131
Functions of Random Variables

Functions of Random Variables - math.usask.ca

  • Upload
    others

  • View
    3

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Functions of Random Variables - math.usask.ca

Functions of Random Variables

Page 2: Functions of Random Variables - math.usask.ca

Methods for determining the distribution of

functions of Random Variables

1. Distribution function method

2. Moment generating function method

3. Transformation method

Page 3: Functions of Random Variables - math.usask.ca

Distribution function method

Let X, Y, Z …. have joint density f(x,y,z, …)

Let W = h( X, Y, Z, …)

First step

Find the distribution function of W

G(w) = P[W ≤ w] = P[h( X, Y, Z, …) ≤ w]

Second step

Find the density function of W

g(w) = G'(w).

Page 4: Functions of Random Variables - math.usask.ca

Example 1

Let X have a normal distribution with mean 0, and

variance 1. (standard normal distribution)

Let W = X2.

Find the distribution of W.

2

21

2

x

f x e

Page 5: Functions of Random Variables - math.usask.ca

First step

Find the distribution function of W

G(w) = P[W ≤ w] = P[ X2 ≤ w]

if 0P w X w w

2

21

2

w x

w

e dx

F w F w

where 2

21

2

x

F x f x e

Page 6: Functions of Random Variables - math.usask.ca

d wd w

F w F wdw dw

Second step

Find the density function of W

g(w) = G'(w).

1 1

2 2 2 21 1 1 1

2 22 2

w w

e w e w

1 1

2 21 1

2 2f w w f w w

1

2 21

if 0.2

w

w e w

Page 7: Functions of Random Variables - math.usask.ca

Thus if X has a standard Normal distribution then

W = X2

has density

1

2 21

if 0.2

w

g w w e w

This distribution is the Gamma distribution with a = ½

and l = ½.

This distribution is also the c2 distribution with n = 1

degree of freedom.

Page 8: Functions of Random Variables - math.usask.ca

Example 2

Suppose that X and Y are independent random

variables each having an exponential distribution

with parameter l (mean 1/l)

Let W = X + Y.

Find the distribution of W.

1 for 0xf x e xll

2 for 0yf y e yll

1 2,f x y f x f y

2 for 0, 0x y

e x yl

l

Page 9: Functions of Random Variables - math.usask.ca

First step

Find the distribution function of W = X + Y

G(w) = P[W ≤ w] = P[ X + Y ≤ w]

Page 10: Functions of Random Variables - math.usask.ca
Page 11: Functions of Random Variables - math.usask.ca

1 2

0 0

w w x

P X Y w f x f y dydx

2

0 0

w w xx y

e dydxl

l

Page 12: Functions of Random Variables - math.usask.ca

1 2

0 0

w w x

P X Y w f x f y dydx

2

0 0

w w xx y

e dydxl

l

2

0 0

w w x

x ye e dy dxl ll

2

0 0

w xw yx e

e dxl

lll

02

0

w w x

x e ee dx

lll

l

Page 13: Functions of Random Variables - math.usask.ca

P X Y w 0

2

0

w w x

x e ee dx

lll

l

0

w

x we e dxl ll

0

wx

wexe

lll

l

0wwe e

wel

lll l

1 w we wel ll

Page 14: Functions of Random Variables - math.usask.ca

Second step

Find the density function of W

g(w) = G'(w).

1 w wde we

dw

l ll

ww wdw de

e e wdw dw

ll ll l

2w w we e wel l ll l l

2 for 0wwe wll

Page 15: Functions of Random Variables - math.usask.ca

Hence if X and Y are independent random variables each having an exponential distribution with parameter l then W has density

2 for 0wg w we wll

This distribution can be recognized to be the Gamma distribution with parameters a = 2 and l.

Page 16: Functions of Random Variables - math.usask.ca

Example: Student’s t distribution

Let Z and U be two independent random

variables with:

1. Z having a Standard Normal distribution

and

2. U having a c2 distribution with n degrees

of freedom

Find the distribution of Z

tUn

Page 17: Functions of Random Variables - math.usask.ca

The density of Z is:

2

21

2

z

f z e

The density of U is:

2

12 2

1

2

2

u

h u u e

n

n

n

Page 18: Functions of Random Variables - math.usask.ca

Therefore the joint density of Z and U is:

The distribution function of T is:

Z t

G t P T t P t P Z UU nn

2

2

12 2

1

2,

22

z u

f z u f z h u u e

n

n

n

Page 19: Functions of Random Variables - math.usask.ca

Therefore:

t

G t P T t P Z Un

2

2

12 2

0

1

2

22

tu

z u

u e dzdu

n

nn

n

Page 20: Functions of Random Variables - math.usask.ca

Illustration of limits

U

U

z z

t > 0 t < 0

Page 21: Functions of Random Variables - math.usask.ca

Now:

