Fundamentals of Electronics - Awais Yasin

Embed Size (px)

Citation preview

  • 7/30/2019 Fundamentals of Electronics - Awais Yasin

    1/185

    FUNDAMENTALS OF ELECTRONICS

    COMPILED BY:

    AWAIS YASIN

    (COURSE MATERIAL FOR DEPARTMENTAL PROMOTION EXAMINATION (DPE))

  • 7/30/2019 Fundamentals of Electronics - Awais Yasin

    2/185

    2FUNDAMENTALS OF ELECTRONICS

    TABLE OF CONTENTS

    CHAPTER 1: REVIEW OF BASIC CONCEPTS ............................................................................. 8BASIC UNDERSTANDING ..................................................................................................... 8

    BALANCEOFCHARGE........................................................................................................ 8

    CONDUCTORS ....................................................................................................................... 9

    INSULATORS.......................................................................................................................... 9

    QUANTITYOFCHARGE..................................................................................................... 10

    FORCEBETWEENCHARGES:COULOMB'SLAW...................................................... 10

    VOLTAGE,CURRENT,ANDPOWERRELATEDCONCEPTS.................................... 12

    RESISTORS .......................................................................................................................... 19

    Load ........................................................................................................ 20

    Labeling ................................................................................................... 21

    Color System ............................................................................................ 22

    Construction ............................................................................................. 22

    Resistively of the Material .......................................................................... 22

    Resistor Junctions ..................................................................................... 25

    Resistor variations ..................................................................................... 26

    Applications .............................................................................................. 27

    Specifications ........................................................................................... 28

    CAPACITORS ....................................................................................................................... 31

    Capacitance .............................................................................................. 32

    Capacitor Labeling ..................................................................................... 33

    Construction ............................................................................................. 35

    Capacitor Materials .................................................................................... 35

    Capacitor Junctions ................................................................................... 36

    Capacitors in Series ................................................................................... 36

    Capacitors in Parallel ................................................................................. 36

    RC CIRCUITS ......................................................................................................................... 37

    TheTimeConstant .................................................................................................................. 38

    GeneralNotesaboutCapacitors ........................................................................................... 40

    INDUCTORS ........................................................................................................................... 40

    Introduction ............................................................................................. 40

    Important Qualities of Inductors ................................................................. 41

    Inductance ............................................................................................... 43

    Quality factor: Q ....................................................................................... 44Impedance ............................................................................................... 45

  • 7/30/2019 Fundamentals of Electronics - Awais Yasin

    3/185

    3FUNDAMENTALS OF ELECTRONICS

    Inductive Networks ................................................................................... 45

    OTHER COMPONENTS ........................................................................................................ 48

    Ideal voltage sources ................................................................................. 48

    Ideal current sources ................................................................................. 48

    Switch ..................................................................................................... 48

    Contact Arrangements ............................................................................... 49

    DC VOLTAGE AND CURRENT LAWS............................................................................... 51

    Ohm's Law ............................................................................................... 51

    Kirchhoffs Current Law .............................................................................. 53

    Consequences of KVL and KCL .................................................................... 53

    NODAL ANALYSIS ............................................................................................................... 57

    MESH ANALYSIS .................................................................................................................. 60

    THEVENIN / NORTON EQUIVALENTS ............................................................................. 62

    Thevenins Equivalents............................................................................... 62

    Norton Equivalents .................................................................................... 63

    SUPERPOSITION ................................................................................................................... 66

    DIAGNOSTIC EQUIPMENT ................................................................................................. 69

    DC CIRCUIT ANALYSIS ...................................................................................................... 71

    CHAPTER 2: AC CIRCUITS ........................................................................................................... 76

    RELATIONSHIP BETWEEN VOLTAGE AND CURRENT ................................................ 76

    PHASORS ............................................................................................................................... 77

    IMPEDANCE .......................................................................................................................... 78

    STEADY STATE .................................................................................................................... 80

    CHAPTER 3: TRANSIENT ANALYSIS ......................................................................................... 81

    RC CIRCUITS ............................................................................................ 81

    RLC CIRCUITS .......................................................................................... 82

    CHAPTER 4: ANALOG CIRCUITS ................................................................................................ 87

    PASSIVE VERSUS ACTIVE COMPONENTS .................................................................. 88

    VACUUM TUBES .................................................................................................................. 88

    DIODES ................................................................................................................................... 92

    TRANSISTORS ....................................................................................................................... 95

    AMPLIFIERS ........................................................................................................................ 104

    TRANSISTOR AMPLIFIER CONFIGURATIONS ............................................................. 105

    CLASSES ............................................................................................... 108

    OPERATIONAL AMPLIFIER ............................................................................................. 109

    IDEALOPAMPS...................................................................................................... 113

    BASICOP-AMPCONFIGURATIONS................................................................... 114INVERTINGOPAMP.......................................................................... 114

  • 7/30/2019 Fundamentals of Electronics - Awais Yasin

    4/185

    4FUNDAMENTALS OF ELECTRONICS

    NON-INVERTINGOPAMP .................................................................. 117

    ADVANCEDOP-AMPCONFIGURATIONS ........................................................ 119

    Voltage Follower ................................................................................................................... 119

    Difference amplifier ................................................................ ............................................... 120

    Summing amplifier ................................................................................................................ 121

    Integrator ............................................................. ................................................................. .. 122

    Differentiator ................................................................. ......................................................... 123

    Real Op Amps ............................................................... ......................................................... 123

    DC Behaviour ........................................................................................................................ 124

    AC Behaviour ........................................................................................................................ 124

    Applications .................................................................. ......................................................... 124

    Other Notation ....................................................................................................................... 125

    Oscillators .............................................................................................................................. 125

    ANALOG MULTIPLIERS ................................................................ .................................... 125

    Diode Implementations ............................................................ .............................................. 126

    MOS implementation ............................................................... .............................................. 128

    CHAPTER 5:DIGITAL CIRCUITS130

    OVERVIEW ............................................................................................. 130

    BOOLEAN ALGEBRA ................................................................................. 130

    Formal Mathematical Operators ............................................................................................... 131

    Boolean algebra Laws .............................................................................................................. 132

    Associatively ................................................................... ......................................................... 132

    Distributives ............................................................................................................................. 132

    Commutatively ................................................................ ......................................................... 132

    De Morgan's Law ................................................................................................................... .. 132

    Notes......................................................................................................................................... 133

    Rules .......................................................... ................................................................. .............. 133

    Examples .................................................................................................................................. 134

    TTL ........................................................................................................ 134

    The NOT Gate ............................................................... ......................................................... 134

    TTL Inverter (NOT Gate) ...................................................................................................... 135

    CMOS .................................................................................................................................... 135

    Logic Gates ............................................................................................................................ 136

    NOT ....................................................................................................................................... 136

    NAND ................................................................ ................................................................ .... 136

    AND .................................................................. ................................................................... .. 137

    NOR .................................................................. ................................................................... .. 137

    OR ........................................................... ................................................................. .............. 137XNOR .................................................................................................................................... 138

  • 7/30/2019 Fundamentals of Electronics - Awais Yasin

    5/185

    5FUNDAMENTALS OF ELECTRONICS

    XOR .................................................................. ................................................................... .. 138

    INTEGRATED CIRCUIT ..................................................................................................... 138

    Overview ............................................................. ................................................................. .. 139

    ELEMENTS OF DIGITAL CIRCUITS ............................................................. 139

    TRANSISTOR .............................................................. ......................................................... 139

    Field Effect Transistor ........................................................................................................... 140

    Complementary Metal Oxide Semiconductor .......................................................... .............. 140

    Bipolar Junction Transistor .................................................................................................... 141

    Construction .................................................................. ......................................................... 141

    NPN ....................................................................................................................................... 141

    PNP ........................................................................................................................................ 141

    Operation................................................................................................................................ 141

    BASIC GATES ............................................................. ......................................................... 141

    Overview ............................................................. ................................................................. .. 141

    Explanation of the gates' operation ........................................................................................ 142

    LATCHES AND FLIP FLOPS ............................................................ .................................. 145

    RS Flip Flops ......................................................................................................................... 145

    D Flip Flops ........................................................................................................................... 146

    Toggle Flip Flops .......................................................... ......................................................... 146

    JK Flip Flops ................................................................. ......................................................... 147

    COUNTERS .......................................................................................................................... 147

    Ripple Counters ..................................................................................................................... 147

    Synchronous Counters ........................................................................................................... 147

    ADDERS................................................................................................................................ 148

    Half Adders ................................................................... ......................................................... 148

    Full Adders............................................................................................................................. 149

    MULTIPLEXERS ......................................................... ......................................................... 150

    Overview ............................................................. ................................................................. .. 150

    Multiplexer Based Logic .......................................................... .............................................. 150

    DECODERS AND ENCODERS ........................................................................................... 151

    Decoders ................................................................................................................................ 151

    Encoders .............................................................. ................................................................. .. 151

    CHAPTER 6: MICROPROCESSORS ........................................................................................... 152

    Types of Processors ............................................................................................................... 152

    Types of Use .......................................................................................................................... 154

    Abstraction Layers ................................................................. ................................................ 154

    Moore's Law .......................................................................................................................... 155

    Basic Elements of a Computer ............................................................. .................................. 157

    Computer Architecture ............................................................. .............................................. 157

  • 7/30/2019 Fundamentals of Electronics - Awais Yasin

    6/185

    6FUNDAMENTALS OF ELECTRONICS

    Control ................................................................................................................................... 158

    Datapath .............................................................. ................................................................. .. 158

    Microprocessor Components ................................................................................................. 159

    Instruction Set Architectures ................................................................ .................................. 161

    Common Instructions ............................................................... .............................................. 162

    Memory ............................................................... ................................................................. .. 162

    Microprocessor Components ................................................................................................. 168

    Basic Components.................................................................................................................. 168

