combustion

    153/154

  • 7/30/2019 Fuels & Combustion

    154/154