2

2

12 2

0

1

2( )

22

tu

z u

G t u e dzdu

n

nn

n

and:

2

2

12 2

0

1

2( )

22

tu

z ud

g t G t u e dz dudt

n

nn

n

Page 22: Functions of Random Variables - math.usask.ca

Using:

b

a

b

a

dxtxFdt

ddxtxF

dt

d),(),(

Page 23: Functions of Random Variables - math.usask.ca

Using the fundamental theorem of calculus:

( )

x

a

F x f t dt

then

2

2

12 2

0

1

2

22

tu

z ud

g t u e dz dudt

n

nn

n

If then ( )F x f x

2

2

122 2

0

1

2

22

t uuu

u e e du

n

n

n

n n

Page 24: Functions of Random Variables - math.usask.ca

Hence

221

1

2 2

0

1

2( )

22

tu

g t u e du

n

nn

n n

Using

1

0

xx e dxa l

a

a

l

1

0

1 xx e dxa

a ll

a

or

Page 25: Functions of Random Variables - math.usask.ca

Hence 2 1

1 21

2 21

20 2

12

2

1

tu

u e du

t

n

nn

n

n

n

and 1

212

2 2

1 12

2 2( ) 1

22

tg t

nn

nn

n n n

Page 26: Functions of Random Variables - math.usask.ca

or

1 12 22 2

1

2( ) 1 1

2

t tg t K

n nn

n n nn

1

2

2

K

n

nn

where

Page 27: Functions of Random Variables - math.usask.ca

Student’s t distribution

12 2

( ) 1t

g t K

n

n

1

2

2

K

n

nn

where

Page 28: Functions of Random Variables - math.usask.ca

Student – W.W. Gosset

Worked for a distillery

Not allowed to publish

Published under the

pseudonym “Student

Page 29: Functions of Random Variables - math.usask.ca

t distribution

standard normal distribution

Page 30: Functions of Random Variables - math.usask.ca

Functions of Random Variables

Page 31: Functions of Random Variables - math.usask.ca

Methods for determining the distribution of

functions of Random Variables

1. Distribution function method

2. Moment generating function method

3. Transformation method

Page 32: Functions of Random Variables - math.usask.ca

Distribution function method

Let X, Y, Z …. have joint density f(x,y,z, …)

Let W = h( X, Y, Z, …)

First step

Find the distribution function of W

G(w) = P[W ≤ w] = P[h( X, Y, Z, …) ≤ w]

Second step

Find the density function of W

g(w) = G'(w).

Page 33: Functions of Random Variables - math.usask.ca

Distribution of the Max and Min

Statistics

Page 34: Functions of Random Variables - math.usask.ca

Let x1, x2, … , xn denote a sample of size n from

the density f(x).

Let M = max(xi) then determine the distribution

of M.

Repeat this computation for m = min(xi)

Assume that the density is the uniform density

from 0 to q.

Page 35: Functions of Random Variables - math.usask.ca

Hence

10

( )

elsewhere

xf x

qq

and the distribution function

0 0

( ) 0

1

x

xF x P X x x

x

qq

q

Page 36: Functions of Random Variables - math.usask.ca

Finding the distribution function of M.

( ) max iG t P M t P x t

1 , , nP x t x t

1 nP x t P x t

0 0

0

1

n

t

tt

t

qq

q

Page 37: Functions of Random Variables - math.usask.ca

Differentiating we find the density function of M.

1

0

0 otherwise

n

n

ntt

g t G tq

q

0

0.1

0.2

0.3

0.4

0.5

0.6

0 2 4 6 8 10

0

0.02

0.04

0.06

0.08

0.1

0.12

0 2 4 6 8 10

f(x) g(t)

Page 38: Functions of Random Variables - math.usask.ca

Finding the distribution function of m.

( ) min iG t P m t P x t

11 , , nP x t x t

11 nP x t P x t

0 0

1 1 0

1

n

t

tt

t

qq

q

Page 39: Functions of Random Variables - math.usask.ca

0

0.1

0.2

0.3

0.4

0.5

0.6

0 2 4 6 8 10

Differentiating we find the density function of m.

1

1 0

0 otherwise

nn t

tg t G t

qq q

0

0.02

0.04

0.06

0.08

0.1

0.12

0 2 4 6 8 10

f(x) g(t)

Page 40: Functions of Random Variables - math.usask.ca

The probability integral transformation

This transformation allows one to convert

observations that come from a uniform

distribution from 0 to 1 to observations that

come from an arbitrary distribution.

Let U denote an observation having a uniform

distribution from 0 to 1.

1 0 1

( )elsewhere

ug u

Page 41: Functions of Random Variables - math.usask.ca

Find the distribution of X.

