28
Error! Unknown document property name. Author: Samuel Chuah 21642303 CIV 4210: Final Year Project Fabrication and Characterization of Carbon Nanotube Epoxy Nanocomposites: Effect of the Geometry of Carbon Nanotubes

FYP FINAL REPORT

Embed Size (px)

Citation preview

Page 1: FYP FINAL REPORT

Error! Unknown document property name.

       Author:    Samuel  Chuah  21642303                

 

CIV  4210:  Final  Year  Project      

Fabrication  and  Characterization  of  Carbon  Nanotube  Epoxy  Nanocomposites:    

Effect  of  the  Geometry  of  Carbon  Nanotubes  

Page 2: FYP FINAL REPORT

ii  |  P a g e  

Executive  Summary  The   final   year   project   encompasses   two   fundamental   components   in   research.   Literature   review   and  experiments   were   conducted   to   study   the   properties,   problems   and   potential   of   carbon   nanotubes  (CNT).  A  lot  of  interest  is  generated  in  this  material  because  it  displays  exceptional  mechanical,  thermal  and   electrical   properties.   However,   agglomeration   is   the   biggest   problem   that   limits   the   mechanical  properties   of   CNT.   To   overcome   the   string   intermolecular   forces,   dispersion   during   fabrication   is  necessary  to  enhance  the  mechanical  properties.  Chemical  and  physical  dispersion  can  be  performed  to  achieve  this  goal.    

The   conference  paper  was  produced   to   investigate   the  effect  of   carbon  nanotube   (CNT)  geometry  on  quality  of  CNT  dispersion  in  solvent  media.  Results  show  that  the  CNT  diameter  has  a  significant  effect  on   quality   of   its   dispersion   in  matrix.   It   demonstrates   that,   Bigger   the   CNT   diameter,   better   the   CNT  dispersion  in  media.  It  is  because,  the  bigger  diameter  leads  to  less  interaction  energy  in  CNT  bundle  and  make   it   easier   to   exfoliate   CNT   from   bundle.   In   contrast,   CNT   length   has   not   significant   influence   on  quality  of  CNT  dispersion   in  matrix.   It   is   because,   although   long  CNTs  entangle  each  other  more   than  short   CNTs,   entanglement   is   not   dominant   reason   and   with   constant   diameter   and   weight   quantity,  short   or   long   CNT   bundle   have   the   same   interaction   energy   in   bundle.   Accordingly,   with   constant  dispersion  energy  both  of  them  have  almost  equal  dispersion  quality  in  matrix.  We  hope  that  this  study  will  provide  insight  into  further  understanding  of  the  intricacies  of  dispersing  CNTs  in  media.  

 

 

 

 

 

Acknowledgements  I  would  like  to  thank  my  supervisor,  Asghar  who  taught  me  a  lot  on  CNTs  as  well  as  my  lecturer,  Dr.  Wen  Hui  Duan  who  patiently  guided  me  throughout  the  year.  I  would  also  like  to  take  this  opportunity  to  thank  my  family  for  their  unending  support.  

   

Page 3: FYP FINAL REPORT

iii  |  P a g e  

Table  of  Contents  Executive  Summary  ......................................................................................................................................  ii  

Acknowledgements  ......................................................................................................................................  ii  

Introduction  .................................................................................................................................................  1  

Problem  Statement  .................................................................................................................................  1  

Aim  ...........................................................................................................................................................  2  

Outline  .....................................................................................................................................................  2  

Literature  review  ..........................................................................................................................................  3  

General  ....................................................................................................................................................  3  

a.   Synthesis  of  carbon  nanotube  ......................................................................................................  3  

b.   Properties  of  carbon  nanotube  ....................................................................................................  3  

c.   Mechanics  of  carbon  nanotube  ...................................................................................................  4  

d.   Characteristics  of  epoxy  ...............................................................................................................  5  

e.   Epoxy-­‐Carbon  Nanotube  Composite  Characteristics  ...................................................................  5  

f.   Mechanical  Properties  .................................................................................................................  5  

g.   Themo  mechanical  Properties  .....................................................................................................  8  

Specific  Topic:  Dispersion  ........................................................................................................................  9  

a.   Fabrication  methods  ....................................................................................................................  9  

b.   Polymers  to  disperse  CNT  ..........................................................................................................  10  

c.   Uv-­‐Vis  to  monitor  dispersion  of  CNT  ..........................................................................................  10  

Experimental  ..............................................................................................................................................  11  

Experiment  1:  Procedure  .......................................................................................................................  11  

Experiment  1:  Results  and  discussion  ....................................................................................................  12  

a.   UV–vis  spectra  of  MWCNTs–BYK9076  solutions  ........................................................................  12  

a.   Effect  of  CNT  diameter  on  dispersion  ........................................................................................  14  

b.   Effect  of  CNT  length  on  CNT  dispersion  .....................................................................................  15  

Experiment  2:  Procedure  .......................................................................................................................  16  

Experiment  2:  Results  and  discussion  ....................................................................................................  17  

a.  High  speed  shear  mixing  ................................................................................................................  17  

b.  Ultrasonication:  ..............................................................................................................................  18  

c.  Amount  of  CNT  ...............................................................................................................................  19  

 

Page 4: FYP FINAL REPORT

1  |  P a g e  

Introduction  Carbon  nanotube,  which   is   also   known  as  CNT   is   referred   to   the   small,   nano-­‐sized   cylindrical  tubes   composed  of   sheets  of   carbon  atoms  which  was  discovered  by   Iijima   in  1991   (S.   Iijima  1991).   At   present,   CNTs   are   hailed   as   the   building   blocks   of   nanotechnology   with   possible  applications   in   the   near   future.   This   bold   statement   arises   from   the   exceptional  mechanical,  thermal   and  electrical   properties  which  generate   interest   among   researchers   and   the   society  alike   (Montazeri,   Montazeri   et   al.   2011).   CNT   holds   the   promise   of   delivering   superior  composite   materials(Sun,   Warren   et   al.   2008),   electronic   appliances(Zhu,   Peng   et   al.   2004),  lightweight  products  in  the  sports  and  transportation  industries(Yuanxin,  Pervin  et  al.  2007).  In  relation   to   the   potential   application   in   the   construction   industry,   CNT  mechanical   properties  such  as  the  high  elastic  modulus,  tensile  strength,  flexural  strength  and  hardness  are  the  focus  of  attention  because  of   its   immense  potential  as  a  reinforcement  (Young  Seok  and  Jae  Ryoun  2005;  Zheng,  Zhang  et  al.  2006).  

