9
>pamir 9 International Conference on Fundamental and applied MHD, Thermo acoustic and Space technologies _* Theme 9: SPACE Riga - Latvia June 16-20 ,2014 Chairmen A. Alemany France, J. Freibergs, Latvia Co-chairmen : J.P. Chopart, France - C. Latge, France - M. Francois, France - E. Gaia, Italy Secretaries : B. Collovati, France - M. Broka, Latvia pamirfeimap, grenoble-inp.fr coirs Univorsity of Latvia Institute of Physics labonttoirr d Ingrnirrir et Science» *iv> Material» x HeKYom a •rn) ThalesAlenia Space Grenoble >• P LATVITAS lNl\FJBiTEJB l NIVLRSHÄTl ,N^:!RJ.fiU; ft

Fundamental and applied MHD, Thermo acoustic and Space

  • Upload
    others

  • View
    4

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Fundamental and applied MHD, Thermo acoustic and Space

>pamir

9 International Conference on

Fundamental and applied MHD, Thermo acoustic and Space technologies

_ *

Theme 9: SPACE Riga - Latvia

June 16-20 , 2 0 1 4

Chairmen A. Alemany France, J. Freibergs, Latvia

Co-chairmen :

J.P. Chopart, France - C. Latge, France - M. Francois, France - E. Gaia, Italy

Secretaries : B. Collovati, France - M. Broka, Latvia pamirfeimap, grenoble-inp.fr

coirs U n i v o r s i t y o f L a t v i a

Institute of Physics

labonttoirr d Ingrnirrir et Science» *iv> Material» x

HeKYom a •rn) ThalesAlenia Space

G r e n o b l e > • P LATVITAS lNl\FJBiTEJB l NIVLRSHÄTl , N ^ : ! R J . f i U ;

ft

Page 2: Fundamental and applied MHD, Thermo acoustic and Space

VOLUME 1 CONTENTS

A. BASIC MHD A.l. Convection and heat transfer in MHD

A.l.l. - Mixed convection in horizontal ducts with strong transverse magnetic fields X. Zhang, X. Lv, 0. Zikanov

A.1.2. -. Magneto convective instabilities driven by internal uniform volumetric heating C. Mistrangelo, L. Bühler

A.l.3. - Mixed convection in vertical ducts with strong transverse magnetic fields L. Liu, A. Schigelone, X.Zhang, 0. Zikanov

A. 1.4. - Liquid metal downflow in an inclined heated tube affected by longitudinal magnetic field I.A. Belyaev, V.G. Sviridov, V.S. Zagorsky

A.1.5. - DNS of mixed convection in a liquid metal flow with imposed transverse magnetic field Ya. Listratov, D. Ognerubov, V. Sviridov, O. Zikanov

A. 1.6. - The impact of EM field on combustion J. Valdmanis, I. Barmina, M. Zake, R. Valdmanis, A. Cipijs

A.1.7. - Experimental investigation of Rayleigh-Benard convection in a liquid metal layer exposed to a horizontal magnetic field Y. Tasaka, K. Igaki, T. Yanagisawa, S. Eeckert, T. Vogt

A.1.8. - The electric field effect on combustion dynamics /. Barmina, R. Valdmanis, M. Zake

A.1.9. - A spectral solenoidal-Galerkin method for thermal convection under the influence of rotation and oblique magnetic field D. Yarimpabuc, H.I. Tarman, C. Yildirim

A.l.10. - The onset of rotating magnetoconvection at low Ekman K. Aujogue, B. Sreenivasan, A. Potherat

A.l.11. - Effect of aspect ratio on steady liquid metal through the Graetz flow system in MHD S. Lecheheb, F. Yahi, Z. Tigrine, F. Mokhtari, A. Boubdallah

A.1.12. - 125 mm sodium loop scaled down 4-th generation nuclear reactor thermo-hydraulic equipment testing L. Goldsteins, Y. Fautrelle, C. Biscarrat, 0. Mikanovskis, E. Platacis, A. Poznaks, A. Romancuks, A.Sobolevs, A. Ziks, L. Buligins

A.l.13. - Turbulent magnetic Prandtl number and spatial parity violation E. Jurcisinovd, M. Jurcisin, R. Remecky, P. Zalom