1( )X F ULet

Let f(x) denote an arbitrary density function and

F(x) its corresponding cumulative distribution

function.

1( )G x P X x P F U x

P U F x

F x

Hence.

g x G x F x f x

Page 42: Functions of Random Variables - math.usask.ca

has density f(x).

1( )X F U

Thus if U has a uniform distribution from 0 to 1.

Then

U

1( )X F U

Page 43: Functions of Random Variables - math.usask.ca

The Transformation Method

Theorem

Let X denote a random variable with

probability density function f(x) and U = h(X).

Assume that h(x) is either strictly increasing

(or decreasing) then the probability density of

U is:

1

1 ( )( )

dh u dxg u f h u f x

du du

Page 44: Functions of Random Variables - math.usask.ca

Proof

Use the distribution function method.

Step 1 Find the distribution function, G(u)

Step 2 Differentiate G (u ) to find the

probability density function g(u)

G u P U u P h X u

1

1

( ) strictly increasing

( ) strictly decreasing

P X h u h

P X h u h

Page 45: Functions of Random Variables - math.usask.ca

1

1

( ) strictly increasing

1 ( ) strictly decreasing

F h u h

F h u h

hence

g u G u

1

1

1

1

strictly increasing

strictly decreasing

dh uF h u h

du

dh uF h u h

du

Page 46: Functions of Random Variables - math.usask.ca

or

1

1 ( )( )

dh u dxg u f h u f x

du du

Page 47: Functions of Random Variables - math.usask.ca

Example

Suppose that X has a Normal distribution

with mean m and variance s2.

Find the distribution of U = h(x) = eX.

Solution:

2

221

2

x

f x e

m

s

s

1

1ln 1

ln and dh u d u

h u udu du u

Page 48: Functions of Random Variables - math.usask.ca

hence

1

1 ( )( )

dh u dxg u f h u f x

du du

2

2

ln

21 1

for 02

u

e uu

m

s

s

This distribution is called the log-normal

distribution

Page 49: Functions of Random Variables - math.usask.ca

log-normal distribution

0

0.02

0.04

0.06

0.08

0.1

0 10 20 30 40

Page 50: Functions of Random Variables - math.usask.ca

The Transfomation Method

(many variables) Theorem

Let x1, x2,…, xn denote random variables

with joint probability density function

f(x1, x2,…, xn )

Let u1 = h1(x1, x2,…, xn).

u2 = h2(x1, x2,…, xn).

un = hn(x1, x2,…, xn).

define an invertible transformation from the x’s to the u’s

Page 51: Functions of Random Variables - math.usask.ca

Then the joint probability density function of

u1, u2,…, un is given by:

1

1 1

1

, ,, , , ,

, ,

n

n n

n

d x xg u u f x x

d u u

1, , nf x x J

where

1

1

, ,

, ,

n

n

d x xJ

d u u

Jacobian of the transformation

1 1

1

1

det

n

n n

n

dx dx

du du

dx dx

du du

Page 52: Functions of Random Variables - math.usask.ca

Example Suppose that x1, x2 are independent with density

functions f1 (x1) and f2(x2)

Find the distribution of

u1 = x1+ x2

u2 = x1 - x2

Solving for x1 and x2 we get the inverse transformation

1 21

2

u ux

1 22

2

u ux

Page 53: Functions of Random Variables - math.usask.ca

1 2

1 2

,

,

d x xJ

d u u

The Jacobian of the transformation

1 1

1 2

2 2

1 2

det

dx dx

du du

dx dx

du du

1 1

1 1 1 1 12 2det

1 1 2 2 2 2 2

2 2

Page 54: Functions of Random Variables - math.usask.ca

The joint density of x1, x2 is

f(x1, x2) = f1 (x1) f2(x2)

Hence the joint density of u1 and u2 is:

1 2 1 21 2

1

2 2 2

u u u uf f

1 2 1 2, ,g u u f x x J

Page 55: Functions of Random Variables - math.usask.ca

From

1 2 1 21 2 1 2

1,

2 2 2

u u u ug u u f f

We can determine the distribution of u1= x1 + x2

1 1 1 2 2,g u g u u du

1 2 1 21 2 2

1

2 2 2

u u u uf f du

1 2 1 21

2

1put then ,

2 2 2

u u u u dvv u v

du

Page 56: Functions of Random Variables - math.usask.ca

Hence

1 2 1 21 1 1 2 2

1

2 2 2

u u u ug u f f du

1 2 1f v f u v dv

This is called the convolution of the two

densities f1 and f2.

Page 57: Functions of Random Variables - math.usask.ca

Example: The ex-Gaussian distribution

1. X has an exponential distribution with

parameter l.

2. Y has a normal (Gaussian) distribution with

mean m and standard deviation s.