    Registers .............................................................. ................................................................. .. 168

    Register File .................................................................. ......................................................... 168

    Multiplexers .................................................................. ......................................................... 168

    Program Counter ........................................................... ......................................................... 169

    Instruction Decoder ................................................................ ................................................ 169

    The Instruction Decoder reads the next instruction in from memory, and sends the component

    peices of that instruction to the necessary destinations ........................................................ .. 169

    RISC Instruction Decoder ...................................................................................................... 169

    CISC Instruction Decoder ...................................................................................................... 169

    Register File .................................................................. ......................................................... 170

    Register File .................................................................. ......................................................... 170

    Register Bank ................................................................ ......................................................... 171

    Memory Unit ................................................................. ......................................................... 172

    Memory Unit ................................................................. ......................................................... 172

    Actions of the Memory Unit .................................................................................................. 172

    Timing Issues ................................................................ ......................................................... 172

    ALU ....................................................................................................................................... 172

    Tasks of an ALU .................................................................................................................. .. 173

    ALU Slice .............................................................................................................................. 173

    Additional Operations .............................................................. .............................................. 175

    ALU Configurations .............................................................................................................. 175

    Accumulator .................................................................. ......................................................... 176Register-to-Register ................................................................ ............................................... 177

    Register Stack ........................................................................................................................ 178

    Register-and-Memory .............................................................. .............................................. 179

    Complicated Structures ............................................................ .............................................. 179

    Example: IA-32 ............................................................. ......................................................... 179

    Example: MIPS ............................................................. ......................................................... 180

    Floating Point Unit (FPU) ........................................................ .............................................. 180

    Floating point numbers .......................................................................................................... 180

    IEEE 754 ............................................................. ................................................................. .. 180

  • 7/30/2019 Fundamentals of Electronics - Awais Yasin

    7/185

    7FUNDAMENTALS OF ELECTRONICS

    Floating Point Multiplication ................................................................................................. 181

    Floating Point Addition ............................................................ .............................................. 181

    Floating Point Unit Design .................................................................................................... 181

    Control Unit ........................................................................................................................... 182

    Simple Control Unit ............................................................................................................... 182

    Complex Control Unit .............................................................. .............................................. 182

    References: ............................................................................................................................. 182

    Suggested Reading Material for further reading .................................................................... 183

    Sample Paper (MCQs): .......................................................................................................... 183

  • 7/30/2019 Fundamentals of Electronics - Awais Yasin

    8/185

    8FUNDAMENTALS OF ELECTRONICS

    CHAPTER 1: REVIEW OF BASIC CONCEPTS

    BASIC UNDERSTANDING

    Materialsthatallowelectronstoflowwithminimalresistance.

    Materialsthatpreventtheflowofelectrons.

    Materialswhosebehaviorrangesbetweenthatofaconductorandthatof

    an insulatorunder differentconditions.Their conductingbehavior ismainly dependent on

    temperature.

    Anatomcontainsanucleusandoneormoreelectrons.Theatomexistsinthree

    states: neutral,positively charged,and negatively charged.Aneutralatomhas the same

    numberofelectronsandprotons,apositivelychargedatomhasmoreprotonsthanelectrons

    andanegativelychargedatomhasmoreelectronsthanprotons.

    (+)and(-)Ions

    Anionisanatomthathasanunequalnumberofelectronsandprotons.Thenatureofatoms

    istotrytohaveanequalamountofprotonsandelectrons.Thepositivesideofthebattery

    has + ions, meaning there are less electrons than protons, giving it an overall positive

    charge,and-side,moreelectronsthanprotons,givingitanoverallnegativecharge.

    BALANCEOFCHARGE

    Atoms,thesmallestparticlesofmatterthatretainthepropertiesof thematter, aremadeof

    protons,electrons,andneutrons. haveapositivecharge; haveanegative

    chargethatcancelstheproton'spositivecharge. areparticlesthataresimilartoa

    protonbuthaveaneutralcharge.Therearenodifferencesbetweenpositiveandnegative

    charges except that particles with the same charge each other and particles with

    oppositecharges eachother. Ifasolitarypositiveprotonandnegativeelectronare

    placedneareachothertheywillcometogethertoformahydrogenatom.Thisrepulsionand

    attraction (forcebetweenstationarychargedparticles) isknownasthe

    and extends theoretically to infinity, but is diluted as the distance between particles

    increases.

    Bothatomsandtheuniversehavea chargeoverallandcomewiththesamenumberofprotonsandelectrons.Whenanatomhasoneormoremissingelectronsitisleftwitha

    charge,andwhenanatomhasatleastoneextraelectronithasa charge.

    Havingapositiveor anegativechargemakesanatoman .Atomsonlygainand lose

    protons andneutrons through fusion, fission, and radioactive decay. Although atomsare

    made of many particles and objects aremade of many atoms, they behave similarly to

    chargedparticlesintermsofhowtheyrepelandattract.

    Inan theprotonsandneutronscombinetoformatightlyboundnucleus.Thisnucleus

    issurroundedbyavastcloudofelectronscirclingitatadistancebutheldneartheprotons

    byelectromagneticattraction(theelectrostaticforcediscussedearlier).Thecloudexistsasa

    seriesofoverlapping inwhichtheinner bandsarefilledwithelectrons

    andaretightlyboundtotheatom.Theouter bandscontainnoelectronsexcept

    http://en.wikipedia.org/wiki/protonshttp://en.wikipedia.org/wiki/electronshttp://en.wikipedia.org/wiki/neutronshttp://en.wikipedia.org/wiki/Nuclear_fusionhttp://en.wikipedia.org/wiki/Nuclear_fissionhttp://en.wikipedia.org/wiki/Radioactive_decayhttp://en.wikipedia.org/wiki/Radioactive_decayhttp://en.wikipedia.org/wiki/Nuclear_fissionhttp://en.wikipedia.org/wiki/Nuclear_fusionhttp://en.wikipedia.org/wiki/neutronshttp://en.wikipedia.org/wiki/electronshttp://en.wikipedia.org/wiki/protons
  • 7/30/2019 Fundamentals of Electronics - Awais Yasin

    9/185

    9FUNDAMENTALS OF ELECTRONICS

    thosethathaveacceleratedtotheconductionbandsbygainingenergy.Withenoughenergy

    anelectronwillescapeanatom(comparewiththeescapevelocityofaspacerocket).When

    anelectronintheconductionbanddeceleratesandfallstoanotherconductionbandorthe

    valencebandaphotonisemitted.Thisisknownasthe .

    When electrons travel back and forth between conduction bands emitting

    synchronizedphotons.

    Whentheconductionandvalencebandsoverlap,theatomisa andallowsforthe

    freemovementof electrons.Conductorsaremetalsandcanbethoughtofasabunchof

    atomicnucleisurroundedbyachurning"seaofelectrons".

    Whenthereisalargeenergylevelgapbetweentheconductionandvalencebands,theatom

    isan ;ittrapselectrons.Manyinsulatorsarenon-metalsandaregoodatblocking

    theflowofelectrons.

    When there isasmallenergy level gap between the conductionand valence bands, the

    atomisa .Semiconductorsbehavelikeconductorsandinsulators,andwork

    usingtheconductionandvalencebands.Theelectronsintheoutervalencebandareknown

    as .Theybehavelikepositivechargesbecauseofhowtheyflow.Insemiconductors

    electrons collidewith thematerial and theirprogress ishalted. Thismakes the electronshavean thatislessthantheirnormalmass.Insomesemiconductorsholes

    havealargereffectivemassthantheconductionelectrons.

    Electronicdevicesarebasedontheideaofexploitingthedifferencesbetweenconductors,

    insulators, and semiconductors but also exploit known physical phenomena such as

    electromagnetismandphosphorescence.

    CONDUCTORS

    Inaconductortheelectronsofanobjectarefreetomovefromatomtoatom.Duetotheirmutualrepulsion(calculableviaCoulomb'sLaw),thevalenceelectronsareforcedfromthe

    centeroftheobjectandspreadoutevenlyacrossitssurfaceinordertobeasfarapartas

    possible.ThiscavityofemptyspaceisknownasaFaradayCageandstopselectromagnetic

    radiation,suchascharge,radiowaves,andEMPs (Electro-MagneticPulses)fromentering

    andleavingtheobject.IfthereareholesintheFaradayCagethenradiationcanpass.

    One of the interesting things todowithconductors isdemonstrate the transfer ofcharge

    betweenmetalspheres.Startbytakingtwoidenticalandunchargedmetalsphereswhichare

    eachsuspendedbyinsulators(suchasapiece.Thefirststepinvolvesputtingsphere1next

    tobutnottouchingsphere2.Thiscausesalltheelectronsinsphere2totravelawayfrom

    sphere1tothefarendofsphere2.Sosphere2nowhasanegativeendfilledwithelectrons

    andapositiveendlackingelectrons.Nextsphere2isgroundedbycontactwithaconductor

    connectedwiththeearthandtheearthtakesitselectronsleavingsphere2withapositive

    charge.Thepositivecharge(absenceofelectrons)spreadsevenlyacrossthesurfacedueto

    itslackofelectrons.Ifsuspendedbystrings,therelativelynegativelychargedsphere1will

    attracttherelativelypositivelychargedsphere2.

    INSULATORS

    Inan insulator theelectronsof anobjectarestuck.Thisallowscharge tobuild uponthe

    surface of the object by way of the turboelectric effect. The turboelectric effect (rubbing

    electricityeffect) involvesthe exchangeofelectronswhen twodifferent insulatorssuchas

    http://en.wikibooks.org/wiki/Modern_Physics:Coulomb%27s_Law_and_the_Electric_Fieldhttp://en.wikibooks.org/wiki/Electronics/Signal_Propagationhttp://en.wikibooks.org/wiki/Electronics/Signal_Propagationhttp://en.wikibooks.org/wiki/Modern_Physics:Coulomb%27s_Law_and_the_Electric_Field
  • 7/30/2019 Fundamentals of Electronics - Awais Yasin

    10/185

    10FUNDAMENTALS OF ELECTRONICS

    glass,hardrubber,amber,oreventheseatofone'spants,comeintocontact.Thepolarity

    andstrengthof thecharges produceddiffer according to thematerial compositionand its

    surfacesmoothness.Forexample,glassrubbedwithsilkwillbuildupacharge,aswillhard

    rubberrubbedwithfur.Theeffectisgreatlyenhancedbyrubbingmaterialstogether.