1

6

12

17

22

27

32

33

38

45

50

51

55

Page 3: Fundamental and applied MHD, Thermo acoustic and Space

A.1.14. - Electro vortex flows in hemisphere volume with different bottom electrode positions 0. Semko, Yu. Ivochkin, I. Teplyakov, O. Kazak

A.1.15. - Heat transfer of MHD flow: experimental and numerical research I.A. Melnikov, E. V.Sviridov, E.G. Sviridov, N.G. Rasuvanov

A.1.16. - Validity of quasi-2D models for magneto-convection L. Bühler, C. Mistrangelo, S. Molokov

A.1.17. - Linear stability of convective flow in an infinite horizontal layer with horizontal temperature gradient and vertical magnetic field A. Hudoba, S. Molokov

A.1.18. - Time- and space-resolved temperature measurements on a periodically magnetized Gadolinium plate Zhe Lei, Xuegeng Yang, Barbara Pulko, Stefan Odenbach, Kerstin Eckert

A.1.19. - Liquid metal heat transfer in a tokamak reactor I.A. Belyaev, L.G. Genin, Ya.I. Listratov, V.G. Sviridov, E.V. Sviridov, Yu.P. Ivochkin, IG. Razuvanov

A.1.20. - Turbulent convective heat transfer in a long cylinder with liquid sodium A. Mamykin, P. Frick, R. Khalilov, I. Kolesnichenko, V. Pakholkov, A. Pavlinov, S. Rogozhkin

A.1.21. - META:LIC concept thermo-hydrodynamics testing facility at the Institute of Physics of the university of Latvia (IPUL) E. Platacis, A. Poznaks, A. Romanchuks, R. Nikoluskins, L. Buligins

A.1.22. - Effectiveness of the use of traveling magnetic field reversals in alloy stirring P. Oborin, S. Khripchenko, E. Golbraikh

A.1.23. - Influence of the swirled electrovortex flow on the melting of the eutectic alloy In-Ga-Sn Y. Ivochkin, I. Teplyakov, A. Guseva, D. Vinogradov, I. Protokovilov, Y. Tokarev

A. 1.24. - Model experiments for investigations of heat transfer phenomena in the Czochralski crystal growth /. Pal, A. Cramer, S. Eckert, G. Gerbeth, I. Grants

60

65

70

75

80

85

90

95

100

105

110

A.2. Dynamo

A.2.1. - Fluctuations in mean-field dynamos D. Sokoloff

A.2.2. - Mean-field coefficients for helical flow fields A. Giesecke, F. Stefani, G. Gerbeth

A.2.3. - Numerical simulations for the DRESDYN precession dynamo A. Giesecke, T. Al brecht, G. Gerbeth, T. Gundrum, F. Stefani

A.2.4. - Generation of helicities in the rotating layer M. Reshetnyak

115

118

123

128

Page 4: Fundamental and applied MHD, Thermo acoustic and Space

A.2.5. - Experimental study of turbulent diamagnetism in liquid sodium flow P. Frick, S. Denisov, V. Noskov, R. Stepanov, A. Pavlinov

A.2.6. - Dynamo action in precessing cylinders C. Nore, J. Leorat, J.-L. Guermond, L. Cappanera, F. Luddens

A.2.7. - Orientation, kinetic and magnetic energy of planetary dynamos, their inversions and asymmetries S. V. Starchenko

A.2.8. - Turbulent dynamo problem in anisotropic helical magnetohydrodynamic turbulence M. Jurcisin, M. Stehlik, E. Jurcisinova

A.2.9. - Towards a precession driven dynamo experiment F. Stefani, T. Albrecht, G. Gerbeth, A. Giesecke, T. Gundrum, C.Steglich, C. Nore

A.2.10. - Measurements in a downscaled water mockup and numerical simulation for the DRESDYN large scale precession experiment T. Gundrum, C. Steglich, F. Stefani, G. Gerbeth, T. Albrecht, A. Giesecke

A.2.11. - Dynamo equations with random coefficients E.A. Mikhailov, I.I. Modyaev, D.D. Sokoloff

A.2.12. - MHD turbulence and magnetic dynamos John V. Shebalin

A.2.13. - Feasible homopolar dynamo with sliding liquid-metal contacts R. Avalos-Zühiga, J. Priede