Let X and Y be two independent random

variables such that:

Find the distribution of U = X + Y.

This distribution is used in psychology as a model

for response time to perform a task.

Page 58: Functions of Random Variables - math.usask.ca

Now 1

0

0 0

xe xf x

x

ll

1 2g u f v f u v dv

The density of U = X + Y is :.

2

222

1

2

x

f y e

m

s

s

2

22

0

1

2

u v

ve e dv

m

l sls

Page 59: Functions of Random Variables - math.usask.ca

or

2

22

02

u vv

g u e dv

ml

sl

s

2 2

2

2

2

02

u v v

e dv

m s l

sl

s

22 2

2

2 2

2

02

v u v u v

e dv

m m s l

sl

s

2 22

2 2

2

2 2

02

v u vu

e e dv

m s lm

s sl

s

Page 60: Functions of Random Variables - math.usask.ca

or 2 22

2 2

2

2 2

02

v u vu

e e dv

m s lm

s sl

s

2 22 2 2 2 2

2 2

2

2 2

02

u u v u v u

e e dv

m m s l m s l m s l

s sl

s

2 22 2 2 2 2

2 2

2

2 2

0

1

2

u u v u v u

e e dv

m m s l m s l m s l

s sls

22 2

22 0

u u

e P V

m m s l

sl

Page 61: Functions of Random Variables - math.usask.ca

Where V has a Normal distribution with mean

22

2

21

u ug u e

s ll m m s l

ls

2

V um m s l

and variance s2.

Hence

Where (z) is the cdf of the standard Normal

distribution

Page 62: Functions of Random Variables - math.usask.ca

0

0.03

0.06

0.09

0 10 20 30

g(u)

The ex-Gaussian distribution

Page 63: Functions of Random Variables - math.usask.ca

Functions of Random Variables

Page 64: Functions of Random Variables - math.usask.ca

Methods for determining the distribution of

functions of Random Variables

1. Distribution function method

2. Moment generating function method

3. Transformation method

Page 65: Functions of Random Variables - math.usask.ca

Distribution function method

Let X, Y, Z …. have joint density f(x,y,z, …)

Let W = h( X, Y, Z, …)

First step

Find the distribution function of W

G(w) = P[W ≤ w] = P[h( X, Y, Z, …) ≤ w]

Second step

Find the density function of W

g(w) = G'(w).

Page 66: Functions of Random Variables - math.usask.ca

The Transformation Method

Theorem

Let X denote a random variable with

probability density function f(x) and U = h(X).

Assume that h(x) is either strictly increasing

(or decreasing) then the probability density of

U is:

1

1 ( )( )

dh u dxg u f h u f x

du du

Page 67: Functions of Random Variables - math.usask.ca

The Transfomation Method

(many variables) Theorem

Let x1, x2,…, xn denote random variables

with joint probability density function

f(x1, x2,…, xn )

Let u1 = h1(x1, x2,…, xn).

u2 = h2(x1, x2,…, xn).

un = hn(x1, x2,…, xn).

define an invertible transformation from the x’s to the u’s

Page 68: Functions of Random Variables - math.usask.ca

Then the joint probability density function of

u1, u2,…, un is given by:

1

1 1

1

, ,, , , ,

, ,

n

n n

n

d x xg u u f x x

d u u

1, , nf x x J

where

1

1

, ,

, ,

n

n

d x xJ

d u u

Jacobian of the transformation

1 1

1

1

det

n

n n

n

dx dx

du du

dx dx

du du

Page 69: Functions of Random Variables - math.usask.ca

Use of moment generating

functions

Page 70: Functions of Random Variables - math.usask.ca

Definition

Let X denote a random variable with probability

density function f(x) if continuous (probability mass

function p(x) if discrete)

Then

mX(t) = the moment generating function of X

tXE e

if is continuous

if is discrete

tx

tx

x

e f x dx X

e p x X

Page 71: Functions of Random Variables - math.usask.ca

The distribution of a random variable X is

described by either 1. The density function f(x) if X continuous (probability

mass function p(x) if X discrete), or

2. The cumulative distribution function F(x), or

3. The moment generating function mX(t)

Page 72: Functions of Random Variables - math.usask.ca

Properties

1. mX(0) = 1

0 derivative of at 0.k th

X Xm k m t t 2.

k

k E Xm

2 33211 .

2! 3! !

kkXm t t t t t

k

m mmm 3.

continuous

discrete

k

k

k k

x f x dx XE X

x p x Xm

Page 73: Functions of Random Variables - math.usask.ca

4. Let X be a random variable with moment

generating function mX(t). Let Y = bX + a

Then mY(t) = mbX + a(t)

= E(e [bX + a]t) = eatE(e X[ bt ])

= eatmX (bt)

5. Let X and Y be two independent random

variables with moment generating function

mX(t) and mY(t) .