    Van de Graff generator: A charge pump (pump for electrons) that generates

    electricity.InaVandeGraffgenerator,aconveyorbeltusesrubbingtopickupelectrons,

    whicharethendepositedonmetalbrushes.Theendresultisachargedifference.

    Becausethematerialbeingrubbedisnowcharged,contactwithanunchargedobjectoran

    objectwiththeoppositechargemaycauseadischargeofthebuilt-upstaticelectricitybyway

    ofaspark.Apersonsimplywalkingacrossacarpetmaybuildupenoughchargetocausea

    sparktotraveloveracentimeter.Thesparkispowerfulenoughtoattractdustparticlesto

    cloth,destroyelectricalequipment,ignitegasfumes,andcreatelightning.Inextremecases

    thesparkcandestroyfactoriesthatdealwithgunpowderandexplosives.Thebestwayto

    remove static electricity isbydischarging it throughgrounding.Humid air will alsoslowly

    discharge static electricity. This isone reasonwhy cells and capacitors lose charge over

    time.

    Note:Theconceptofaninsulatorchangesdependingontheappliedvoltage.Airlooks likean insulator whena low voltage isapplied. But itbreaks downasan insulator,becomes

    ionized, at about ten kilovolts per centimeter. A person could put their shoe across the

    terminalsofacarbatteryanditwouldlooklikeaninsulator.Butputtingashoeacrossaten

    kilovoltpowerlinewillcauseashort.

    QUANTITYOFCHARGE

    Protons and electrons haveoppositebut equalcharge. Because in almost all cases, the

    chargeonprotonsorelectronsisthesmallestamountofchargecommonlydiscussed,the

    quantity of charge of one proton is considered one positive elementary charge and thecharge of one electron is one negative elementary charge. Because atoms and such

    particles are sosmall, and charge inamountsofmulti-trillionsofelementarychargesare

    usuallydiscussed,amuchlargerunitofchargeistypicallyused.Thecoulombisaunitof

    charge, which can be expressed as a positive or negative number, which is equal to

    approximately 6.24151018 elementary charges. Accordingly, an elementary charge is

    equal to approximately 1.60210-19 coulombs. The commonly used abbreviation for the

    coulombisacapitalC.TheSIdefinitionofacoulombisthequantityofchargewhichpasses

    apointoveraperiodof1second(s)whenacurrentof1ampere(A)flowspastthatpoint,

    i.e.,C=AsorA=C/s.Youmayfindithelpfulduringlaterlessonstoretainthispicturein

    yourmind (even though youmay not recall the exactnumber). Anampere is oneof thefundamental units in physics from which various other units are defined, such as the

    coulomb.

    FORCEBETWEENCHARGES:COULOMB'SLAW

    Therepulsiveorattractiveelectrostaticforcebetweenchargesdecreasesasthechargesare

    located further fromeachotherby thesquareofthedistancebetweenthem.Anequation

    calledCoulomb's lawdeterminestheelectrostaticforcebetweentwochargedobjects.The

    followingpictureshowsachargeqatacertainpointwithanotherchargeQatadistanceofr

    awayfromit.ThepresenceofQcausesanelectrostaticforcetobeexertedonq.

    http://en.wikibooks.org/wiki/Electronics/Cellshttp://en.wikibooks.org/wiki/Electronics/Capacitorshttp://en.wikipedia.org/wiki/SIhttp://en.wikibooks.org/wiki/Electronics/Voltage%2C_Current%2C_and_Powerhttp://en.wikipedia.org/wiki/amperehttp://en.wikipedia.org/wiki/amperehttp://en.wikibooks.org/wiki/Electronics/Voltage%2C_Current%2C_and_Powerhttp://en.wikipedia.org/wiki/SIhttp://en.wikibooks.org/wiki/Electronics/Capacitorshttp://en.wikibooks.org/wiki/Electronics/Cells
  • 7/30/2019 Fundamentals of Electronics - Awais Yasin

    11/185

    11FUNDAMENTALS OF ELECTRONICS

    ThemagnitudeoftheelectrostaticforceF,onachargeq,duetoanotherchargeQ,equals

    Coulomb'sconstantmultipliedbytheproductofthetwocharges(incoulombs)dividedbythe

    squareofthedistancer,between thechargesqandQ.HereacapitalQandsmallqare

    scalarquantitiesusedforsymbolizingthetwocharges,butothersymbolssuchasq1andq2

    havebeenusedinothersources.Thesesymbolsforchargewereusedforconsistencywith

    theelectricfieldarticleinWikipediaandareconsistentwiththeReferencebelow.

    F = magnitude of electrostatic force on charge q due to another charge Q

    r = distance (magnitude quantity in above equation) between q and Q

    k=Coulomb'sconstant=8.9875109Nm2/C2infreespace

    The value of Coulomb's constant given here is such that the preceding Coulomb's Law

    equation will work if both qandQaregiven in units of coulombs, r inmeters, andF in

    newtonsandthereisnodielectricmaterialbetweenthecharges.Adielectricmaterialisone

    thatreducestheelectrostaticforcewhenplacedbetweencharges.Furthermore,Coulomb's

    constantcanbegivenby:

    where =permittivity.Whenthereisnodielectricmaterialbetweenthecharges(forexample,

    infreespaceoravacuum),

    =8.8541910-12C2/(Nm2).

    Air isonlyveryweaklydielectricand thevalueabove for willworkwell enoughwithair

    betweenthecharges.Ifadielectricmaterialispresent,then

    whereisthedielectricconstantwhichdependsonthedielectricmaterial.Inavacuum(free

    space),=1andthus=0.Forair,=1.0006.Typically,solidinsulatingmaterialshave

    valuesof>1andwillreduceelectricforcebetweencharges.Thedielectricconstantcan

    alsobecalledrelativepermittivity,symbolizedasr

    Highlychargedparticlesclosetoeachotherexertheavyforcesoneachother;ifthecharges

    arelessortheyarefartherapart,theforceisless.Asthechargesmovefarenoughapart,

    theireffectoneachotherbecomesnegligible.

    Any force on an object is a vector quantity. Vector quantities such as forces arecharacterizedbyanumericalmagnitude(i.e.basicallythesizeoftheforce)andadirection.

    http://en.wikibooks.org/wiki/Scalarhttp://en.wikipedia.org/wiki/Electric_fieldhttp://en.wikibooks.org/wiki/Vectorhttp://en.wikibooks.org/wiki/Vectorhttp://en.wikipedia.org/wiki/Electric_fieldhttp://en.wikibooks.org/wiki/Scalar
  • 7/30/2019 Fundamentals of Electronics - Awais Yasin

    12/185

  • 7/30/2019 Fundamentals of Electronics - Awais Yasin

    13/185

    13FUNDAMENTALS OF ELECTRONICS

    Thepotentialdifferencebetweentwotestpoints resultingfrom thedistributionof

    chargeinthecircuit,usuallymeasuredinvolts.

    Netamountofcharge(numberofelectrons)flowingpastaspecifiedpoint,usually

    measured inAmps. In typical components and systems the quantity ofelectrons isquite

    largeandtheaggregatechargeflowisreferredtoaselectricity.

    Energygiveninacertainamountoftime,usuallymeasuredinwatts.

    Oppositechargesattractwhilesimilarchargesrepel.

    Whenelectricitypassesthroughawireitcreatesamovingmagneticfieldaround

    thewire.ThetypicalunitofmeasureisHenrys.

    Whenelectricfieldsorchargedistributionsarecreatedinaphysicalsystem

    that stores recoverable energy, characteristics of the physical components which affect

    calculationoftheelectricalquantitiesaredefinedascapacitance.ThebaseunitofmeasureisFarads,howevermicrofarads(F),areusedmuchmoreoften.

    Whenpotentialdifferencecreatesmovementofelectronsbetweentwopoints,

    someofthepotentialenergyformerlyavailableinthesystemisirreversiblytransferredfrom

    theelectricfieldortheelectronsmovingthroughthecomponentviacollisionswithatomsand

    moleculeswithinthematerial.Ohm'sLaw,V=IR,definesresistanceasR=V/IwhereVisthe

    voltagedifferenceappliedacrossthecomponent,IistheresultingcurrentflowinAmps,and

    R isaconstantcreatedbycharacteristics of the componentwhich iscalculated from the

    measuredvoltagelossofthemeasuredcurrentpassingthroughthecomponent.

    Achargedparticlesuchasaprotonorelectronmay"feel"anelectricalforceonitinacertain

    environment.Thisforceistypicallyduetothepresenceofotherchargesnearby.Theforce

    willhaveadirectionandmagnitude,andcanberepresentedbyavector.(Avectorissimply

    aquantitythatrepresentsthedirectionandmagnitudeofsomething.)Themagnitudeofthe

    forcedependsonthechargeoftheparticle,thechargeontheparticlesaroundit,andhow

    closeorfarawaytheyare:Highlychargedparticlesclosetoeachotherexertheavyforces

    on each other; if the charges are less, or they are farther apart, the force is less. The

    directionoftheforcedependsonthelocationofthesurroundingcharges.