 

Problem  Statement  These   rolled  graphite  sheets   face  a  major  obstacle,  namely   the   tendency   to  agglomerate  and  entangle.   Factors   contributing   to   this   agglomeration   phenomenon   include   the   atomically  smooth  surfaces,  flexible  CNT  and  the  high  aspect  ratio  (Fukui,  Taninaka  et  al.  2007).  Moreover,  CNTs  have  small  diameters  that  tend  to  form  bundle  structures  due  to  their  substantial  van  der  Waals  interaction.  There  is  significant  dependence  of  the  thermal,  rheological,  and  mechanical  properties   of   the   CNT   nanocomposites   on   the   concentration   and   dispersion   state   of   CNT.  Literature   shows   CNT-­‐epoxy   nanocomposites   have   either   weaker   or   just   a   little   bit   higher  mechanical  properties  compare  to  that  of  pure  epoxy  (Wladyka-­‐Przybylak,  Wesolek  et  al.  2011;  Loos,   Yang   et   al.   2012).   CNT   poor   dispersion   and   weak   CNT-­‐matrix   interaction   are   being  generally   described   as   the   cause   for   this   lack   of   enhancement.   Therefore,   good  dispersion   is  necessary  to  realize  the  full  potential  of  the  CNT  mechanical  properties.  Different  methods  have  been  investigated  to  efficiently  disperse  the  CNT  such  as  high  speed  shear  mixing,  calendaring,  ultrasonication,   use   of   solvent   and   surfactant   (Rana,   Alagirusamy   et   al.   2009).   If   CNT   well  dispersed,   the   potential   filler-­‐matrix   interface   area   is   huge,   and   a   perfect   control   of   the  interfacial  interaction  is  crucial  for  obtaining  optimal  properties  (Vaisman,  Wagner  et  al.  2006).    

 

 

 

Page 5: FYP FINAL REPORT

2  |  P a g e  

Aim  The  goals  of  the  final  year  project  are  listed  as  follows:  

1. Study  the  characteristics  of  CNT  to  realize  its  full  potential  

2. Understand  the  role  of  carbon  nanotube  geometry  on  efficient  dispersion  

3. Harnessing  the  superior  properties  of  nanocarbon  in  the  construction  industry  

The  experiment  was  performed  to   investigate  the  effects  of  CNT  diameter  and  length  on  CNT  dispersion  and  understand  the  role  of  carbon  nanotube  geometry  on  efficient  dispersion.    

 

Outline  This   report   provides   a   holistic   literature   review   concerning   the   synthesis,   fabrication   and  properties  of  carbon  nanotube  to  gain  in-­‐depth  background  knowledge  on  the  research  topic.  The   specific   topic   for   the   conference   paper   is   titled   “Carbon   nanotube   dispersion   in   solvent  media:   Effect   of   carbon   nanotube   geometry”.     The   next   section   describes   the   experiment  conducted   during   this   semester   with   corresponding   results   and   discussion.   The   findings   are  then  compiled  into  a  conference  paper.    

   

Page 6: FYP FINAL REPORT

3  |  P a g e  

Literature  review  The   literature   review  covers   two  aspects,  namely  a  general   knowledge  on  CNT   followed  by  a  literature  review  on  the  specific  topic  of  CNT  dispersion.  

General  

a. Synthesis  of  carbon  nanotube  During   the   early   90s,   carbon   nanotubes  were   first   synthesised   by   arc-­‐evaporation.   Similar   to  electrolysis,  the  process  requires  two  pure  graphite  electrodes  and  a  power  supply  but  there  is  no   electrolyte.   Instead,   the   chamber   is   filled   with   inert   gas   such   as   argon   or   helium   as   the  graphite  anode  is  vapourised  and  deposited  on  the  cathode.  The  carbon  vapour  condenses  on  the  cathode  to  form  deposits  of  nanotubes  (Jones,  et.  al.,  1996).  The  set-­‐up  is  in  Figure  1.  

 

Figure  1  Schematic  diagram  of  the  modified  arc  evaporation  apparatus  (Coll,  et.  al.,  1992)  

 Nevertheless,   other  methods   can   be   employed   to   obtain   carbon   nanotubes.   Those  methods  include  laser  ablation,  gas  phase  catalytic  growth  from  carbon  monoxide  and  chemical  vapour  deposition  form  hydrocarbons  (Nikolaev  et.  al.,  1999).        

b. Properties  of  carbon  nanotube  Carbon   nanotube   is   touted   as   the   construction  material   of   the   future   because   of   their   high  strength-­‐to-­‐weight  ratio.    Pipes  et.  al  investigated  the  relationship  between  chiral  integers  and  density,  while  establishing  the  density  of  carbon  nanotube  at  1.4g/cm3  for  single-­‐walled  carbon  nanotube   and   a   maximum   of   2.1   g/cm3   (2003).   As   a   comparison,   steel   has   a   density   of  7.84g/cm3,  making  carbon  nanotube  an   interesting  proposition  especially   in  terms  of  material  mobility  at  site.        

Page 7: FYP FINAL REPORT

4  |  P a g e  

The  strength  and  stiffness  of  carbon  nanotube  are  best  described  by  their  high  tensile  strength  and  elastic  modulus  respectively.  A  background  in  quantum  chemistry  is  required  to  explain  the  unique   mechanical   property   of   carbon   nanotube.     The   chemical   bonding   within   nanotubes  consists  of  sp2  bonds,  similar  to  those  of  graphite.  These  bonds  or  rehybridisations,  which  are  stronger   than   the   sp3  bonds   found   in   alkanes  enable  nanotubes   to  possess   superior   strength  (Ebbesen,  1997).    