Then mX+Y(t) = E(e [X + Y]t) = E(e Xt e Yt)

= E(e Xt) E(e Yt)

= mX (t) mY (t)

Page 74: Functions of Random Variables - math.usask.ca

6. Let X and Y be two random variables with

moment generating function mX(t) and mY(t)

and two distribution functions FX(x) and

FY(y) respectively.

Let mX (t) = mY (t) then FX(x) = FY(x).

This ensures that the distribution of a random

variable can be identified by its moment

generating function

Page 75: Functions of Random Variables - math.usask.ca

M. G. F.’s - Continuous distributions

Name

Moment generating

function MX(t)

Continuous

Uniform

ebt-eat

[b-a]t

Exponential l

l t

for t < l

Gamma l

l t

a

for t < l

c2

nd.f.

1

1-2t

n/2

for t < 1/2

Normal etm+(1/2)t2s2

Page 76: Functions of Random Variables - math.usask.ca

M. G. F.’s - Discrete distributions

Name

Moment

generating

function MX(t)

Discrete

Uniform

et

N etN-1

et-1

Bernoulli q + pet

Binomial (q + pet)N

Geometric pet

1-qet

Negative

Binomial

pet

1-qet k

Poisson el(et-1)

Page 77: Functions of Random Variables - math.usask.ca

Moment generating function of the

gamma distribution

tX tx

Xm t E e e f x dx

1 0

0 0

xx e xf x

x

aa ll

a

where

Page 78: Functions of Random Variables - math.usask.ca

tX tx

Xm t E e e f x dx

1

0

tx xe x e dxa

a ll

a

using

1

0

t xx e dx

alal

a

1

0

1a

a bxbx e dx

a

1

0

a bx

a

ax e dx

b

or

Page 79: Functions of Random Variables - math.usask.ca

then

1

0

t x

Xm t x e dxa

lal

a

t

a

a

al

a l

tt

al

ll

Page 80: Functions of Random Variables - math.usask.ca

Moment generating function of the

Standard Normal distribution

tX tx

Xm t E e e f x dx

2

21

2

x

f x e

where

thus

2 2

2 21 1

2 2

x xtx

tx

Xm t e e dx e dx

Page 81: Functions of Random Variables - math.usask.ca

We will use

2

22

0

11

2

x a

be dxb

2

21

2

xtx

Xm t e dx

2 2

21

2

x tx

e dx

22 2 2 22

2 2 2 21 1

2 2

x tx tx t t t

e e dx e e dx

2

2

t

e

Page 82: Functions of Random Variables - math.usask.ca

Note:

2

2 32 2

2

22 2

12 2! 3!

t

X

t t

tm t e

2 3 4

12! 3! 4!

x x x xe x

2 4 6 2

2 31

2 2 2! 2 3! 2 !

m

m

t t t t

m

Also

2 33211

2! 3!Xm t t t t

mmm

Page 83: Functions of Random Variables - math.usask.ca

Note:

2

2 32 2

2

22 2

12 2! 3!

t

X

t t

tm t e

2 3 4

12! 3! 4!

x x x xe x

2 4 6 2

2 31

2 2 2! 2 3! 2 !

m

m

t t t t

m

Also 2 33211

2! 3!Xm t t t t

mmm

momentth k

k k x f x dxm

Page 84: Functions of Random Variables - math.usask.ca

Equating coefficients of tk, we get

21

for 2 then 2 ! 2 !

m

mk m

m m

m

0 if is odd andk km

1 2 3 4hence 0, 1, 0, 3m m m m

Page 85: Functions of Random Variables - math.usask.ca

Using of moment generating

functions to find the distribution of

functions of Random Variables

Page 86: Functions of Random Variables - math.usask.ca

Example

Suppose that X has a normal distribution with

mean m and standard deviation s.

Find the distribution of Y = aX + b

2 2

2

tt

Xm t es

m

Solution:

22

2

atat

bt bt

aX b Xm t e m at e e

sm

2 2 2

2

a ta b t

es

m

= the moment generating function of the normal

distribution with mean am + b and variance a2s2.

Page 87: Functions of Random Variables - math.usask.ca

Thus Z has a standard normal distribution .

Special Case: the z transformation

1XZ X aX b

m m

s s s

10Z a b

mm m m

s s

2

2 2 2 211Z as s s

s

Thus Y = aX + b has a normal distribution with

mean am + b and variance a2s2.

