14
Functional Safety Design and Quality concerns for automotive semiconductors with some recommendations from OEM 14th November, 2018

Functional Safety Design and Quality concerns for

  • Upload
    others

  • View
    4

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Functional Safety Design and Quality concerns for

Functional Safety Design and Quality concerns

for automotive semiconductors

with some recommendations from OEM

14th November, 2018

Page 2: Functional Safety Design and Quality concerns for

(C) Copyright NISSAN MOTOR CO., LTD. 2018 All rights reserved.

Functional Safety Design Flow in ISO26262

OE

MC

om

ponent

Supplie

r

S:severity

E:exposure

C:controllability

ASIL

A B C D

+

+

Hazard analysis ASIL definition

High

A B C D

PMHF <1000 FIT <100 FIT <100 FIT <10 FIT

FailureDetection

SPFM - ≥90% ≥97% ≥99%

LFM - ≥60% ≥80% ≥90%

-System Design -Setting of Safety Goal-Allocation of Safety Function

Component Development

Safety integrity level

System structure

ASIL requirement

-ASIL : Automotive Safety Integrity Level-PMHF : Probabilistic Metric for random Hardware Failure-SPFM : Single Point Fault Metrics-LFM : Latent Fault Metrics

Failure mode &

Effect analysis

PMHF

SPFM/LFMSafety Mechanism Design (HW & SW)

Reliability Improvement(HW)

ASIL Achievement

Page 3: Functional Safety Design and Quality concerns for

(C) Copyright NISSAN MOTOR CO., LTD. 2018 All rights reserved.

ASIL Design in Microcontrol lers

Function A

System layer

Function B

Function C

Component layer

Main control(Function A)

ASIL D

Safety mechanism is demanded from microcontrollers controlling important functions concerning the safety

such us driving, turning and stopping

Allocation of Safety Function

Sub control(Function C)

Reliability and Safety Design to satisfy PMHF/SPFM/LFM

required on each ASIL

-Failure Rate reduction based on FMEA -Proper choice of Safety Mechanism

PFHF < 10FITSPFM ≧ 99%LFM ≧ 90%

PFHF < 100FITSPFM ≧ 90%LFM ≧ 60%

Depending on system requirement,The severest ASIL D is enforced upon a

microcontroller itself !!

Design step and Requirement level in ISO26262

ASIL D

ASIL B

ASIL C

ASIL B

Page 4: Functional Safety Design and Quality concerns for

(C) Copyright NISSAN MOTOR CO., LTD. 2018 All rights reserved.

Safety Mechanism Implementat ion

CPU core

Memory & Memory bus

Infrastructures

System Bus & Peripherals

-Address Parity/EDC-Data ECC-Fail Safe Guard for memory protection-Arbiter error detection

-Address Parity/EDC-Data Parity/EDC-Fail Safe Guard for peripherals-Arbiter error detection-Self-diagnostics(HW+SW)-A/D test

-Triple Modular Redundant resister(TMR)-Error Control Module(ECM)-Clock Monitor-WDT -CRC-Field-BIST for digital logics and memories

-SW Core self test diagnostics(SW)-Lockstep Cores -MISR(Multiple-Input Signature Resistor)-Single-Core Optimized Tightly Coupled Fault Supervisor Configuration

System Safety Goal

Safety Mechanism Implementation Tools

Software

-Basic SoftWare(BSW)-Self Test Software Library-Fault Injection w/ HW(ICE)

Application Design

Software Development- Organization - Process - Tools (e.g. Compiler)

Safety Manual/Application Note

- Recommended Usage - Failure Control Method- Software Test Description

test flow/fault injection case

ISO26262 Certification Evidence

Automotive Microcontroller/SOC venders provide OEMs/System venders with various solution for smooth ISO26262 compliance

Page 5: Functional Safety Design and Quality concerns for

(C) Copyright NISSAN MOTOR CO., LTD. 2018 All rights reserved.

Differences between automotive & consumer semiconductors

Field failure rate Reliability design Production (inspection)

Au

tom

oti

ve

■Target“Zero Defect”AEC-Q004

■Reliability design AEC-Q100・HTOL/HTS/THS/...≧1,000hr

■Design of test coverage AEC-Q100・Indication for each type of circuit

■Functional safety ISO26262・Functional safety like a dual watch

■Core tool APQP, PPAP・Definition of the quality approach for automotive

■Inspection in process・HT/LT test, Visual test, X-ray, ...・100% test

■Screening・Burn-in, HT/LT stress test, Thermal shock, ...

Consu

mer

■Target N/AApprox.~200ppm

■Reliability design as general level・HTOL/HTS/THS/...<1,000hr

■Inspection as general level・Only RT test・Sampling test (No screenings)

AEC Automotive Electronics CouncilHTOL High Temperature Operating LifeHTS High Temperature StorageTHS High temp. and high humidity storage

■ Higher reliability and production quality in automotive■ Zero Defect is defined at AEC-Q004

Page 6: Functional Safety Design and Quality concerns for

(C) Copyright NISSAN MOTOR CO., LTD. 2018 All rights reserved.

Example of product categories■IEC 60749-43:2017

Semiconductor devices – Mechanical and climatic test methods –Part 43: Guidelines for IC reliability qualification plans

Category Automotive Use A Automotive Use B Consumer use

Examples of application

Powertrains, brakes, drivingsupport system, airbags

Navigation systems, car air conditioners, audio systems

Home electronics, toys, appliances

Annual operating hours

500 h (driving hours)

Differs depending on whether or not to work with KEY ON/OFF.