In  addition,  carbon  nanotubes  are  good  thermal  conductors.  Kim,  et.  al.  demonstrated  that  the  room-­‐temperature   thermal   conductivity   over   200   W/m   K   for   bulk   samples   of   single-­‐walled  nanotubes     whereas   3000  W/m   K   for   individual   multiwalled   nanotubes   (2001).   Additions   of  nanotubes  to  epoxy  resin  can  double  the  thermal  conductivity  for  a  loading  of  only  1%,  showing  that  nanotube  composite  materials  may  be  useful  for  thermal  management  applications  (Hone,  2004).      

c. Mechanics  of  carbon  nanotube  The  behaviour  of  carbon  nanotube   in  response  to   loading   is   the  next   focus  of  this  study.  This  section  also  demonstrates  the  two  varieties  of  atomic  structure  which  differ  in  vector  notation  as   shown   in   Figure   2.   Chirality   is   a   vector   that   describes   the   non-­‐identical   plane.   This  characteristic  dictates  the  electrical  conductivity  and  torsional  resistance  of  the  specific  shell  of  the  carbon  nanotube.    

 

Figure  2  Illustrations  of  the  atomic  structure  of  (a)  an  arm  chair,  (b)  a  ziz-­‐zag  nanotube  and  (c)  Chiral  vector.  (Makar  &  Beaudoin,  2003)  

 Generally,   carbon   nanotubes   can   be   synthesised   as   single   walled   (SWNT)   or   multi   walled  nanotubes  (MWNT).  The  defects  in  SWNTs  can  be  a  point  of  weakness  while  MWNTs  contains  many  layers  that  can  compensate  defects  present  at  any  given  layer  (Harris,  2009).  Moreover,  

Page 8: FYP FINAL REPORT

5  |  P a g e  

SWNTs  are  susceptible  to  elastic  bucking  under  high  pressure  whereas  MWNTs  have  weak  van  der  Waals  forces  but  negligible  contribution  to  both  the  tensile  and  shear  stiffness  (Thostenson  et.  al.,  2001).  

d. Characteristics  of  epoxy        Epoxy   is   a   thermosetting   polymer   resulting   from   the   chemical   reaction   when   the   resin   and  hardener  are  mixed   in  equal  proportions.  Unlike   thermoplastic  materials,   epoxy   is  hard,   rigid  but  brittle.  In  the  epoxy-­‐carbon  nanotube  composite  specifically,  the  epoxy  plays  a  dual  role  of  being  an  adhesive  resin  and  a  structural  matrix.  

The   physical   appearance   is   always   best   described   in   terms   of   the   chemistry   and   molecular  interactions.  An  epoxide  group  is  mixed  with  bisphenol  to  produce  an  epoxy  resin.  The  amine  groups  react  with  the  epoxide  group  to  form  a  covalent  bond  reinforced  with  dense  cross-­‐links  arising   from   the   reaction   of   the   NH   group   and   epoxide   group.   Subsequently,   the   resulting  polymer  is  a  thermoset  exhibiting  high  rigidity  and  strength  (Jin,  Qipeng  et  al.  2010).  

e. Epoxy-­‐Carbon  Nanotube  Composite  Characteristics  Nanocomposites  are  engineering  materials  made  up  of  carbon  nanotube  core  embedded  in  an  epoxy  resin.  Composites  are  vital  engineering  materials  because  the  composite  utilises  the  high  strength   of   the   carbon   fibre   while   the   epoxy   matrix   serves   to   protect   the   reinforcement   in  order  to  produce  a  composite  with  better  properties  better  than  its  individual  materials  (Philip  &  Bolton,  2002).  However,   the   strength  of   the  new  material  depends  on   the  direction  of   the  load  due  to  material  anisotropy.    

The  application  of  epoxy  matrix  reinforced  with  carbon  nanotube  into  the  construction  industry  is   still   premature   at   this   stage   due   to   several   shortcomings.   These   challenges   include   poorly  dispersed  multiwalled  carbon  nanotube,  aligment  problems  and  weak  interfacial  bonding  in  the  epoxy  matrix   (Kathi   et.   al.,   2009).   These   problems   are   a   direct   result   of   the   chemically   inert  nature  of  the  carbon  nanotube.  Inevitably,  carbon  nanotubes  are  supplied  as  heavily  entangled  bundles  which  results  in  agglomeration  issues.  

Therefore,  several  techniques  are  available  to  produce  a  successful  composite.  The  experiments  performed   involve   manipulating   the   temperature   by   pre-­‐heating   and   the   application   of  sonication  whereby  the  samples  are  prepared  during  the  fabrication  phase.    

f. Mechanical  Properties  Firstly,   the   density   and   hardness   of   the   nanocomposite   can   be  measured   easily   to   obtain   a  general  idea  of  the  mechanical  properties.  According  to  Le,  et.  al.,  the  Vickers  hardness  is  8.5  at  an  optimum  CNT  content  of  1.5-­‐2%  weight  (undated).  Zheng  et.al.  measured  the  density  of  the  MWNT  which  lies  around  1.26kg/m3.  The  bending  strength  is  recorded  within  a  range  of  30  to  70   MPa   depending   on   the   method   of   treatment.   Meanwhile,   the   flexural   modulus   is  

Page 9: FYP FINAL REPORT

6  |  P a g e  

significantly  higher  at  1500  to  2400  MPa.  Figures  1  to  3  provides  a  graphical  representation  of  the  mechanical  properties  based  on  Zheng  et.  al.’s  experiments  (2005).      

 

Figure  3  Correlation  between  MWNT  content  with  density  

 

 

Figure  4  Correlation  between  MWNT  content  with  bending  strength  

 

Page 10: FYP FINAL REPORT

7  |  P a g e  

 

Figure  5  Correlation  between  MWNT  content  with  bending  modulus  

 The   Young’s   modulus   is   the   main   mechanical   characteristic   of   interest   since   it   is   related   to  stiffness  as  well  as  describing  the  correlation  between  stress  and  strain  of  the  nanocomposite.  Experimental   results  suggest   the  elastic  modulus   is  1  GPa  and  capable  of   reaching  up  to  1.29  GPa  as  the  carbon  nanotibe  fibre  is  added  to  2%  by  weight  (Sun,  et.  al.,  2011).  Certainly,  carbon  nanotubes   embedded   in   an   epoxy   matrix   displays   superior   properties   provided   several  problems  are  mitiated.  