Page 88: Functions of Random Variables - math.usask.ca

Example Suppose that X and Y are independent each having a normal distribution with means mX and mY , standard deviations sX and sY

Find the distribution of S = X + Y

2 2

2

XX

tt

Xm t es

m

Solution:

2 2

2

YY

tt

Ym t es

m

2 2 2 2

2 2

X YX Y

t tt t

X Y X Ym t m t m t e es s

m m

Now

Page 89: Functions of Random Variables - math.usask.ca

or

2 2 2

2

X Y

X Y

tt

X Ym t e

s sm m

= the moment generating function of the

normal distribution with mean mX + mY and

variance

2 2

X Ys s

Thus Y = X + Y has a normal distribution

with mean mX + mY and variance

2 2

X Ys s

Page 90: Functions of Random Variables - math.usask.ca

Example Suppose that X and Y are independent each having a normal distribution with means mX and mY , standard deviations sX and sY

Find the distribution of L = aX + bY

2 2

2

XX

tt

Xm t es

m

Solution:

2 2

2

YY

tt

Ym t es

m

aX bY aX bY X Ym t m t m t m at m bt

Now

2 22 2

2 2

X YX Y

at btat bt

e e

s sm m

Page 91: Functions of Random Variables - math.usask.ca

or

2 2 2 2 2

2

X Y

X Y

a b ta b t

aX bYm t e

s sm m

= the moment generating function of the

normal distribution with mean amX + bmY

and variance

2 2 2 2

X Ya bs s

Thus L = aX + bY has a normal

distribution with mean amX + bmY and

variance

2 2 2 2

X Ya bs s

Page 92: Functions of Random Variables - math.usask.ca

Special Case:

Thus Y = X - Y has a normal distribution

with mean mX - mY and variance

2 22 2 2 21 1

X Y X Ys s s s

a = +1 and b = -1.

Page 93: Functions of Random Variables - math.usask.ca

Example (Extension to n independent RV’s)

Suppose that X1, X2, …, Xn are independent each having a normal distribution with means mi, standard deviations si

(for i = 1, 2, … , n)

Find the distribution of L = a1X1 + a2X2 + …+ anXn

2 2

2

ii

i

tt

Xm t es

m

Solution:

1 1 1 1n n n na X a X a X a Xm t m t m t Now

22 221 1

1 12 2

n nn n

a ta ta t a t

e e

ssm m

(for i = 1, 2, … , n)

1 1 nX X nm a t m a t

Page 94: Functions of Random Variables - math.usask.ca

or

2 2 2 2 21 1

1 1

1 1

......

2

n n

n n

n n

a a ta a t

a X a Xm t e

s sm m

= the moment generating function of the

normal distribution with mean

and variance

Thus Y = a1X1 + … + anXn has a normal

distribution with mean a1m1 + …+ anmn

and variance

1 1 ... n na am m 2 2 2 2

1 1 ... n na as s

2 2 2 2

1 1 ... n na as s

Page 95: Functions of Random Variables - math.usask.ca

1 2

1na a a

n

1 2 nm m m m

2 2 2 2

1 2 ns s s s

In this case X1, X2, …, Xn is a sample from a

normal distribution with mean m, and standard

deviations s,and

1 2

1nL X X X

n

the sample meanX

Special case:

Page 96: Functions of Random Variables - math.usask.ca

Thus

2 2 2 2 2

1 1 ...x n na as s s

and variance

1 1 ...x n na am m m

has a normal distribution with mean

1 1 ... n nY x a x a x

11 1... nx x

n n

1 1...n nm m m

2 2 2 22 2 21 1 1

... nn n n n

ss s s

Page 97: Functions of Random Variables - math.usask.ca

If x1, x2, …, xn is a sample from a normal

distribution with mean m, and standard

deviations s,then the sample meanx

Summary

22

xn

ss

and variance

xm m

has a normal distribution with mean

standard deviation xn

ss

Page 98: Functions of Random Variables - math.usask.ca

0

0.1

0.2

0.3

0.4

20 30 40 50 60

Population

Sampling distribution

of x

Page 99: Functions of Random Variables - math.usask.ca

Suppose x1, x2, …, xn is a sample (independent

identically distributed – i.i.d.) from a

distribution with mean m,

the sample meanx

The Law of Large Numbers

Then

1 as for all 0P x nm

Let

Proof: Previously we used Tchebychev’s Theorem.

This assumes s(s2) is finite.

Page 100: Functions of Random Variables - math.usask.ca

We will use the following fact:

Let

m1(t), m2(t), …

denote a sequence of moment generating functions

corresponding to the sequence of distribution

functions:

F1(x) , F2(x), …

Let m(t) be a moment generating function

corresponding to the distribution function F(x) then

if

Proof: (use moment generating functions)

lim for all in an interval about 0.ii

m t m t t

lim for all .ii

F x F x x

then

Page 101: Functions of Random Variables - math.usask.ca

Let x1, x2, … denote a sequence of independent

random variables coming from a distribution with

moment generating function m(t) and distribution

function F(x).