    Indescribingtheelectricalenvironmentatthatlocation,it issaidthereisanelectricfieldat

    thatlocation.Theelectricfieldisdefinedastheforcethatasingleunitofchargewouldfeel

    atthatlocation.Insomesystemsofmeasurement,theunitofchargeisthechargeofasingle

    proton;inothersitisthecoulomb.Acoulombisthechargeof6.241018protons

    Therelationshipbetweenforceandelectricfieldforasinglechargedparticleisgivenbythe

    followingequation:

    Theboldlettersindicatevectorquantities.Thismeansthatachargeq,inanelectricfieldE,

    havingacertaindirectionandmagnitudeE,wouldhaveaforceFonit,inthesamedirection

    andwithamagnitudeF.Consideringonly themagnitudes, thefollowingwouldresult fromthedefinition.

  • 7/30/2019 Fundamentals of Electronics - Awais Yasin

    14/185

    14FUNDAMENTALS OF ELECTRONICS

    E=F/qtheseareallmagnitudesornumericalquantities

    The net electric fieldE,ata location isdue to the presenceofall otherchargesnearby,

    similartothenetelectricforceF,iftherewasachargeqatthatlocation.Thecontributionof

    oneoftheseotherchargestothetotal(ornet)electricfieldisavectorEcontribution,which

    for apointcharge canbederivedfromCoulomb's Law.Distributionsofcharge density in

    variousshapesmayalsoyieldvectorEcontributionstothetotalelectricfield,tobeaddedin

    asvectorquantities.Practicallyspeaking,mostelectricians,electricalengineers,andother

    electricalcircuitbuildersandhobbyistsseldomdothesesortsofelectricfieldcalculations.

    Electricfieldcalculationsofthissortaremoreofatheoreticalphysicsorspecialapplications

    problem,sothesecalculationsareomittedhereinfavorofmoreapplicablematerial.Seelink

    forsuchinformationonelectricfieldformulas.

    Thereisanelectrical forceona chargeonly if thereis achargesubject tothe forceata

    locationinanelectric field.However,even ifthere isnosuchchargesubject totheforce,

    therecouldstillbeanelectricfieldatapoint.Thismeansthatanelectricfieldisapropertyof

    a locationorpoint in spaceand its electrical environment,whichwoulddeterminewhata

    chargeqwould"feel"ifitwerethere.

    Now,amicro-physicsreview:Workiscausingdisplacement(ormovement)ofanobjector

    matteragainstaforce.Energyistheabilitytoperformworklikethis.Energycanbekinetic

    energyorpotentialenergy.Kineticenergy istheenergyamasshasbecauseitismoving.

    Potential energy in an object, in matter, in a charge or other situation has the ability to

    performworkortobeconvertedintokineticenergyoradifferentkindofpotentialenergy.

    Areasonwhyaparticleorachargemayhavepotentialenergycouldbebecauseitislocated

    atapointinaforcefield,suchasagravitationalfield,electricfield,ormagneticfield.Inthe

    presenceof suchafield,gravityor electricormagneticforcescouldcause theparticle or

    charge to move faster or move against resistive forces, representing a conversion ofpotential energy to kinetic energy or work. The amount of potential energy it haswould

    depend on its location.Moving fromone location toanother couldcause a change in its

    potential energy.

    For example, an object near the surface of the earth placed high would have a certain

    amountofgravitationalpotentialenergybasedon itsmass, location (heightoraltitude) in

    and strengthof the earth'sgravitational field. If the object were to drop from this location

    (height)toanewlowerlocation,atleastsomeofitsgravitationalpotentialenergywouldbe

    converted to kinetic energy, resulting in the object moving down. The difference in

    gravitational potential energy could be calculated from one location to another, but

    determiningtheabsolutepotentialenergyoftheobjectisarbitrary,sogroundlevelischosen

    arbitrarilyas theheightwhere itsgravitational potential energyequalszero. Thepotentialenergyatallotherheightsisdeterminedfromthemassoftheobject,locationrelativetothe

    groundlevel,andstrengthofthegravitationalfield.

    Allenergyvaluesarenumericalorscalarquantities,notvectors.

    Somewhat similarly, a charged particle at a certain point or location in an electrical

    environment(i.e.anelectricfield)wouldhaveacertainamountofelectricpotentialenergy

    basedonitscharge,location,andtheelectricfieldthere,whichcouldbebasedonquantity

    andlocationsofallotherchargesnearby.Ifthechargeweretomovefromthislocationtoa

    newlocationorpoint,itcouldcauseachangeinitselectricpotentialenergy.Thisdifferenceinelectricpotentialenergyinthechargeparticlewouldbeproportionaltoitschargeandit

    http://en.wikipedia.org/wiki/Coulomb%27s_Lawhttp://en.wikipedia.org/wiki/Workhttp://en.wikipedia.org/wiki/Kinetic_energyhttp://en.wikipedia.org/wiki/Potential_energyhttp://en.wikipedia.org/wiki/Potential_energyhttp://en.wikipedia.org/wiki/Kinetic_energyhttp://en.wikipedia.org/wiki/Workhttp://en.wikipedia.org/wiki/Coulomb%27s_Law
  • 7/30/2019 Fundamentals of Electronics - Awais Yasin

    15/185

    15FUNDAMENTALS OF ELECTRONICS

    couldbeanincreaseoradecrease.Frommeasurementsandcalculations,onemaybeable

    todeterminethisdifferenceinelectricpotentialenergy,butcomingupwithanabsolutefigure

    for its potential isdifficult and typically not necessary. Therefore, inamanner somewhat

    similar to gravitational potential energy, an arbitrary location or point nearby, often

    somewhere intheelectric circuit inquestion, ischosen tobethepointwherethe electric

    potential energy would be zero, if the charge were there. Often the wiring, circuit, or

    appliancewillbeconnectedtotheground,sothisgroundpointisoftenchosentobethezero

    point.Theelectricpotentialenergyatallother points isdetermined relativeto theground

    level.TheSIunitofelectricpotentialenergyis,ofcourse,thejoule.

    Becausetheelectricpotentialenergyofachargedparticle(orobject)isproportionaltoits

    chargeandotherwisesimplydependentonitslocation(pointwhereit'sat),ausefulvalueto

    use iselectricpotential. Electric potential (symbolizedbyV) at a point is defined as the

    electricpotentialenergy(PE)perunitpositivecharge(q)thatachargewouldhaveatthat

    givenpoint(location).Atapointa,theelectricpotentialataisgivenby:

    Va=(PEofchargeata)/qSomewhatanalogouslytoanelectricfield,electricalpotentialisapropertyofalocationand

    theelectricalconditionsthere,whetherornotthereisachargepresenttheresubjecttothese

    conditions.Ontheotherhand,electricpotentialenergyismoreanalogoustoelectricforcein

    thatforittobepresent,thereshouldbeasubjectchargedparticleorobjectwhichhasthat

    energy.Electricpotentialisoftensimplycalledpotentialbyphysicists.BecausetheSIunitof

    electricpotentialenergyisthejouleandbecausetheSIunitofchargeisthecoulomb,theSI

    unitforelectricpotential,thevolt(symbolizedbyV),isdefinedasajoulepercoulomb(J/C).

    Becauseelectricpotentialenergyisbasedonanarbitrarypointwhereitsvalueissetatas

    zero,thevalueofelectricpotentialatagivenpointisalsobasedonthissamearbitraryzero

    point(referencepointwherethepotentialissetatzero).Thepotentialatagivenpointaisthenthedifferencebetweenpotentialsfrompointatothezeropoint,oftencalledaground

    node(orjustground).

    Calculationsofelectricpotential energyorelectricpotentialbasedonCoulomb's Laware

    sometimestheoreticallypossible,suchasmightbeforelectricfieldcalculations,butagain

    these are of mostly theoretical interest and not often done in practical applications.

    Therefore,suchcalculationsarealsoomittedhereinfavorofmoreapplicablematerial.

    Often it isof interest tocomparethepotentialsat twodifferentpoints,whichwemay call

    pointaandpointb.Thentheelectricpotentialdifferencebetweenpointsaandb(Vab)would

    bedefinedastheelectricpotentialatbminustheelectricpotentialata.

    Vab=Vb-Va

    Theunitforelectricpotentialdifferenceisthevolt,thesameasforelectricpotential.Electric

    potential difference is often simply called potential difference by physicists. Under direct

    current (DC) conditions and at any one instant in time under alternating current (AC),

    potential andpotentialdifference arenumerical orscalarquantities,notvectors,andthey

    canhavepositiveornegativevalues.

    iselectricpotentialexpressedinvolts.Similarly, potential differenceexpressed in

    voltsisoftencalled oroftenreferredtoasvoltageacrosstwopointsor

    across an electrical component. The terms electric potential, potential, and potentialdifferencearetermsmoreoftenusedbyphysicists.Sincethesequantitiesarealmostalways

    http://en.wikipedia.org/wiki/SIhttp://en.wikipedia.org/wiki/Direct_currenthttp://en.wikipedia.org/wiki/Direct_currenthttp://en.wikipedia.org/wiki/Alternating_currenthttp://en.wikipedia.org/wiki/Alternating_currenthttp://en.wikipedia.org/wiki/Direct_currenthttp://en.wikipedia.org/wiki/Direct_currenthttp://en.wikipedia.org/wiki/Direct_currenthttp://en.wikipedia.org/wiki/SI
  • 7/30/2019 Fundamentals of Electronics - Awais Yasin

    16/185

    16FUNDAMENTALS OF ELECTRONICS

    expressed in volts (or some related unit such as milli volts), engineers, electricians,

    hobbyists, and common people usually use the term voltage instead of potential.

    Furthermore, inpracticalapplications,electrical force,electricfield,andelectricalpotential

    energyofchargedparticlesarenotdiscussednearlyasoftenasvoltage,power,andenergy

    inamacroscopicsense.