A.2.14. - The effect of axial electric current on the helical magneterotational instability J. Priede

132

137

142

146

147

152

156

160

165

170

A.3. Instability and transition to turbulence

A.3.1. - Stability investigation of Hartmann flow with theconvective approximation I.Yu. Kalashnikov

A.3.2. - Instability of electrolytic flow driven by an azimuthal Lorentz force in a cylindrical container J. Perez-Barrera, J. Enrique Perez-Espinoza, A. Ortiz, J. Nunez, E. Ramos S., Cuevas

A.3.3. - Experimental study of forced and freely decaying wall bounded MHD turbulence, at low Rm Nathaniel Baker, Alban Potherat, Laurent Davoust, Francois Debray

A.3.4. - On the flow instability in a helical channel of the induction pump A. Kapusta, B. Mikhailovich, L. Reimal

A.3.5. - Experimental observations of the dynamics of wakes of magnetic obstacles DR. Dominguez, J.J. Roman, A. Beiträn, S. Cuevas, E. Ramos

175

180

185

190

195

Page 5: Fundamental and applied MHD, Thermo acoustic and Space

A.3.6. - Numerical simulation of the non-axisymmetric magnetorotational instability in a dominantly azimuthal magnetic field Vladimir Galindo, Frank Stefani, Martin Seilmayer

A.3.7. - Magnetic field effect on the onset of helicoidal instability in up and down conical flow system F. Yahi, A. Bouabdallah, Y. Hamnoune, S. Lecheheb, F. Mokhtari

A.3.8. - Experimental investigation of inertial waves inside a cylindrical liquid metal column Tobias Vogt, Dirk Räbiger, Sven Eckert

A.3.9. - A spherical Couette experiment to observe inductionless MHD instabilities at medium Reynolds numbers Elliot Kaplan, Benjamin Gohl, Martin Seilmayer, Frank Stefani

A.3.10. - Forces experienced by an isolating sphere moving close to a wall 5. Heitkam, A. Sellier, S. Schwarz, J. Fröhlich

A.3.11. - Two-dimensional nonlinear travelling waves in MHD channel flow / . Hagan, J. Friede

A.3.12. - Stability boundaries of axisymmetric and two-dimensional perturbations in MHD dean flow Yang Yu, Thomas Boeck

A.3.13. - Secondary instability of Hartmann layers in plane MHD channel flow Shuai Dong, Dmitry Krasnov, Thomas Boeck

A.3.14. - Experimental results on the azimuthal magnetorotational instability M. Seilmayer, V. Galindo, G. Gerbeth, T.Gundrum, F. Stefani, M. Geliert, G. Rüdiger, M. Schultz, R. Hollerbach

A.3.15. - Free surface deformation by the application of electrical currents A. Kharicha, I. Teplyakov, Yu. Ivochkin, M. Wu, A. Ludwig, A. Guseva

A.3.16. - Magnetogravitational stability of compressible resistive rotating streaming fluid medium Alfaisal A. Hasan

A.3.17. - Numerical study of MHD instabilities in liquid metal batteries N. Weber, V. Galindo, I. Grants, F. Stefani, T. Weier

A.3.18. - Patterned turbulence and relaminarization in MHD pipe and duct flows Dmitry Krasnov, Oleg Zikanov, Thomas Boeck

A.3.19. - Ultrasound Doppler velocimetry for liquid metal batteries M. Starace, N. Weber, M. Seilmayer, T. Weier, F. Stefani, S. Eckert

A.3.20. - Non-axisymmetric resonant modes under oscillating magnetic fields for very low interaction parameter values Ivan Cortes-Dominguez, Javier Burguete

A.3.21. - Inductionless magnetorotational instability beyond the Liu limit O.N. Kirillov, F. Stefani, Y. Fukumoto

200

205

210

215

220

225

230

235

240

245

249

253

258

263

268

273

Page 6: Fundamental and applied MHD, Thermo acoustic and Space

A.5. Modelling of MHD turbulence

A.5.1. - Liquid metal flow induced by counter-rotating permanent magnets in a rectangular crucible M. Scepanskis, R. Nikoluskins, A. Bojarevics, T. Beinerts, V. Geza, A. Jakovics, K. Thomsen

A.5.2. - Viscous and Joule dissipation ratio in isotropic MHD turbulence R. Stepanov, F. Plunian