Composite   structural   properties   rely   on   the   characteristics   of   the   individual   components.  Besides   the   compatibility   of   its   component   materials,   the   interfacial   adhesion   between   the  carbon  nanotube  and  the  matrix  dictates  the  mechanical  properties  of  the  composite.  Effective  load   transfer  between   the   carbon  nanotube   reinforcement  and   the  epoxy  matrix   is   crucial   in  producing   a   strong  and   superior   composite.  Otherwise,   the   composite  mechanical   properties  will   only   be   slightly   stronger   than   an   ordinary   weak   pure   epoxy.   Research   by   Lau   et.   al.  suggested   that   the   mechanical   properties   of   the   composite   is   inferior   to   pure   epoxy   when  excessive  di-­‐methylformamide  is  used  in  treating  the  carbon  nanotube  (2005).  In  addition,  the  pull   out   of   carbon  nanotube   reinforcement   phenomenon   is   associated   to   the  weak   interface  between  the  two  materials.  

Another  major  problem  is  the  dispersion  of  carbon  nanotube  in  the  matrix.  The  weak  Van  der  Waals   forces  of  attraction  between  the  carbon  nanotube  graphene   layers  will  deteriorate  the  properties   and   ductility   of   the  matrix   (Bai,   2003).   The   carbon   nanotube   reinforcement   has   a  small  diameter  which  promotes  adhesion  with  the  epoxy  matrix  and  desirable  as  an   interface  for  stress   transfer.  However,   the  downside  of   this   large   total   surface  area   is   strong  attractive  forces  between  the  carbon  nanotube  fibres  are  induced  (Gojny,  et.  al.,  2005).        

Page 11: FYP FINAL REPORT

8  |  P a g e  

g. Themo  mechanical  Properties  Temperature   plays   a   significant   role   in   influencing   the   mechanical   properties   of   the  nanocomposite.   The   inclusion   of   carbon   nanotube   fibres   will   enhance   the   glass   transition,  melting  and  thermal  decomposition  temperatures  of  the  composite.  For  instance,  the  addition  of  1%  by  weight  of  carbon  nanotube  raises  the  glass  transition  temperature  from  63  to  88⁰C.  On  top  of  that,  the  thermal  conductivity  is  improved  by  70%  (Xiao-­‐Lin,  Yiu-­‐Wing  et  al.  2005).  

The  storage  modulus  G’  and  tanδ  curves  of  the  CNT/epoxy  nanocomposite  are  plotted  based  on  the  results  of  the  DMA  analysis  carried  out  by  Yan,  Ming  et.al.  in  figure  4  (2008).  Tanδ  behaves  as   an   indicator   if   the   relative   importance  of   both   viscous   and  elastic   behaviours   of  materials  such   that   tanδ  <   1   tends   to   possess   elastic   behaviour   and   acts   like   a   solid  whereas   tanδ  >   1  shows  viscosity  and  liquid-­‐like  (Jeefferie,  et.al.,  undated).  In  simpler  terms,  the  glass  transition  temperatures  can  be  estimated  from  the  peaks  of  the  tanδ  curve  versus  CNT  content.      

 Figure  6  Storage  Modulus  and  tanδ  as  a  function  of  temperature.  

The  epoxy  based  nanocomposites   are  popular   and  attractive   research   topic  but   the  dilemma  lies  in  the  dispersion  of  CNTs  and  interfacial  bond  between  CNTs  and  epoxy.  There  are  multiple  ways  to  counteract  those  problems.  The  solution  is  to  add  functionalised  group  to  the  surface  of  CNTS.  The  use  of  a  nonionic  surfactant  is  proposed  to  treat  CNT  surface  for  nanocomposite  fabrication,  which  can  act  as  a  bridge  between  CNTs  and  epoxy  matrix  without  disturbing  CNT  structure   or   introducing   defects.   Another   method   to   improve   interfacial   adhesion   is   by  mechanical  means  such  as  using  vibratory  methods  such  as  sonication.  Once  the  CNTs  are  will  dispersed,   those   epoxy   based   composites   will   fulfill   its   potential   of   exhibiting   excellent  mechanical,  electrical  and  thermal  properties.  

Page 12: FYP FINAL REPORT

9  |  P a g e  

Specific  Topic:  Dispersion  

a. Fabrication  methods  Regarding   the  original   prediction,   the   carbon  nanotube   and   epoxy   composite   should   possess  excellent   mechanical   properties   and   thermal   resistance   to   apply   as   an   effective   structural  member.   The   application   of   epoxy   matrix   reinforced   with   carbon   nanotube   into   the  construction   industry   is   still   premature   at   this   stage   due   to   several   shortcomings.   These  challenges  that  are  well  documented  laments  the  unexpected  result  of  an  ineffective  composite  as  a  result  of  poorly  dispersed  multiwalled  carbon  nanotube  and  weak  interfacial  bonding  in  the  epoxy  matrix  (Amal  and  Mahmoud  2007).    

Despite  the  aforementioned  shortcomings,  there  are  several  available  techniques  to  amend  the  properties  of  epoxy   resin.  The   rule  of   thumb  centres  on  a  homogenous  distribution  of  epoxy  resin   and   increase   the   interfacial   friction   with   epoxy   matrix.   The   first   method   is   the   direct  dispersion,   commonly   known   as   mechanical   method.   Since   the   composite   is   in   nano   scale,  devices   like   the   ultrasonicator   in   a   bath   or   probe   sonicator,   high   shear   mixing   in   a   solvent,  calendaring  and  ball  milling  can  be  used  as  a  combination  in  series  or  parallel.  These  tools  are  able   to   disentangle   CNTs   from   each   other   by   means   of   vibratory   energy   or   shear   force.  Although  this  technique  successfully  separate  the  fibres  from  each  other,  a  substantial  amount  of   energy   input   is   required   besides   resulting   in   damage   and   breakage   of   CNTs   into   smaller  lengths  (Sohel  and  Mangala,  2009).  

Chemical   methods   create   surface   functionalities   in   CNTs   to   promote   the   intermolecular  dispersion  by   improving   the  chemical  compatibility  or   interactions  with  a  polymer  or  solvent.  Functionalities   refer   to   the   creation   of   functional   group   on   the   CNT   surface   to   encourage  interfacial  interactions  (Young  Seok  and  Jae  Ryoun  2005).  Two  pertinent  issues  to  worry  about  when   chemical   methods   are   used   is   the   aggressive   nature   of   treatment   and   unexpected  interfacial  bonding  results.  The  most  effective  chemical  method  requires  concentrated  acids  in  the   oxidation  process.   Then   again,   the   corrosiveness   of   acids   generates   structural   defects   by  deteriorating  the  intrinsic  properties  of  CNTs,  creating  defects  and  reduces  the  aspect  ratios  of  CNT   which   result   in   degraded   mechanical   properties.   Replacing   acids   with   milder  functionalisation  processes  such  as  UV/ozone  treatment  or  plasmas  followed  by  amine,  silane  or  fluorine  treatments  limits  the  active  sites  on  the  CNT  surface,  leading  to  a  low  efficiency  of  functionalisation.  Milder   treatment   also  means   the   dispersibility   of   CNTs   in   the   composite   is  marginally  altered.    