    Additionalnote:Thefollowingexplainswhyvoltageis"analogous"tothepressureofafluid

    inapipe(although,ofcourse,itisonlyananalog,notexactlythesamething),anditalso

    explains the strange-sounding "dimensions" of voltage. Consider the potential energy of

    compressedairbeingpumpedintoatank.Theenergyincreaseswitheachnewincrementof

    air.Pressureisthatenergydividedbythevolume,whichwecanunderstandintuitively.Now

    considertheenergyofelectriccharge(measuredincoulombs)beingforcedintoacapacitor.

    Voltage is that energy per charge, so voltage is analogous to a pressure-like sort of

    forcefulness.Also,dimensionalanalysistellsusthatvoltage("energypercharge")ischarge

    perdistance,thedistancebeingbetweentheplatesofthecapacitor

    Whenanelectriccircuitisoperatingin DirectCurrent (DC)mode,allvoltagesandvoltagedifferences in the circuit are typically constant (do not vary)with time.When a circuit is

    operating under Alternating Current (AC) conditions, the voltages in the circuit vary

    periodicallywithtime;thevoltagesareasinusoidalfunctionoftime,suchasV(t)=asin(bt)

    withconstantaandb,orsomesimilarfunction.Thenumberoftimestheperiodrepeats(or

    "cycles") per unit time iscalled the frequencyofV(t).UnderDC conditionsoratanyone

    instantintimeunderAC,potential(orvoltage)andpotentialdifference(orvoltagedifference)

    are numerical or scalar quantities, not vectors, and they can have positive or negative

    values. However, in AC mode, the overall function of voltage with time V(t), can be

    expressedasacomplexnumberoraphasorforagivenfrequency.Thefrequencycanbe

    expressed in cycles per second or simply sec-1, which is called (Hz) in SI units.TypicalcommercialelectricpowerprovidedintheUnitedStatesisACatafrequencyof60

    Hz.

    Ground isshownonelectronicsdiagrams, but it isn't really acomponent. It issimply the

    nodewhichhasbeenassigneda voltageofzero. It is representedbyoneof thesymbols

    below. Technically, any single node can beassigned asground, and other voltagesare

    measured relative to it.However, the convention is toonly assign it inone of two ways,

    relatedtothetypeofpowersupply.Inasinglesupplysituation,suchasacircuitpoweredby

    a single battery, the ground point is usually defined as themore negative of the power

    source's terminals. Thismakesall voltages in the circuit positivewith respect to ground

    (usually),andisacommonconvention.Forasplit-supplydevice,suchasacircuitdrivenby

    acenter-tappedtransformer,usuallythecentervoltageisdefinedasground,andthereare

    equalandroughlysymmetricalpositiveandnegativevoltagesinthecircuit.

    Signal

    Ground

    Chassis

    Ground

    Earth

    Ground

    http://en.wikipedia.org/wiki/Direct_Currenthttp://en.wikipedia.org/wiki/DChttp://en.wikipedia.org/wiki/Alternating_Currenthttp://en.wikipedia.org/wiki/AChttp://en.wikipedia.org/wiki/Frequencyhttp://en.wikipedia.org/wiki/Frequencyhttp://en.wikipedia.org/wiki/AChttp://en.wikipedia.org/wiki/Alternating_Currenthttp://en.wikipedia.org/wiki/DChttp://en.wikipedia.org/wiki/Direct_Current
  • 7/30/2019 Fundamentals of Electronics - Awais Yasin

    17/185

    17FUNDAMENTALS OF ELECTRONICS

    Groundforasignal.Sincewireshaveacertainamountofresistancetothem,groundpoints

    inacircuitaren'tallatexactlythesamevoltage.Itisimportantinpracticalcircuitdesignto

    separatethepowersupplygroundfromthesignalgroundfromtheshieldingground,etc.In

    circuitswhereminimumnoiseisespeciallyimportant,powerregulatorcircuitryshouldhave

    thickwiresortracesconnectingthegrounds,inasequence fromthepower supply tothe

    "cleanest"groundattheoutputofthefiltersofthepowersupply,whichwillthenbea"star

    point"forthegroundsofthesignalcircuitry.

    Adirectconnectiontothechassisofthedevice.This isused forEMIshieldingandalsofor

    safetygroundinlineACpowereddevices.

    Usedinradioorpowerdistributionsystems,aconnectiontotheEarthitself.Alsotheother

    endoftheconnectionfor the safetyground,sincethepower linevoltagewillseekapath

    throughtheEarthbacktothepowerlinesupplystation.Thiswastheoriginalusageofthe

    word"ground",andthemoremodernmeaningofthewordwouldhavebeencalleda"floatingground".

    Theearthgroundsymbolandsignalgroundsymbolareofteninterchangedwithoutregardto

    their original meanings. As far as signal-level electronics (and this book) is concerned,

    groundalmostalwaysmeansasignalgroundorfloatingground,notconnectedtotheearth

    itself.

    oftencalledjustcurrent,isthemovementofchargeinaconductor(suchas

    awire)orinto,outof,orthroughanelectricalcomponent.Currentisquantifiedasarateof

    positivechargemovementpastacertainpointorthroughacross-sectionalarea.Simplyput,

    current isquantified aspositive charge per unit time.However, sincecurrent isa vector

    quantity, the direction inwhich the current flows is still important.Current flow inagiven

    directioncanbepositiveornegative;thenegativesignmeansthatpositivechargesmove

    opposite of the given direction. The quantity of current at a certain point is typically

    symbolizedbyacapitalorsmall letter Iwithadesignationwhichdirectionthecurrent I is

    moving.TheSI unitofcurrentistheampere(A),oneofthefundamentalunitsofphysics.

    See ampere for thedefinitionofampere.Sometimes, ampere is informallyabbreviated to

    amp. The definition of a coulomb (C), the SI unit of charge, is based on an ampere. A

    coulomb is the amount of positive charge passinga pointwhen a constant one ampere

    currentflowsbythepointforonesecond.ThesecondistheSIunitoftime.Inotherwords,acoulombequalsanampere-second(As).Anampereisacoulombpersecond(C/s).

    Typically,currentisinametalandconstitutesmovementofelectronswhichhavenegative

    charge;however,peopleinitiallythoughtthatcurrenthadapositivecharge.Theresultisthat

    even though current is the flowofnegativeelectronsand flows from the negative to the

    positiveterminalofabattery,whenpeopledocircuitanalysistheypretendthatcurrentisa

    flowofpositiveparticlesandflowsfromthepositivetothenegativeterminalofabattery(or

    otherpowersource).Actually,itismorecomplicatedthanthis,sincecurrentcanbemadeup

    ofelectrons,holes,ions,protons,oranychargedparticle.Sincetheactualchargecarriers

    http://en.wikipedia.org/wiki/SIhttp://en.wikipedia.org/wiki/Amperehttp://en.wikipedia.org/wiki/Fundamental_unithttp://en.wikipedia.org/wiki/Amperehttp://en.wikipedia.org/wiki/Coulombhttp://en.wikipedia.org/wiki/Coulombhttp://en.wikipedia.org/wiki/Amperehttp://en.wikipedia.org/wiki/Fundamental_unithttp://en.wikipedia.org/wiki/Amperehttp://en.wikipedia.org/wiki/SI
  • 7/30/2019 Fundamentals of Electronics - Awais Yasin

    18/185

    18FUNDAMENTALS OF ELECTRONICS

    areusuallyignoredwhenanalyzingacircuit,current issimplifiedandthoughtofasflowing

    frompositivetonegative,andisknownasconventionalcurrent.

    Analogytopebbletossing:IhavepebblesandIamthrowingthemintoabasket.Indoingthis

    thebasketgainspebblesandIlosepebbles.Sothereisanegativecurrentofpebblestothe

    basket because it is gaining pebbles, and there is a positive current of pebbles to me

    because I am losing pebbles. In pebble tossing the currents have equal strength but in

    oppositedirections.

    CurrentIisrepresentedinamperes(A)andequalsxnumberofy

    Powerisenergyperunitoftime.TheSIunitforpoweristhe (W)whichequalsa

    (J/s),withjoulebeingtheSIunitfor andsecondbeingtheSIunitfor .

    When somebody plugs an appliance into a receptacle to use electricity to make that

    appliancefunction,thatpersonprovideselectricalenergyfortheappliance.Theappliance

    usually functions by turning that electrical energy into heat, light, or work or perhapsconvertsitintoelectricalenergyagaininadifferentform.Ifthissituationisongoing,itissaid

    thatthereceptacleorelectricpowercompanydeliverspowertotheappliance.Thecurrent

    fromthereceptaclegoinginandoutoftheapplianceeffectivelycarriesthepowerandthe

    applianceabsorbsthepower.

    Multiplyingaunitofpowerbyaunitoftimewouldresultinaunitthatrepresentsaquantityof

    energy.Therefore,multiplyingakilowattbyanhourgivesakilowatt-hour(kWh),aunitoften

    usedbyelectricalpowercompaniestorepresentanamountofelectricalenergygeneratedor

    providedtoconsumers.

    Fordirectcurrent(DC),powerPcanbecalculatedbymultiplyingthevoltageandcurrent,

    whentheyareknown.

    P=VI

    Notethatenergy/chargeismultipliedbycharge/timetogiveenergy/time.Atanyonepointin

    timetinalternatingcurrent(AC)circuitry,powerP(t)equalsvoltageV(t)timescurrentI(t).

    P(t)=V(t)I(t)atanyonetimet

    CalculationsofACpoweraveragedovertimewillbediscussedunderACpower.

    An electronic is a system in which conventional current flows from the positive

    terminalofasource,throughaload,tothenegativeterminalofthesource.

    Ashortcircuitisanothernameforanode,althoughitusuallymeansanunintentionalnode.

    Hascurrentthroughitbutnovoltageacrossit.

    Haspotentialacrossitbutnocurrentthroughit.