500 h (driving hours) Up to 8760 h

Differs among applications

Useful life 15 years (cumulative failureprobability: 0,1 %)

15 years (cumulative failureprobability: 0,1 %)

Up to 10 years (cumulativefailure probability: 0,1 %)

Differs among applications

Early failure rate 1 × 10-6 or below per annum 50×10-6 or below per annum Up to 500 × 10-6 per annum

Differs among applications

“Zero Defect” AEC-Q004

Page 7: Functional Safety Design and Quality concerns for

(C) Copyright NISSAN MOTOR CO., LTD. 2018 All rights reserved.

Quality concerns and recommendations for automotive semiconductors

1. Many early failures and sudden failures

1) Insufficient screening coverageEnhancement in screening capability

2) Problem caused by foundry management

- Poor communication in development phase Enhance foundry management

- Concerns about quality control after SOP Continuous PDCA loop after SOP

2. Problem about analysis response

- Difficulty to take a countermeasure because ofunknown “Root cause”

Complete clarification of the root cause

- Long time taken to clarify “Root cause” Shorten lead time to analysis

Page 8: Functional Safety Design and Quality concerns for

(C) Copyright NISSAN MOTOR CO., LTD. 2018 All rights reserved.

Subject from field failure unit - Early failure, Sudden failure

*Result of Nissan in-house production (2016~2018)

Enhancement in screening capability

・Foundry management・PDCA after SOP

■79% of field failures were caused by semiconductor breakdown■Many early and sudden failures occurred

(~12months of car delivery, especially within 3months)

Page 9: Functional Safety Design and Quality concerns for

(C) Copyright NISSAN MOTOR CO., LTD. 2018 All rights reserved.

Foundry management

Waferprocessing

TEGinspection

Waferinspection

(PAT)

Molding Electrical screeningFCT(RT/HT/LT)

Back-end(Foundry B)

Fablesscompany

Front-end(Foundry A)

Weak quality follow-up(Unknown process conditions)

■Poor communication in development phase■Concerns about quality monitoring and outflow prevention after SOP

Poor communicationLack of FMEA, DRBFM review

FMEA DRBFM

Enhancement offoundry control

Continuous PDCAafter SOP

Page 10: Functional Safety Design and Quality concerns for

(C) Copyright NISSAN MOTOR CO., LTD. 2018 All rights reserved.

Problem caused by analysis response■Difficulty to completely clarify the root cause of failed semiconductors

Clarified ratio ・・・ Company A 7%Company B 75%Company C 90%

ChipMaker

Failure mode

Months to take permanent countermeasures (Reproduction complete = 0 month)

1 2 3 4 5 6 7 8 9 10 11 12

X Abnormal formation of oxidization layer

X Wrong connection of contact via hole

X Abnormal insulation layer

X Wrong wire bonding loop

X W/B pad corrosion

Y Wrong connection of contact via hole

Y Contamination in silicide process

Y Lattice defect

Z Contamination on wafer backside

Z LED die crack

Z Burn out (die damage)

Z Short by terminal burr

■Taking a long time to clarify the “Root cause” even after repeated failures

Page 11: Functional Safety Design and Quality concerns for

(C) Copyright NISSAN MOTOR CO., LTD. 2018 All rights reserved.

Improvement of analysis response

1) Clarification of the root cause by secure analysis by FTA✓Estimation of root cause from FTA✓Verification of FTA factors and failure phenomenon

FIB

OBIRCH

2) Shorten lead time to analysis

Page 12: Functional Safety Design and Quality concerns for

(C) Copyright NISSAN MOTOR CO., LTD. 2018 All rights reserved.

End

Page 13: Functional Safety Design and Quality concerns for

(C) Copyright NISSAN MOTOR CO., LTD. 2018 All rights reserved.

Appendix

Page 14: Functional Safety Design and Quality concerns for

(C) Copyright NISSAN MOTOR CO., LTD. 2018 All rights reserved.

Appendix

Lockstep cores1つのダイに搭載した2つのプロセッサコアのクロックを同期させながら、それぞれのコアで同じ処理を行い、処理結果を比較回路で比較して、同じ処理結果だったときだけ実行する。

MSIRMultiple Input Signature Register

多入力スキャンチェインのテスト応答を同時に入力することができ,長大なシリアルデータを時間方向に圧縮して多ビットの系列を得る.BISTにおいてテスト応答の圧縮回路として用いられる.

Single-Core Optimized Tightly Coupled Fault Supervisor Configuration

シングルコア密結合方式処理用コアに内部信号を参照する診断回路を組み合わせ、比較と自己診断を自動実行させます。これにより従来のデュアルコア方式に比べ、ハードウエア、ソフトウエア規模の削減を図ることができる

Triple Modular Redundant resister(TMR)

回路モジュールなどを3重化する冗長構成方式で、3つの出力の多数決結果により1個の回路モジュールが故障しても正しい結果を得ることができる。また同時に出力同士を比較することで故障検出を可能にする。

Arbiter error detection調停エラーを検出。メモリを使用する際、プロセサは調停機構(Arbiter)に使用要求を送り、どのプロセサにコモンバスの使用権を与えるかを決定する。

WDTWatch Dog Timer設定されたタイマー周期内にクロックが入力されるとタイマーをリセットすることでシステムの正常動作を監視

EDC(Error Detection Code)

エラー検出コードチェックサムのようなもので、エラーの有無をチェックし、もしもエラーが見つかれば、ECCにある訂正コードを利用してコレクション

ECC(Error Correction Code) エラー訂正コード

ECM様々なエラーソースやモニタ回路で発生するエラー信号に対し、割り込みや内部リセット信号を発生するモジュール

Fail safe guard for RAM protection

CPUの暴走によるRAMデータの書き換えを防止する機構

FMEDAFailure Mode, Effect and Diagnostic Analysys

FIT 故障率を表す単位のことで、109時間あたりに何件故障が発生するか