Recently,  amino  functionalisation  is  devised  to  improve  the  dispersion  and  interfacial  adhesion  of   CNTs   with   polymer   resins.   Demonstrations   suggest   strong   correlations   between   amino-­‐functionalisation,  dispersion,  wettability,  interfacial  interaction  and  re-­‐agglomeration  behaviour  of   CNTs   and   the   corresponding   mechanical   and   thermo-­‐mechanical   properties   of  

Page 13: FYP FINAL REPORT

10  |  P a g e  

nanocomposites  (Peng-­‐Cheng,  Shan-­‐Yin  et  al.  2010).  To  sum  up,  several  targets  can  be  met  by  the  synthesis  of  amino  functionalisation.  The  uniform  dispersion  of  agglomerated  CNTs   in  the  epoxy  resin  are  stabilised  and  dispersed  CNTs  under  high  temperature  applied  for  curing  can  be  achieved  to  prevent  re-­‐agglomeration.    

Application   of   surfactants   and   polymer   coatings   provides   an   interesting   prospect   to   disperse  the  CNT  fibres.  Surfactant  treatment  is  widely  considered  as  the  best  choice  of  CNT  dispersion  because  the  physical  adsorption  seldom  damages  the  CNT  structure,  nor  disrupts  the  π-­‐bond  of  CNTs   and   thus,   the   electrical   properties   are   not   perturbed   (Sun,   Nicolosi   et   al.   2008).   Other  novel   method   in   progress   worth  mentioning   to   cure   the   epoxy   is   by   exposing   the   epoxy   to  gamma  radiation  and  electron  beam  in  order  to  improve  the  thermal  stability  and  yield  strength  (Nho,   Kang   et   al.   2004).   In   essence,   continuous   efforts   are   required   to   explore   various  treatment  methods   besides   improving   the   current   treatment   practices   to  make   the  CNT   and  epoxy  a  successful  composite.  

b. Polymers  to  disperse  CNT  The   literature   review   was   conducted   during   the   mid-­‐semester   break.   The   findings   of   the  literature  review  were  presented  in  point  form  in  a  presentable  manner.  Refer  to  Appendix  A  for  the  information  obtained.  

c. Uv-­‐Vis  to  monitor  dispersion  of  CNT  The   literature   review  was   conducted  during   the  beginning  of   semester  2.   The   findings  of   the  literature  review  were  presented   in  point  form  in  a  presentable  manner.  Refer  to  Appendix  B  for  the  information  obtained.  

   

Page 14: FYP FINAL REPORT

11  |  P a g e  

Experimental  Several   experiments   were   performed   throughout   the   year.   However,   out   of   the   four  experiments  performed,  only  one   is  selected  to  be  presented   in  a  conference  paper.  The  first  experiment,   Experiment   1   describes   the   effect   of   carbon   nanotube   geometry   on   dispersion.  Meanwhile,   Experiment   2   explains   the   effect   of   ultrasonication   and   amount   of   CNT   on   the  composite  mechanical  properties.    

Experiment  1:  Procedure  Experiment   1   investigates   the   effect   of   CNT   geometry   on   dispersion.   In   this   study,   the  multi  walled   carbon   nanotubes   (MWCNT)   used  was   supplied   by  NTP   Company.   Properties   of   used  CNTs  are   tabulated   in  Table  1  and  SEM   images  of  CNTs  are   illustrated   in  Figure  7.  Dispersing  agent  was  BYK9076,  an  Alkylammonium  salt  of  a  high  molecular  weight  copolymer  which  was  kindly  offered  by  Nuplex  Resins  Company.  The  solvent  was  ethanol  with  99%  purity  from  Grale  Scientific.  

Table  1:  CNTs  data  provided  by  manufacturer  

S-1020 L-1020 L-2040 L-4060 Main rang of diameter (nm) 10-20 10-20 20-40 40-60

Length (μm) 1-2 5-15 5-15 5-15 Purity (%) ≥ 95 ≥ 95 ≥ 95 ≥ 95 Ash (wt %) ≤ 0.2 ≤ 0.2 ≤ 0.2 ≤ 0.2 Special surface area (m2/g) 40-300 40-300 40-300 40-300

Amorphous carbon (%) < 3 < 3 < 3 < 3

 

 

Figure  7:  SEM  image  of  used  MWCNT  in  this  research  A:  S1020,  B:  L1020,  C:  L2040,  D:  L4060  

Page 15: FYP FINAL REPORT

12  |  P a g e  

All  solutions  were  prepared  by  mixing  315.8  mg  CNT  with  40  ml  ethanol  and  79  mg  surfactant  in  a  beaker.  Thereafter   the   resulting  solution  was  sonicated  about  1  hour  by  100  KJs  dispersion  energy.   All   sonication   processes   were   carried   out   with   a   horn   sonicator   (VCX 500W)   with   a  cylindrical   tip   (19   mm   end   cap   diameter).   The   output   power   was   fixed   at   around   25W.   To  prevent  rising  the  mixture  temperature  the  beaker  of  solution  was  placed   in  a  water-­‐ice  bath  during  sonication.  

UV–vis  measurements  were  carried  out  on  a  DR  5000  Spectrophotometer  with  a  wavelength  range  of  190  to  1100  nm  and  Wavelength  accuracy  of  ±  1  nm  in  Wavelength  Range  200–900  nm.  Samples  were  taken  after  the  sonication  process,  diluted  by  a  factor  of  35,  resulting  in  a  CNT  content  of  0.15  mg,  and  measured   in  the  UV–Vis  spectrometer.  All  absorbance   intensities  are  used  after  baseline   subtraction.   The   ethanol-­‐surfactant   solution   was   used   to   get   the   baseline   in  corresponding  measurements.  For  each  test  3  samples  were  tested  and  the  average  of  results  was  represented.  Scanning  electron  microscopy  (SEM)  morphology  was  studied  by  using  a  JEOL  7001F  field  emission  SEM  operating  at  5  kV.  To  prepare  SEM  sample  a  drop  of  CNT  dispersed  in  solution  was  deposited  on  a  silicon  substrate,  dried,  and  coated  with  1  nm  thickness  Pt.  