A.5.3. - Spectral direct numerical simulations of low Rm MHD channel flows based on the least dissipative modes Kacper Kornet, Alban Potherat

A.5.4. - LES-study of melt flow driven by combined inductive and conductive power supply in metallurgical MHD devices S. Pavlovs, A. Jakovics, E. Baake, B. Nacke

278

283

284

289

A.6. Numerical and experimental methods

A.6.1. - Pecularities of MHD flow spin-down in an annular gap B. Mikhailovich, A. Shapiro, R. Stepanov

A.6.2. - The flow and crystallization of liquid metalin the process of MHD-stirring A. Pavlinov, I. Kolesnichenko, R. Khalilov

A.6.3. - Magnetoplasmadynamic thruster (MPDT) in aerospace industry: some new result Ali I Al Muss a

A.6.4. - Acceleration of conduction liquid in the cylinder of final length under the influence of a rotating magnetic field A.F. Zibold

A.6.5. - Magnetic field advection in liquid sodium flow in toroidal channel R. Khalilov, I. Kolesnichenko, R. Stepanov

A.6.6. - Numerical computation of liquid metal MHD duct flows at finite magnetic Reynolds number Vinodh Bandaru, Thomas Boeck, Dmitry Krasnov, Jörg Schumacher

A.6.7. - Electromagnetic interaction of a small magnet and a wall-bounded flow with conducting walls 0. Kazak, Ch. Heinicke, T. Wondrak, T. Boeck

A.6.8. - Numerical calculations of 3D PbLi MHD flow in a square duct with different wall electrical conductivities /. Krastins, A. Shishko, L. Buligins

A.6.9. - Upwind finite difference solution of MHD pipe flow in an exterior conducting region using Shishkin and Bakhvalov typed layer adapted grids Ay din S. Han

294

299

303

304

306

307

312

317

321

Page 7: Fundamental and applied MHD, Thermo acoustic and Space

A.6.10. - FEM solution of MHD flow equations coupled on a pipe wall in a conducting medium Tezer-Sezgin Münewer, Aydin S. Han

A.6.11. - Experimental research of the heat transfer liquid metal downward flow in rectangular duct in magnetic field /. Poddubnyi, N. Razuvanov, V. Sviridov, Yu. Ivochkin

A.6.12. - Liquid metal flow and heat transfer in rectangular duct under the influence of axial magnetic fields Zahia Tigrine, Faiza Mokhtari, Ahcene Bouabdallah

A.6.13. - Interface evolution between binary immiscible fluids under weak magnetic field Jun Mao, Wenjun Liu, Qiang Wang, Lijia Zhao, Tie Liu, Jicheng He

326

330

335

341

A.7. Strong magnetic field

A.7.1. - MHD characteristics of test blanket module elements I.R. Kirillov, D.M. Obukhov, D.A. Pertsev

A.7.2. - Modelling of the Hartmann layers by effective core boundary conditions J. Priede

A.7.3. - The French facility for high magnetic fields F. Debray, E. Beaugnon

A.7.4. - Motion of an insulating solid particle near a plane boundary under the action of uniform ambient electric and magnetic fields A. Sellier

A.7.5. - Magnetic levitation of weakly conducting liquid droplets V. Bojarevics, E. Beaugnon

346

351

352

353

358

A.8. Novel MHD problems and applications

A.8.1. - Impact of surface viscosity upon an annular magnetohydrodynamic flow Jules Delacroix, Laurent Davoust

A.8.2. - A Simulink modelization of an inductive MHD generator S. Carcangiu, R. Forcinetti, A. Montisci

A.8.3. - MHD issues related to the use of lithium lead eutectic as breeder material for blankets of fusion power plants G. Aiello, C. Mistrangelo, L. Bühler, E. Mas De Les Vails, J. Aubert, A. Li-Puma, D. Rapisarda, A. Del Nevo

A.8.4. - Effects of broken symmetry in turbulent or chaotic systems M. Proctor, A. Rucklidge, D. Hughes

A.8.5. - Experimental investigation of the Lorentz force response to the time-dependent velocity input while considering finite magnetic Reynolds number /. Sokolov, A. Thess, Y. Kolesnikov