1 2 1 2

=n n nS x x x x x xm t m t m t m t m t

Let Sn = x1 + x2 + … + xn then

=n

m t

1 2now n nx x x Sx

n n

1or

nn

n

x SS

n

t tm t m t m m

n n

Page 102: Functions of Random Variables - math.usask.ca

using L’Hopitals rule

now ln ln ln

n

x

t tm t m n m

n n

ln where

t m u tu

u n

0

lnThus lim ln limx

n u

t m um t

u

0

0lim

1 0u

m ut

m u mt t

mm

Page 103: Functions of Random Variables - math.usask.ca

is the moment generating function of

a random variable that takes on the value m with

probability 1.

and lim for all values of .xn

F x F x x

tm t e m

1

i.e. andx

p xx

m

m

0

and distribution function and1

xF x

x

m

m

Thus lim t

xn

m t m t e m

Page 104: Functions of Random Variables - math.usask.ca

Now

0

since and1

xF x

x

m

m

P x P xm m m

x xF Fm m

1 if 0F Fm m

as n

Q.E.D.

Page 105: Functions of Random Variables - math.usask.ca

If x1, x2, …, xn is a sample from a distribution

with mean m, and standard deviations s,then

if n is large the sample meanx

The Central Limit theorem

22

xn

ss

and variance

xm m

has a normal distribution with mean

standard deviation xn

ss

Page 106: Functions of Random Variables - math.usask.ca

We will use the following fact:

Let

m1(t), m2(t), …

denote a sequence of moment generating functions

corresponding to the sequence of distribution

functions:

F1(x) , F2(x), …

Let m(t) be a moment generating function

corresponding to the distribution function F(x) then

if

Proof: (use moment generating functions)

lim for all in an interval about 0.ii

m t m t t

lim for all .ii

F x F x x

then

Page 107: Functions of Random Variables - math.usask.ca

Let x1, x2, … denote a sequence of independent

random variables coming from a distribution with

moment generating function m(t) and distribution

function F(x).

1 2 1 2

=n n nS x x x x x xm t m t m t m t m t

Let Sn = x1 + x2 + … + xn then

=n

m t

1 2now n nx x x Sx

n n

1or

nn

n

x SS

n

t tm t m t m m

n n

Page 108: Functions of Random Variables - math.usask.ca

Let x n n

z x

n

m m

s s s

then

nn n

t t

z x

nt ntm t e m e m

n

m m

s s

s s

and ln lnz

n tm t t n m

n

m

s s

Page 109: Functions of Random Variables - math.usask.ca

Then ln lnz

n tm t t n m

n

m

s s

2 2

2 2 2ln

t tm u

u u

m

s s

2

2 2Let or and

t t tu n n

u un s ss

2

2 2

ln m u ut

u

m

s

Page 110: Functions of Random Variables - math.usask.ca

0

Now lim ln lim lnz zn u

m t m t

2

2 20

lnlimu

m u ut

u

m

s

2

2 0lim using L'Hopital's rule

2u

m u

m ut

u

m

s

2

22

2 0lim using L'Hopital's rule again

2u

m u m u m u

m ut

s

Page 111: Functions of Random Variables - math.usask.ca

2

22

2 0lim using L'Hopital's rule again

2u

m u m u m u

m ut

s

2

2

2

0 0

2

m mt

s

222 2

2 2 2

i iE x E xt t

s

2

2

2thus lim ln and lim2

t

z zn n

tm t m t e

Page 112: Functions of Random Variables - math.usask.ca

2

2Now t

m t e

Is the moment generating function of the standard

normal distribution

Thus the limiting distribution of z is the standard

normal distribution

2

21

i.e. lim2

x u

zn

F x e du

Q.E.D.

Page 113: Functions of Random Variables - math.usask.ca

The Central Limit theorem

illustrated

Page 114: Functions of Random Variables - math.usask.ca

If x1, x2, …, xn is a sample from a distribution

with mean m, and standard deviations s,then

if n is large the sample meanx

The Central Limit theorem

22

xn

ss

and variance

xm m

has a normal distribution with mean

standard deviation xn

ss

Page 115: Functions of Random Variables - math.usask.ca

If x1, x2 are independent from the uniform

distirbution from 0 to 1. Find the distribution

of: the sample meanx

The Central Limit theorem illustrated

1 21 2 and

2 2

x xSS x x x

let

Page 116: Functions of Random Variables - math.usask.ca

1 2G s P S s P x x s Now

2

2

0 0

0 12

21 1 2

2

1 1

s

s s

ss

s

0 1

2 1 2

0 otherwise

s s

g s G s s s

Page 117: Functions of Random Variables - math.usask.ca

Now: 12

2

Sx S aS

The density of is:x

2 2dS

h x g S g xdx

12

12

2 0 2 1 2 0

2 2 1 2 2 2 1 1

0 otherwise 0 otherwise

x x x x

x x x x

Page 118: Functions of Random Variables - math.usask.ca

n = 1

1 0

1 0

n = 2

n = 3

1 0

Page 119: Functions of Random Variables - math.usask.ca

Distributions of functions of

Random Variables

Gamma distribution, c2 distribution,

Exponential distribution

Page 120: Functions of Random Variables - math.usask.ca

Therorem

Let X and Y denote a independent random variables

each having a gamma distribution with parameters

(l,a1) and (l,a2). Then W = X + Y has a gamma

distribution with parameters (l, a1 + a2).