Experiment  1:  Results  and  discussion  

a. UV–vis  spectra  of  MWCNTs–BYK9076  solutions  UV-­‐vis  spectroscopy  correlates  intensity  of  absorption  of  UV-­‐visible  radiation  to  the  amount  of  substance  present  in  a  solution.  Individualized  CNTs  are  active  and  show  characteristics  bands  in  the  UV  region.  Therefore  measured  absorbance  at  specific  wavelength  can  be  related  to  their  degree   of   exfoliation(Grossiord,   Loos   et   al.   2007).   Bundled   CNTs   are   hardly   active   in   the  wavelength   region   between   200   and   900   nm  which   is  most   probably   because   of   carrier   are  tunnelling  between  the  nanotubes(Grossiord,  Loos  et  al.  2007).  Thus,  UV-­‐vis  is  an  ideal  method  to   monitor   the   dispersion   of   CNT   in   the   organic   and   inorganic   solvent.   However,   this  relationship  is  only  true  in  a  dilute  sample.  Dilution  decreases  the  concentration  of  CNT  so  that  the   light  will  not  be  completely  blocked  off  by   the   suspension.  The   spectrophotometer  has  a  light  source  emitting  light  covering  the  entire  visible  spectrum  and  the  near  ultraviolet,  covering  a  range  of  200nm  to  800nm.  Monochromatic  light  is  passed  through  the  sample.  The  incident  light   is   reduced   in   intensity   due   to   absorption,   reflection,   transmittance,   interference   and  scattering  of  light.  

Page 16: FYP FINAL REPORT

13  |  P a g e  

 

Figure  8:  Normalized  UV-­‐vis  adsorption  spectrum  of  L-­‐4060  CNT  in  ethanol  (43  µg  ml-­‐1)  at  power  of  25  W.  

 

Figure   8   illustrates   a   normalized   UV-­‐vis   spectrum   of   L-­‐4060   CNT   in   ethanol   (43   µg   ml-­‐1)   at  continuous  power  of  25  W.  As  can  be  seen,  the  evaluation  of  the  degree  of  dispersion  of  CNTs  in  ethanol  can  be  achieved  by  recording  the  UV-­‐vis  spectra  of  the  solution.  It  can  be  clearly  seen  that   the   sample   shows   a   peak   at   about   260nm,   confirming   the   presence   of   successfully  dispersed   CNTs.   At   this   point,   it   demonstrates   the   strong   absorption   by   dispersed   CNT.    Experiments   conducted   by   (Yu,   Grossiord   et   al.   2007)   also   reported   that   the   maximum  absorbance  occurs   at   the   same  wavelength  of   260nm.  Absorbance  decreases   steadily   due   to  scattering  in  the  lower  wavelength  range  after  peak  absorbance  at  about  260  nm.  In  this  case,  Rayleigh   scattering   occurs   because   the   size   of   CNTs   is   small   compared   to   the   radiation  wavelength.    

It  is  worth  pointing  out  that  CNTs  can  be  effectively  dispersed  in  ethanol  solution  by  π-­‐stacking  interaction.  The  ethanol   is  selected  over  many  other  solvents  to  homogeneously  disperse  the  CNT  due   to   some   factors.  Mainly,   the  ethanol   solvent  does  not   interfere  with   the  absorption  during  the  UV-­‐vis  test.  Moreover,  dispersion  can  be  attained  without  degrading  or  destroying  the  CNTs,  unlike  acid  treatment.  

It  was   reported   in   the   literature   (Grossiord,   Loos   et   al.   2007;   Yu,  Grossiord  et   al.   2007)   that,  during   the   sonication   process   the   relative   evolution   of   the   spectrum     underneath   area   is  proportional   to   the   relative   value   of   absorbance   at   a   specific   wavelength;   Therefore,   it   was  decided  to  specify  the  absorbance  maximum  about  260  nm  and  to  plot  this  value  as  a  function  of  the  total  sonication  energy  provided  to  disperse  CNT  in  solution.    

Page 17: FYP FINAL REPORT

14  |  P a g e  

a. Effect  of  CNT  diameter  on  dispersion  To  investigate  the  effect  of  CNT  diameter  on  quality  of  CNT  dispersion  in  media  three  CNTs  with  different  diameter  were  tested.  CNTs  diameter  ranges  were  10-­‐20  nm,  20-­‐40  nm  and  40-­‐60  nm.  All  CNTs  had  equal  length  range  of  5-­‐15  µm.  More  information  of  CNTs  is  tabulated  in  table  1.  CNTs  were  dispersed  in  BYK9076-­‐ethanol  solution  as  explained  in  experimental  section  and  as  prepared  solutions  were  used  for  UV-­‐vis  analysis.  

Figure  9  shows  that  the  smallest  CNT  diameter  of  10  to  20  nm  has  the  lowest  absorbance  which  is  about  0.18.  However,  the  biggest  CNT  diameter  of  40  to  60  nm  has  the  highest  absorbance  of  around  0.55  which  is  3-­‐fold  of  that  of  10  to  20  nm.  This  can  be  interpreted  as  a  CNT  with  small  diameter  is  poorly  dispersed.    Smaller  diameter  of  CNT  corresponds  to  a  large  surface  area.  This  means  CNT  with  smaller  diameter  requires  more  surfactant  molecules  to  achieve  stable  dispersion  compared  to  that  of  CNT  with  larger  diameter.  The  difficulty  in  dispersing  the  CNT  with  small  diameter  arises  from  the  stronger  van  der  Waals  attraction.  In  addition,  more  energy  is  necessary  to  overcome  the  CNT  interaction  energy  of  bundled  CNT  with  smaller  diameter  compared  to  that  of  Sample  with  the  larger  diameter  in  this  experiment.  Therefore,  with  the  constant  concentration  of  surfactant  and  energy  input  for  CNT  dispersion,  CNT  with  larger  diameter  can  be  easily  dispersed  compared  to  CNT  with  smaller  diameter.    