  • 7/30/2019 Fundamentals of Electronics - Awais Yasin

    19/185

    19FUNDAMENTALS OF ELECTRONICS

    Theoretical circuit connection (wire) has no resistance or inductance. Real wires always

    have voltage over them if there is current flowing through them (resistance). On high

    frequencies there are markable voltage potentials over wire links if there is flowing

    alternatingcurrentthroughwires(inductancelikeininductors).

    Twomaterials with a voltage difference between them.This causes current to flow

    whichdoeswork.Electronstravelfromthecathode,dosomework,andareabsorbedbythe

    anode.

    Destinationofelectrons.

    Sourceofelectrons.

    Anatomwithanimbalanceofelectrons.thecellrunsandelectronsaredepletedatthecathodeandaccumulateatthe

    anode.Thiscreatesareversevoltagewhichstopstheflowofelectrons.

    oncethecellrunsoutofjuiceitisdead.

    abletorunthecellbackwards.

    thecellcanberunbackwardsbytheapplicationofelectricity.

    humidairwilldischargecells.

    cellsareusuallymadeoftoxicorcorrosivesubstances,forexampleleadandsulphuricacid.

    Theyhavebeenknowntoblowup.

    Whatistherelationshipbetweenvoltageandelectronegativity?

    isaconceptinchemistryusedtomeasureandpredicttherelativelikilihood

    ofachemical reactioncausingelectronsto shift fromonechemicalto anotherresulting in

    ionsandmolecularbonds.Abatterycell operatesbyallowing twochemicals to reactand

    supply ions to theanodeand cathode.When the supply of a reactant is consumed, the

    batteryisdead.Itnolongerproducesdifferentelectricalpotentialattheanodeandcathode

    drivenbythechemicalreaction.

    Voltageistheelectricalpotentialofapointduetosurroundingmeasurableelectriccharge

    distributions and points as calculated by application Coulomb's Law. Voltage difference

    betweentwopointsconnectedbyaconductorresultsinelectronflow.

    RESISTORS

  • 7/30/2019 Fundamentals of Electronics - Awais Yasin

    20/185

    20FUNDAMENTALS OF ELECTRONICS

    Aresistorisablockofmaterialthatlimitstheflowofcurrent.Thegreatertheresistance,the

    lowerthecurrentwillbe.Sinceconductorshavean"electronsoup"aroundtheatoms,they

    behave like a wide pipe filled with water, and have low resistance to a flow of water.

    Insulators,ontheotherhand,behavemorelikeatinypipe,orasponge-filledpipe.While

    theyareporousandallowcurrenttoflow,aspongethatismoredenseandhaslessholes

    willhaveahigher resistanceanda smallerflowof current,if thepressurepushingon the

    wateristhesame.

    Resistancecanvaryfromverysmalltoverylarge.Asuperconductorhaszeroresistance,

    whilesomethingliketheinputtoanop-ampcanhavearesistancenear1012,andeven

    higher resistances arepossible. Formostmaterials, as temperature increases resistance

    tendstoincreaseaswell.Resistanceconvertselectricalenergyintoheat.Resistorswhich

    dissipate largeamountsofpowerarecooledso thattheyarenot destroyed, typicallywith

    finnedheatsinks.

    Resistorshavetwo leads (pointsofcontact) towhich the resistorcanbe connected toan

    electricalcircuit.Asymbolforaresistorusedinelectricalcircuitdiagramsisshownbelow.Thetwoblackdotsindicatethepointsofcontactfortheresistor.Theratioofthevoltageto

    currentwillalwaysbepositive,sinceahighervoltageononesideofaresistorisapositive

    voltage,and a currentwill flow from the positiveside to the negative side, resulting in a

    positivecurrent.Ifthevoltageisreversed,thecurrentisreversed,leadingagaintoapositive

    resistance.

    TheratioofvoltagetocurrentisreferredtoasOhm'sLaw,andisoneofthemostbasiclaws

    thatgovernelectronics.

    (Ohm'slawisnotnecessarilyexpressedinthisway,butdoesexpressthatanoppositionis

    equivalenttotheratioofacausetotheeffect)

    Unlikesomeelectricalcomponents,itdoesnotmatterwhichwayyoupluginresistors;they

    have no polarity. Also, asmost electronics components have internal resistance, this is

    sometimesshownbyputtingaresistorinserieswiththecomponenttotaketheresistance

    intoaccount.

    Resistanceisgiveninohms()where:

    Anohmis theamountof resistancewhichpassesoneampereofcurrentwhenaonevolt

    potentialisplacedacrossit.(Theohmisactuallydefinedastheresistancewhichdissipates

    onewattofpowerwhenoneampereofcurrentispassedthroughit.)

    Lowervaluedresistorsaresometimesreferredtoasa load.Aresistordissipatesenergyas

    electronsstriketheatomsandtransfertheenergytotheresistormaterial.Aloadisdefined

    as the power dissipated between two terminals. Usually, this is an output, and the

    compositionoftheloadisunknown.Thismeasureisnotrelatedtotheconductance,whichistheinverseofresistance.ConductanceismeasuredinSiemens(S)orsometimesreferredto

  • 7/30/2019 Fundamentals of Electronics - Awais Yasin

    21/185

    21FUNDAMENTALS OF ELECTRONICS

    asMhos (-1).Used as an adjective, a load hasa load with ameasurable power draw

    (expressedinWatts).Thepowerdrawn(load)istheamountofvoltageacrosstheterminals

    multipliedbythecurrentthroughtheterminals.

    Power:

    AfterOhm'slawissubstitutedintotheequation

    :

    ForanACsignaloranykindofchangingsignal,theaveragepowerdissipatedisrelatedto

    theRMSvalueofthevoltage,notthepeak-to-peakvoltage:

    Forapuresinewave,therelationshipbetweenpeak-to-peakvoltageandRMSvoltageis

    Soaresistorwith1VDCacrossitandanequal-valueresistorwith1VRMS=1.414VPPAC

    sinusoidwillbothdissipatethesameamountofpower(heat).

    Consider thedefinitionofPowerRating,below.When associating resistors toproducean

    equivalentLoad,wecanhaveanequivalentresistancewhichislargerorsmallerthaneach

    individualelement, dependingon the typeofassociation beingseries orparallel, but the

    equivalent power ratingwill always be larger thaneach individual powerratings. Inother

    words:Twoequalvalueresistorsinparallelwillhavehalftheresistancebuttwicethepowerrating.

    Twoequalvalueresistorsinserieswillhavetwicetheresistanceandtwicethepowerrating.

    Amanufacturedresistorisusuallylabeledwiththenominalvalue(valuetobemanufactured

    to) and sometimes a tolerance. Rectangular resistors will usually contain numbers that

    indicatearesistanceandamagnitude.Iftherearethreeorfournumbersontheresistor,the

    firstnumbersarearesistancevalue,andthelastnumberreferstothemagnitude.Ifthereis

    anRinthevalue,theRtakestheplaceofthedecimalpoint.

    2003means200103=200k

    600means60100=60

    2R5means2.5

    R01means0.01

    Cylindrical resistors (axial) usually have colored bands that indicate a number and a

    magnitude.Resistancebandsarenexttoeachother,withatolerancebandslightlyfarther

    awayfromtheresistancebands.Startingfromtheresistancebandsideoftheresistor,each

    colorrepresentsanumberinthesamefashionasthenumbersystemshownabove.

  • 7/30/2019 Fundamentals of Electronics - Awais Yasin

    22/185

    22FUNDAMENTALS OF ELECTRONICS

    COLORSYSTEM

    Black Brown Red Orange Yellow Green Blue Violet Grey White

    0 1 2 3 4 5 6 7 8 9

    B.B.ROYofGreatBritainwasaVeryGoodWorker.

    A gold band in the magnitude position means -1, but means a 5%

    tolerance.Asilverbandinthemagnitudepositionmeans-2,butmeansa10%tolerance.

    The resistanceR ofacomponent isdependentonitsphysicalcharacteristicsandcanbe

    calculatedusing:

    whereistheelectricalresistively(resistancetoelectricity)ofthematerial,Listhelengthof

    thematerial,andAisthecross-sectionalareaofthematerial.

    IfyouincreaseorLyouincreasetheresistanceofthematerial,butifyouincreaseAyou

    decreasetheresistanceofthematerial.

    RESISTIVELY OF THEMATERIAL

    Everymaterialhasitsownresistively,dependingonitsphysicalmakeup.Mostmetalsareconductorsandhaveverylowresistively;whereas,insulatorssuchasrubber,wood,andair

    allhaveveryhighresistively.Theinverseofresistivelyisconductivity,whichismeasuredin

    unitsofSiemens/meter(S/m)or,equivalently.Mhos/meter.

    In the following chart, it is not immediately obvioushow the unit ohm-meter is selected.

    Consideringasolidblockofthematerialtobetested,onecanreadilyseethattheresistance

    oftheblockwilldecreaseasitscross-sectionalareaincreases(thuswideningtheconceptual

    "pipe"),andwillincreaseasthelengthoftheblockincreases(lengtheningthe"pipe").Given

    a fixed length, the resistance will increase as the cross-sectional area decreases; the

    resistance, multiplied by the area, will be a constant. If the cross-sectional area is held

    constant,asthelengthisincreased,theresistanceincreasesinproportion,sotheresistance

    dividedbythelengthissimilarlyaconstant.Thusthebulkresistanceofamaterialistypically

    measuredinohmmeterssquaredpermeter,whichsimplifiestoohm-meter(-m).