Proof:

1 2

and X Ym t m tt t

a al l

l l

Page 121: Functions of Random Variables - math.usask.ca

1 2 1 2

t t t

a a a al l l

l l l

Therefore X Y X Ym t m t m t

Recognizing that this is the moment generating

function of the gamma distribution with parameters

(l, a1 + a2) we conclude that W = X + Y has a

gamma distribution with parameters (l, a1 + a2).

Page 122: Functions of Random Variables - math.usask.ca

Therorem (extension to n RV’s)

Let x1, x2, … , xn denote n independent random

variables each having a gamma distribution with

parameters (l,ai), i = 1, 2, …, n.

Then W = x1 + x2 + … + xn has a gamma distribution

with parameters (l, a1 + a2 +… + an).

Proof:

1,2...,i

ixm t i nt

al

l

Page 123: Functions of Random Variables - math.usask.ca

1 2 1 2 ...

...n n

t t t t

a a a a a al l l l

l l l l

1 2 1 2... ...

n nx x x x x xm t m t m t m t

Recognizing that this is the moment generating

function of the gamma distribution with parameters

(l, a1 + a2 +…+ an) we conclude that

W = x1 + x2 + … + xn has a gamma distribution with

parameters (l, a1 + a2 +…+ an).

Therefore

Page 124: Functions of Random Variables - math.usask.ca

Therorem

Suppose that x is a random variable having a

gamma distribution with parameters (l,a).

Then W = ax has a gamma distribution with

parameters (l/a, a).

Proof:

xm tt

al

l

then ax xam t m at

at ta

aa l

l

ll

Page 125: Functions of Random Variables - math.usask.ca

1. Let X and Y be independent random variables

having an exponential distribution with parameter

l then X + Y has a gamma distribution with a= 2

and l

Special Cases

2. Let x1, x2,…, xn, be independent random variables

having a exponential distribution with parameter l

then S = x1+ x2 +…+ xn has a gamma distribution

with a= n and l3. Let x1, x2,…, xn, be independent random variables

having a exponential distribution with parameter l

then

has a gamma distribution with a= n and nl

1 nx xSx

n n

Page 126: Functions of Random Variables - math.usask.ca

0

0.1

0.2

0.3

0.4

0.5

0.6

0 5 10 15 20

pop'n

n = 4

n = 10

n = 15

n = 20

Distribution of

population – Exponential distribution

x

Another illustration of the central limit theorem

Page 127: Functions of Random Variables - math.usask.ca

4. Let X and Y be independent random variables

having a c2 distribution with n1 and n2 degrees of

freedom respectively then X + Y has a c2

distribution with degrees of freedom n1 + n2.

Special Cases -continued

5. Let x1, x2,…, xn, be independent random variables

having a c2 distribution with n1 , n2 ,…, nn degrees

of freedom respectively then x1+ x2 +…+ xn has a

c2 distribution with degrees of freedom n1 +…+ nn.

Both of these properties follow from the fact that a

c2 random variable with n degrees of freedom is a

random variable with l= ½ and a = n/2.

Page 128: Functions of Random Variables - math.usask.ca

If z has a Standard Normal distribution then z2 has a

c2 distribution with 1 degree of freedom.

Recall

Thus if z1, z2,…, zn are independent random variables

each having Standard Normal distribution then

has a c2 distribution with n degrees of freedom.

2 2 2

1 2 ...U z z zn

Page 129: Functions of Random Variables - math.usask.ca

Therorem

Suppose that U1 and U2 are independent random

variables and that U = U1 + U2 Suppose that U1

and U have a c2 distribution with degrees of

freedom n1andn respectively. (n1 < n)

Then U2 has a c2 distribution with degrees of

freedom n2 =n -n1

Proof:

12

1

12

12

Now

v

Um tt

212

12

and

v

Um tt

Page 130: Functions of Random Variables - math.usask.ca

1 2

Also U U Um t m t m t

2

12 2

12

12

1122

11 22

12

v

vv

v

t

t

t

2

1

Hence U

U

U

m tm t

m t

Q.E.D.

Page 131: Functions of Random Variables - math.usask.ca

Tables for Standard Normal

distribution