 

Figure  9:  Effect  of  CNT  diameter  on  CNT  dispersion  in  ethanol  solvent.  Normalized  height  of  the  UV-­‐vis  spectra  peak  located  around  260  nm  wavelengths  for  3  different  examined  CNT  diameters,  bigger  the  diameter  better  the  dispersion.  Top  left:  Evolution  of  the  colour  of  1%  wt  CNT  0.25%  wt  BYK9076  in  Ethanol  as  a  function  of  the  CNT  diameter.  A:  10-­‐20  nm,  B:  20-­‐40  nm  and  C:  40-­‐60  nm  (solutions  are  diluted  by  a  factor  of  35).  

This   statement   is   in   agreement  with   visual   observation   of   dispersed   CNT   solution   in   top   left  corner  of  Figure  3.  As  can  be  seen,  the  sample  A  which  is  10-­‐20  nm  CNT  solution  has  the  lightest  colour  and   the  sample  C  with  40-­‐60  nm  CNT  has   the  darkest   colour.   It  means   that  40-­‐60  nm  CNT  solution  has  more  suspended  CNT  nanoparticle  in  solution  compared  to  that  of  10-­‐20  nm  solution.  

Page 18: FYP FINAL REPORT

15  |  P a g e  

b. Effect  of  CNT  length  on  CNT  dispersion  The  influence  of  CNT  length  on  efficient  dispersion  of  CNT  has  been  investigated  in  this  section.  To  do  this,  two  CNTs  with  different  lengths  but  the  same  diameter  were  chosen.  CNTs  were  S-­‐1020  and  L-­‐1020  with  1-­‐2  µm  and  5-­‐15  µm  length  respectively  and  10-­‐20  nm  diameters.  More  information  of  CNTs  is  provided  in  table  1.  Figure  4  illustrates  normalized  height  of  the  UV-­‐vis  spectra   peak   located   around   260   nm  wavelength   for   2   different   examined   lengths,   and   also  evolution  of   the  colour  of  1%  wt  CNT  0.25%  wt  BYK9076   in  Ethanol  as  a   function  of   the  CNT  length.   As   can   be   seen,   both   1-­‐2   µm   and   5-­‐15   µm   length   CNTs   have   almost   the   same  absorbance   value.   It   testifies   that   CNT   length   has   not   significant   effect   on   quality   of   CNT  dispersion  in  matrix.  

 

Figure  10:  Effect  of  CNT  length  on  CNT  dispersion  in  ethanol  solvent.  Normalized  height  of  the  UV-­‐vis  spectra  peak  located  around  260  nm  wavelength  for  2  different  examined  lengths,  Top  right:  Evolution  of  the  colour  of  1%  wt  CNT  0.25%  wt  BYK9076  in  Ethanol  as  a  function  of  the  CNT  length.  Left:  1-­‐2  µm,  right:  5-­‐15  µm  (solutions  are  diluted  by  a  factor  of  35).    

Theoretically,  a  shorter  CNT  would  be  more  easily  dispersed  than  longer  CNT.  A  longer  CNT  will  provide  a  larger  area  for  entanglement.  However,  the  dispersion  results  in  Figure  10  shows  that  the  CNT  entanglement   is   negligible   and   the   surface   energy   is   dominant  obstacle   for   efficient  dispersion.  CNT  length  has  a  negligible  influence  on  CNT  dispersion  compared  to  diameter.  It  is  because;  the  total  Surface  area  to  volume  ratio  is  independent  from  CNT  length  but  proportion  to   inverse   CNT   radius.   Therefore,   for   a   constant   CNT   content,   CNT   length   variation   has   not  significant  effect  on  its  dispersion  efficiency.    

Equivalent  amounts  of  short  or   long  CNT  with  the  same  diameter  have  equal  surface  area.   In  the   other   hand,   the   equal   amounts   of   short   and   long   CNT  with   constant   diameter   have   the  

Page 19: FYP FINAL REPORT

16  |  P a g e  

same   interaction   energy   in   bundle.   Accordingly,   both   samples   need   the   same   value   of  dispersion  energy   to  break  down   the  CNT  bundle.  Therefore,   as   Figure  10  demonstrate,  with  the  same  provided  dispersion  energy  and  surfactant  short  and  long  CNT  have  almost  the  same  quality  of  dispersion   in   solvent.  However,   the  point  here   is   that  although  CNT   length  has  not  significant  effect  on  CNT  dispersion,  it  influences  the  aspect  ratio  of  CNT.  Since  CNT  aspect  ratio  plays  a  key  role  on  reinforcement  role  of  CNT  in  CNT  nanocomposites  it  is  still  essential  to  use  long  CNT  rather  than  short  CNT.    

 

Experiment  2:  Procedure  Three   additional   experiments   were   performed   to   investigate   the   factors   influencing   the  strength  of  the  CNT-­‐epoxy  composite.  The  variables  to  be  investigated  are  the  effect  of  shear  mixing,   ultrasonication   and   amount   of   CNT   (measured   in   terms   of   percent   mass)   on   the  mechanical   properties.   These   mechanical   properties   include   Young’s   Modulus   and   tensile  strength.  

Pure  epoxy  samples  (Epoxy:  Araldite  2011)  were  prepared  to  analyse  its  properties  as  a  resin.  Since  the  weakness  of  a  composite  lies  in  its  adhesive  layer,  the  importance  of  investigating  the  behavior  of  pure  epoxy   to   the  action  of   load  and   temperature   cannot  be  underestimated.   In  addition,  MWCNTs  with  large  diameter  within  the  range  of  40  to  60  nm  are  embedded  in  the  epoxy  matrix.  On  top  of  that,  the  scanning  electron  microscope  (SEM)  will  be  utilized  to  study  the  fracture  surface.    

Firstly,   either   pure   epoxy   or   CNT   composite   is   placed   into   a   mould   with   the   dimensions  stipulated   in   Table   2   to   obtain   a   dog-­‐bone   shaped   sample.   This   is   in   conformance   with   the  ASTM   International   Standards   and   the   dimensions   are   stated   in   Table   2.   Twenty-­‐four   similar  samples   were   prepared   to   perform   several   tests   later.   The   samples   underwent   high   speed  shear  mixer  and  ultrasonication  at  2000rpm  and  3500rpm  in  shear  mixer  as  well  as  15  and  30  minutes  in  the  ultrasonicator  respectively.    The  sample  was  left  to  cure.  Table  3  mentions  the  type  of  CNT  fibre  used.  