363

368

373

379

380

Page 8: Fundamental and applied MHD, Thermo acoustic and Space

A.8.6. - Induction-driven contactless acoustic wave generation in a crucible K. Pericleous, B. Lebon, G. Djambazov, V. Bojarevics

B. THERMO ACOUSTIC B.l. Linear and nonlinear theory

B.l . l . - Investigation of acoustic streaming jets in liquid B. Moudjed, V. Botton, D. Henry, H. Ben Hadid, A. Potherat

B.l.2. - Computational fluid dynamics analysis of the oscillatory flow in a jet pump: the influence of taper angle Joris P. Oosterhuis, Simon Bühler, Douglas Wilcox, Theo H. Van Der Meer

B.1.3. - Mrginal condition for spontaneous oscillations of a thermoacoustic engine coupled with a piezoelectric element. Analytical and experimental study R. Baccoli, C. Mastino, A. Baz

B.2. Modelling and numerical simulation 2D and 3D

B.2.1. - Numerical simulation of flow dynamics in the periodic regime inside an idealized thermoacoustic engine L. Ma, C. Weisman, D. Baltean-Carles, I. Delbende, L. Bauwens

B.2.2. - Mean temperature profile at the entrace of a thermoacoustic stacked screen heat exchanger Simon Bühler, Douglas Wilcox, Joris P. Oosterhuis, Ttheo H. Van Der Meer

B.2.3. - Numerical simulation of thermoacoustic heat pumping N.B. Kheira, M. Abidat, D. Baltean-Carles, K. Weisman, O. Hireche

B.2.4. - Experimental and numerical investigation of the acoustic absorption coefficient at very low frequency W.Y.K. David, A.A. Yousif

B.2.5. - he potential of an air-operated thermoacoustic cooler at low pressure W.Y.K. David, A.A. Yousif, M.G. Normah

402

407

412

413

418

B.5. Engines for refrigeration, air conditioning electrical power

B.5.1. - Influence of feedback loop charateristics on the performance of a travelling wave thermoacoustic engine Jenn Hsen Goh, Yousif A. Abakr, David B. Hann

B.5.2. - Compact thermoacoustic coolers P. Lotton, G. Poignand, G. Penelet, M. Bruneau

B.5.3.- Bi-directional turbines for converting acoustic wave power into electricity Kees de Blök, Pawel Owczarek, Maurice-Xavier Francois

423

428

433

Page 9: Fundamental and applied MHD, Thermo acoustic and Space

B.5.4. - Feasibility analysis of an MHD inductive generator coupled with a thermo acoustic energy conversion system A. Alemany, S. Carcangiu, R. Forcinetti, A. Montisci, J.P. Roux

439

B.5.5. - The MHD generator - thermoacoustic engine interface Kees de Blök, Maurice-Xavier Francois, Armands Krauze AAA

B.7. Thermo acoustics for space missions

B.7.1. - An electric generator using one heat driven thermoacoustic amplifier A. Betrancourt, J.-F. Geneste, E. Joubert, B. Rechain, M.-X. Francois

B.7.2. - Thermo-acoustic generators for space missions Didier Alary, Cyrille Tourneur, Jaime Reed, Bruno Rechain, Maurice Francois

B.7.3.- A new architecture for electricity generation onboard telecommunications satellites J.-F. Geneste

B.7.4. - Thermoacoustic process for electricity generation in space M.-X. Francois

449

450

457

463

C. SPACE: STRESS ON TECHNOLOGIES C.l. MHD: possible uses and problems

C.1.1. - Realization of MHD-action at manufacturing of alloys with the special properties aboard the orbital space station V.l. Dubodelov, V.A. Seredenko, B.A. Kyryevkyy, E. V. Seredenko

C.1.2. - MHD simulation of plasma rocket exhaust Frans H. Ebersohn, Benjamin W. Longmier, John V. Shebalin

C.I.3.- Analytical calculation of thermoacoustic magnetohydrodynamic generator T. Mirhoseini, A. Alemany

469

474

479

C.7. Nuclear sources: testing, integration, launch and decommissioning

C.7.1. - MEGAHIT: Update on the advanced propulsion roadmap for HORIZON2020 J.-M. Ruault, F. Masson, J.-C. Worms, E. Detsis, E. Gaia, F. Jansen, A. Semenkin, T. Tinsley 484