    Silver 1.5910-8

    Copper 1.610-

    Gold 1.710-8

    Aluminum 2.8210-

    Tungsten 5.610-

    Iron 1010-

  • 7/30/2019 Fundamentals of Electronics - Awais Yasin

    23/185

    23FUNDAMENTALS OF ELECTRONICS

    Platinum 1110-

    Lead 2210-

    Nichrome1.5010- (Anickel-chromiumalloycommonlyusedinheating

    elements)

    Graphite ~10-

    Carbon 3.510-

    PureGermanium 0.6

    PureSilicon 640

    Common purified

    water~103

    Ultra-purewater ~105

    Pure Gallium

    Arsenide~106

    Diamond ~1010

    Glass 10 to10

    Mica 91013

    Rubber 10 to10

    Organicpolymers ~1014

    Sulfur ~10

    Quartz(fused) 5to751016

    Air veryhigh

    Silver, copper,gold,andaluminumarepopularmaterials forwires,dueto low resistively.

    Siliconandgermaniumareusedassemiconductors.Glass,rubber,quartzcrystal,andair

    arepopulardielectrics,duetohighresistively.

    Manymaterials,suchasair,haveanon-linearresistancecurve.Normalundisturbedairhas

    a high resistance, but air with a high enough voltage applied will become ionized and

    conductveryeasily.

    Theresistivelyofamaterialalsodependsonitstemperature.Normally,thehotteranobjectis, themore resistance it has.Athigh temperatures, the resistance isproportional to the

    absolute temperature. At low temperatures, the formula is more complicated, and what

    countsasa highor low temperaturedependsonwhat theresistor ismade from.Insome

    materials the resistively drops to zero below a certain temperature. This is known as

    superconductivity,andhasmanyusefulapplications.

    (Somematerials,suchassilicon,havelessresistanceathighertemperatures.)

    For all resistors, the change in resistance for a small increase in temperature is directly

    proportionaltothechangeintemperature.

    Currentpassing througha resistorwillwarm it up. Many componentshaveheat sinks to

    dissipatethatheat.Theheatsinkkeepsthecomponentfrommeltingorsettingsomethingonfire.

  • 7/30/2019 Fundamentals of Electronics - Awais Yasin

    24/185

  • 7/30/2019 Fundamentals of Electronics - Awais Yasin

    25/185

    25FUNDAMENTALS OF ELECTRONICS

    unitsm2cancel:

    Which,afterevaluating,givesyouafinalvalueof8.010-6,or8microohms,averysmall

    resistance? The method shown above included the units to demonstrate how the unitscancelout,butthecalculationwillworkaslongasyouuseconsistentunits.

    InternetHint:Googlecalculatorcandocalculationslikethisforyou,automaticallyconverting

    units.Thisexamplecanbecalculatedwiththislink:[1]

    Usedfor power resistors, sincethepower per volume ratiois highest.These

    usuallyhavethelowestnoise.

    These areeasy to produce, but usually have lots of noise because of the

    propertiesofthematerial.

    These resistors have thermal and voltage noise attributes that are between

    carbonandwirewound.

    Usefulforhighfrequencyapplications.

    RESISTORJUNCTIONS

    Resistors in series are equivalent to having one long resistor. If the properties of tworesistors are equivalent, except the length, the finalresistancewillbethe sumof the two

    constructionmethods:

    Thismeansthattheresistorsaddwheninseries.

    Christmastreelightsareusuallyconnectedinseries,sothatifonelightblows,theotherswillallgoout.However,moststringshavebuiltinshuntresistorsinparalleltothebulb,sothatcurrentwillflowpasttheblownlightbulb.

    Inaparallelcircuit,currentisdividedamongmultiplepaths.Thismeansthattworesistorsinparallelhavea lowerequivalent resistance thaneitherof theparallel resistors,sinceboth

    http://www.google.com/search?q=%281.6*10%5E-8+ohm+meter%29+*+%285+cm%29+%2F+%281+cm%29%5E2&http://www.rain.org/~mkummel/stumpers/07jan00a.htmlhttp://www.rain.org/~mkummel/stumpers/07jan00a.htmlhttp://www.google.com/search?q=%281.6*10%5E-8+ohm+meter%29+*+%285+cm%29+%2F+%281+cm%29%5E2&
  • 7/30/2019 Fundamentals of Electronics - Awais Yasin

    26/185

    26FUNDAMENTALS OF ELECTRONICS

    resistorsallowcurrenttopass.Tworesistorsinparallelwillbeequivalenttoaresistorthatis

    twiceaswide:

    Sinceconductance(theinverseofresistance)addinparallel,yougetthefollowingequation:

    Forexample,two4resistorsinparallelhaveanequivalentresistanceofonly2.

    To simplify mathematical equations, resistances in parallel can be represented with two

    verticallines"||"(asingeometry).Fortworesistorstheparallelformulasimplifiesto:

    Resistorsinparallel areevaluatedas if inamathematicalsetof "parentheses."Themost

    basicgroupofresistorsinparallelisevaluatedfirst,thenthegroupinserieswiththenew

    equivalentresistor,thenthenextgroupof resistorsinparallel,andsoon.Forexample,the

    aboveportionwouldbeevaluatedasfollows:

    RESISTOR VARIATIONS

    Variableresistorsaretunable,meaningyoucanturna

    dialorslideacontact andchange the resistance.Theyare usedasknobs tocontrol the

    volumeofastereo,orasadimmerforalamp.Oftenabbreviatedas'pot'.Itisconstructed

    likearesistor,buthasaslidingtapcontact.Potentiometersareusedas VoltageDividers.It

    is rare to finda variable resistorwith only two leads.Most are potentiometerswith three

    leads,evenifoneisnotconnectedtoanything.

    http://en.wikibooks.org/wiki/Electronics/Voltage_Dividershttp://en.wikibooks.org/wiki/Electronics/Voltage_Dividers
  • 7/30/2019 Fundamentals of Electronics - Awais Yasin

    27/185

  • 7/30/2019 Fundamentals of Electronics - Awais Yasin

    28/185

  • 7/30/2019 Fundamentals of Electronics - Awais Yasin

    29/185

    29FUNDAMENTALS OF ELECTRONICS

    entirerangeofspecificationsshouldbeconsidered.Usually,exactvaluesdonotneedtobe

    known,butrangesshouldbedetermined.

    The nominal resistance is the resistance that can beexpected whenordering a resistor.

    Finding a range for the resistance is necessary, especially when operating on signals.

    Resistorsdonotcomeinallofthevaluesthatwillbenecessary.Sometimesresistorvalues

    can be manipulated by shaving off parts of a resistor (in industrial environments this is

    sometimesdonewithaLASERtoadjustacircuit),orbycombiningseveralresistorsinseries

    andparallel.

    Available resistor values typically comewith a resistance value from a so called resistor

    series.Resistorseriesaresetsof standard, predefinedresistancevalues.Thevaluesare

    actuallymadeupfromageometricsequencewithineachdecade.Ineverydecadethereare

    supposedtobenresistancevalues,withaconstantstepfactor.Thestandardresistorvalues

    withinadecadearederivedbyusingthestepfactori

    roundedtoatwodigitprecision.ResistorseriesarenamedEn,accordingtotheusedvalue

    ofnintheaboveformula.

    nValues/DecadeStepfactoriSeries

    ----------------------------------------

    61.47E6

    121.21E12

    241.10E24

    481.05E48

    For example, in the E12 series for n = 12, the resistance steps in a decade are, after

    roundingthefollowing12values:

    1.00,1.20,1.50,1.80,2.20,2.70,

    3.30,3.90,4.70,5.60,6.80,and8.20

    andactuallyavailableresistorsfromtheE12seriesareforexampleresistorswithanominal

    valueof120or4.7k.

    Amanufacturedresistorhasacertaintolerancetowhichthe resistancemaydifferfromthe

    nominalvalue.Forexample,a2kresistormayhaveatoleranceof5%,leavingaresistor

    withavaluebetween1.9kand2.1k(i.e.2k100).Thetolerancemustbeaccounted

    forwhendesigningcircuits.Acircuitwithanabsolutevoltageof5V0.0Vinavoltagedividernetworkwithtworesistorsof2k5%willhavearesultantvoltageof5V10%(i.e.5V0.1V).

    The finalresistor tolerancesare foundby taking the derivativeof the resistorvalues,and

    pluggingtheabsolutedeviationsintotheresultingequation.

    TheabovementionedE-serieswhichareusedtoprovidestandardizednominalresistance

    values, are also coupled to standardized nominal tolerances. The fewer steps within a

    decadethereare,thelargertheallowedtoleranceofaresistorfromsuchaseriesis.More

    preciseresistors,outsideofthementionedE-seriesarealsoavailable,e.g.forhigh-precision

    measurementequipment.Commontolerances,colorsandkeycharacters used to identify

    themareforexample:

    SeriesValues/DecadeToleranceColorCodeCharacterCode

    --------------------------------------------------------------

    E6620%[none][none]

  • 7/30/2019 Fundamentals of Electronics - Awais Yasin

    30/185

  • 7/30/2019 Fundamentals of Electronics - Awais Yasin

    31/185

    31FUNDAMENTALS OF ELECTRONICS

    resistoristobeusedasathermostatinthoseranges.Thesimplifiedlinearizedformulafor

    theaffectontemperaturetoaresistorisexpressedinanequation:

    R=R0[1+(TT0)]

    Real world resistors not only show the physical property of resistance, but also have a

    certaincapacityandinductance.Thesepropertiesstarttobecomeimportant,ifa resistoris

    used in some high frequency circuitry. Wire wound resistors, for example, show an

    inductancewhichtypicallymakesthemunusableabove1kHz.

    Resistorscanbepackagedinanywaypossible,butaredividedintosurfacemount,through

    hole,solderingtagandafewmoreforms.Surfacemountisconnectedtothesamesidethat

    the resistor ison. Throughhole resistors have leads (wires) that typically go through the

    circuit boardand are soldered to the boardon the side opposite the resistor, hence the

    name.Resistors with leads are also used in point-to-point circuitswithout circuit boards.Solderingtagresistorshavelugstosolderwiresorhighcurrentconnectorsonto.

    Usualpackagesforsurfacemountresistorsarerectangular,referencedbyalengthanda

    widthinmils(thousandsofaninch).Forinstance,an0805resistorisarectanglewithlength

    .08"x.05",withcontacts(metalthatconnectstotheresistor)oneitherside.Typicalthrough

    holeresistorsarecylindrical,referencedeitherbythelength(suchas0.300")orbyatypical

    powerratingthatiscommontothelength(a1/4Wresistoristypically0.300").Thislength

    doesnotincludethelengthoftheleads.

    CAPACITORS

    Acapacitor(historicallyknownasa"condenser")isadevicethatstoresenergyinanelectric

    field,byaccumulatinganinternalimbalanceofelectriccharge.Itismadeoftwoconductors

    separatedbyadielectric(insulator).Usingthesameanalogyofwaterflowingthroughapipe,

    acapacitorcanbethoughtofasatank,inwhichthechargecanbethoughtofasavolumeof

    waterinthetank.Thetankcan"charge"and"discharge"inthesamemannerasacapacitor

    doestoanelectriccharge.Amechanicalanalogyisthatofaspring.Thespringholdsa

    chargewhenitispulledback.

    Whenvoltageexistsoneendofthecapacitorisgettingdrainedandtheotherendisgetting

    filledwithcharge.Thisisknownascharging.Chargingcreatesachargeimbalancebetweenthe twoplatesandcreatesareversevoltage thatstopsthecapacitor fromcharging.Asa

  • 7/30/2019 Fundamentals of Electronics - Awais Yasin

    32/185

    32FUNDAMENTALS OF ELECTRONICS

    result, when capacitors are first connected to voltage, charge flows only to stop as the

    capacitor becomes charged. When a capacitor is charged current stops flowing and it

    becomesanopencircuit.Itisasifthecapacitorgainedinfiniteresistance.

    Youcanalsothinkofacapacitorasafictionalbatteryinserieswithafictionalresistance.

    Starting the charging procedure with the capacitor completely discharged, the applied

    voltageisnotcounteractedbythefictionalbattery,becausethefictionalbatterystillhaszero

    voltage,andthereforethechargingcurrentisatitsmaximum.Asthechargingcontinues,the

    voltageof the fictional battery increases, and counteracts the appliedvoltage,sothat the

    chargingcurrentdecreasesasthefictionalbattery'svoltageincreases.Finallythefictional

    battery'svoltageequalstheappliedvoltage,sothatnocurrentcanflowinto,noroutof,the

    capacitor.

    Justasthecapacitorchargesitcanbedischarged.Thinkofthecapacitorbeingafictional

    battery that supplies at first a maximum current to the "load", but as the discharging

    continuesthevoltageof thefictionalbatterykeepsdecreasing,andthereforethedischarge

    currentalsodecreases.Finallythevoltageofthefictionalbatteryiszero,andthereforethe

    dischargecurrentalsoisthenzero.

    This is not the same asdielectric breakdown where the insulator between the capacitorplatesbreaksdownanddischargesthecapacitor.Thatonlyhappensat largevoltagesand

    the capacitor is usually destroyed in the process. A spectacular example of dielectric

    breakdownoccurswhenthetwoplatesofthecapacitorarebroughtintocontact.Thiscauses

    allthechargethathasaccumulatedonbothplatestobedischargedatonce.Suchasystem

    ispopularforpoweringlaserswhichneedlotsofenergyinaverybriefperiodoftime.

    CAPACITANCE

    Thecapacitanceofacapacitorisaratiooftheamountofchargethatwillbepresentinthe

    capacitorwhenagivenpotential(voltage)existsbetweenitsleads.Theunitofcapacitance

    isthefaradwhichisequaltoonecoulombpervolt.Thisisaverylargecapacitanceformost

    practical purposes; typicalcapacitors have valueson theorder ofmicrofaradsor smaller.

    Thebasicequationforcapacitanceis.

    Where C is the capacitance in farads, V is the potential in volts, and Q is the charge

    measuredincoulombs.Solvingthisequationforthepotentialgives:

    Theimpedanceofacapacitoratanygivenangularfrequencyisgivenby:

    wherejis ,istheangularfrequencyandCisthecapacitance.

    Thechargeinthecapacitoratanygiventimeistheaccumulationofallofthecurrentwhich

    hasflowedthroughthecapacitor.Therefore,thepotentialasafunctionoftimecanbewritten

    as:

    Wherei(t)isthecurrentflowingthroughthecapacitorasafunctionoftime.

    http://en.wikipedia.org/wiki/Capacitancehttp://en.wikipedia.org/wiki/Faradshttp://en.wikipedia.org/wiki/Faradshttp://en.wikipedia.org/wiki/Capacitance
  • 7/30/2019 Fundamentals of Electronics - Awais Yasin

    33/185

  • 7/30/2019 Fundamentals of Electronics - Awais Yasin

    34/185

  • 7/30/2019 Fundamentals of Electronics - Awais Yasin

    35/185

    35FUNDAMENTALS OF ELECTRONICS

    TantalumcapacitorshavehighcapacitanceandlowESR,butlowoperatingvoltages.When

    tantalumcapacitorsfail,ittendstobe"spectacular,"theyessentiallyblowup.

    Thecapacitanceofaparallel-platecapacitorconstructedoftwoidenticalplaneelectrodesof

    areaAatconstantspacingDisapproximatelyequaltothefollowing:

    where C is the capacitance in farads, 0 is thePermittivity of Space, r is theDielectric

    Constant,Aistheareaofthecapacitorplates,andDisthedistancebetweenthem.

    Adielectricis thematerialbetweenthetwochargedobjects.Dielectricsareinsulators.They

    impede the flowofcharge innormaloperation.Sometimes,whena too large voltagehas

    been reached,chargestarts flowing.This iscalleddielectric breakdownand

    Beginnerssometimes misunderstand this. Timing circuits do measure the

    rate at which a capacitor charges, but they measure a threshold voltage instead

    of allowing the voltage to build up until dielectric breakdown. (A device which

    does function this way is a spark gap.)

    No charge should ever flow from one plate to the other. Although a current does

    flow through the capacitor, charges are not actually moving from one plate to

    the other. As charges are added to one plate, their electric field displaces like

    charges off of the other plate. This is called a displacement current.

    CAPACITORMATERIALS

    Capacitors can be made either polarized or non-polarized. A polarized capacitor

    requires that the capacitor be hooked up such that the voltage is always biased

    in one direction. Hooking a polarized capacitor backwards will result in the

    capacitor exploding, sometimes releasing harmful fumes. Non-polarized

    capacitors can be biased in either direction without harm to the capacitor.

    Polarized and non-polarized capacitors have an upper limit of voltage, where the

    material will break down and the capacitor will no longer function. This can also

    cause fumes to be released depending on the type of material.

    Different materials and their properties.These are normally low capacitance (between ~1pF to ~1F). Ceramic

    capacitors have a very low inductance due to the shape. This means that the

    capacitance value continues into extremely high frequencies, making them

    perfect for RF applications. However, ceramic capacitors tend to vary their

    capacitance with temperature.

    C0G or NP0 - Typical 4.7 pF to 0.047 F, 5%. High tolerance and temperature

    performance. Larger and more expensive.

    X7R - Typical 3300 pF to 0.33 F, 10%. Good for non-critical coupling, timing

    applications.

    http://en.wikibooks.org/wiki/Electronics/Voltage#Permittivity:_.26epsilonhttp://en.wikibooks.org/wiki/Electronics/Voltage#Permittivity:_.26epsilonhttp://en.wikibooks.org/wiki/Electronics/Voltage#Permittivity:_.26epsilonhttp://en.wikibooks.org/wiki/Electronics/Voltage#Permittivity:_.26epsilonhttp://en.wikipedia.org/wiki/spark_gaphttp://en.wikipedia.org/wiki/spark_gaphttp://en.wikibooks.org/wiki/Electronics/Voltage#Permittivity:_.26epsilonhttp://en.wikibooks.org/wiki/Electronics/Voltage#Permittivity:_.26epsilonhttp://en.wikibooks.org/wiki/Electronics/Voltage#Permittivity:_.26epsilonhttp://en.wikibooks.org/wiki/Electronics/Voltage#Permittivity:_.26epsilon
  • 7/30/2019 Fundamentals of Electronics - Awais Yasin

    36/185

    36FUNDAMENTALS OF ELECTRONICS

    Z5U - Typical 0.01 F to 2.2 F, 20%. Good for bypass, coupling applications.

    Low price and small size.

    Slightly larger than ceramic, but still has small values (usually in

    the picofarad range).

    Polyester: from about 1 nF to 1 F

    Polypropylene: low-loss, high voltage, resistant to breakdownThese are polarized capacitors that are still small enough to be

    surface mount. Normally the dielectric breakdown voltage is rather low, so the

    capacitors are not suitable for high voltage applicatons, typcially greater than 20

    volts. Tantalum capacitors have a stable capacitance across varying

    temperatures, and low ESR.

    These are also polarized, are much larger than tantalums. The

    dielectric strength is much higher in these, and so is the capacitance.

    Capacitance values can range between 1F and 1mF (sometimes up into the

    farad range). These are compact capacitors that are also very loss. They are

    useful for smoothing power supplies because of the high capacitance.Air-gap

    These capacitors are more compact than normal electrolytic capacitors,

    giving capacitance values in the farad range, but normally have an extremely

    low breakdown voltage.

    Super capacitors 2500 F to 5000 F

    CAPACITORJUNCTIONS

    Capacitors in SeriesCapacitors in series are the same as increasing the distance between two

    capacitor plates. As well, it should be noted that placing two 100 V capacitors in

    series results in the same as having one capacitor with the total maximum

    voltage of 200 V. This, however, is not recommended to be done in practice.

    Especially with capacitors of different values. In a capacitor network in series,

    .

    In a series configuration, the capacitance of all the capacitors combined is the

    sum of the reciprocals of the capacitance of all the capacito