 

Table  2  Dimension  of  sample  Dimension   Length  (mm)  Thickness   3  Width   12.7  Length   100  Span   48-­‐50      

Page 20: FYP FINAL REPORT

17  |  P a g e  

Table  3:  CNTs  data  provided  by  manufacturer   S-1020 L-1020 L-2040 L-4060

Main rang of diameter (nm) 10-20 10-20 20-40 40-60

Length (μm) 1-2 5-15 5-15 5-15 Purity (%) ≥ 95 ≥ 95 ≥ 95 ≥ 95 Ash (wt %) ≤ 0.2 ≤ 0.2 ≤ 0.2 ≤ 0.2

Special surface area (m2/g) 40-300 40-300 40-300 40-300

Amorphous carbon (%) < 3 < 3 < 3 < 3

Upon  completion  of  the  fabrication  process,  the  samples  are  ready  to  be  tested  to  failure,  also  known   as   destructive   tests.   To   investigate   the   mechanical   properties   of   the   composite,   the  tensile  is  performed  whereby  the  ASTM  D  638-­‐10  standard  will  be  used  as  a  guide.  The  Bluehill  software  will  be  utilised  to  calibrate  the  strain  experienced  by  the  sample  when  it  is  loaded  to  failure.  The  fracture  surface  is  then  observed  by  SEM  at  room  temperature  and  cold  freeze  by  liquid  nitrogen.  

Experiment  2:  Results  and  discussion  

a.  High  speed  shear  mixing  Fluid   undergoes   shear  when   one   area   of   fluid   travels  with   a   different   velocity   relative   to   an  adjacent   area.   In   a   high   shear   mixer   the   tip   velocity,   or   speed   of   the   fluid   at   the   outside  diameter  of  the  rotor,  will  be  higher  than  the  velocity  at  the  centre  of  the  rotor,  and  it   is  this  velocity  difference  that  creates  shear.  This  shear  can  be  used  to  load  filler  such  as  nano  particle  in  matrix.  Figures  5  to  7  show  the  comparison  between  stress-­‐strain  curves  of  pure  epoxy  with  CNT-­‐epoxy  composite  using  high  shear  mixer.  

 

Figure  11  Tensile  stress-­‐strain  curve  of  CNT-­‐Epoxy  fabricated  by  shear  mixing  method  (left)  and  Effect  of  tensile  speed  on  tensile  curve  (right)  

Page 21: FYP FINAL REPORT

18  |  P a g e  

This  method   couldn’t   produce  efficient   CNT-­‐Epoxy   composite  due   to   the   limitation  of  mixing  speed.  The  pure  epoxy  demonstrates  a  ductile  behaviour  as  a  result  of  the  usage  of  an  overage  hardener.  The  composite  has  a  marginally  higher  Young’s  Modulus  than  pure  epoxy  which  may  be   the  direct   result  of   insufficient  mixing  speed.  Therefore,   shear  mixing  marginally   improves  the  CNT  elastic  modulus  of  CNT.    

 

b.  Ultrasonication:  Ultrasonication  generates  alternating  low-­‐pressure  and  high-­‐pressure  waves  in  liquids,  enabling  the   formation   and   violent   collapse   of   small   vacuum   bubbles.   The   cavitation   phenomenon  causes   high   speed   impinging   liquid   jets   and   strong   hydrodynamic   shear-­‐forces.   The   induced  effects   are   used   for   the   deagglomeration   and   milling   of   micrometre   and   nanometre-­‐size  materials   in  matrix.  Figure  8  compares  the  stress-­‐strain  curves  of  pure  epoxy  with  CNT-­‐epoxy  composite  using  ultrasonication.  

 

Figure  8:  Effect  of  sonication  energy  on  tensile  stress-­‐strain  curve  

Table  4  Effect  of  sonication  energy  on  mechanical  properties  of  CNT-­‐Epoxy  composite  

Dispersion  Energy  (KJ)  

Tensile  Stress  Mean  (Mpa)  

Ultimate  Strain  Mean  (%)  

Elastic  Modulus  Mean  (Mpa)  

60   37.91   13.52   1984.22  90   39.33   10.86   2031.18  120   38.17   11.26   1982.65  180   35.35   7.87   1897.09  

 

Generally,  all   tensile   stress-­‐strain  curves   show  that   the   stress   increases  with   strain   till   a  peak  value   is   reached   before   the   stress   decreases   slightly   until   it   reaches   a   plateau   as   the   load   is  

Page 22: FYP FINAL REPORT

19  |  P a g e  

continually   applied.   Similarly,   the   relationship   also   applies   to   the   dispersion   energy   versus  elastic  modulus.  The  optimal  dispersion  energy  is  60  kJ  whereby  the  composite  elastic  modulus  is   the   maximum.   At   this   stage,   energy   is   applied   mechanically   to   physically   disperse   the  nanotubes   from   its   agglomerated   bundles.   In   other   words,   larger   dispersion   energy  corresponds   to   a   higher   rate   of   dispersion.   However,   excessive   application   of   sonication  will  result   in   damage   and  breakage  of   CNTs   into   smaller   lengths   (Rana,  Alagirusamy  et   al.   2009).  Clearly,   degradation   in   tensile   stress   and   elastic   modulus   is   observed   when   the   dispersion  energy  is  greater  than  60  kJ.  

c.  Amount  of  CNT  The  tensile  test  is  performed  on  six  types  of  composite  with  varying  CNT  content  at  0,  0.1%,  0.3%,  0.5%,  1%  and  1.5%.  The  stress-­‐strain  curves  of  all  six  cases  are  summarized  in  Figure  9  while  their  corresponding  mechanical  property  values  are  stated  in  Table  4.    

 

 

Figure  9:  Effect  of  CNT  percentage  on  tensile  stress-­‐strain  curve  

Table  4:  Effect  of  CNT  percentage  on  mechanical  properties  of  CNT-­‐Epoxy  composite  

CNT  percentage  (%)  

Tensile  Stress  Mean  (Mpa)  

Ultimate  Strain  Mean  (%)  

Elastic  Modulus  Mean  (Mpa)  

0.0   35.25   13.23   1737.66  0.1   38.17   11.26   1982.65  0.3   35.9   4.74   2001.67  0.5   35.15   6.53   1853.66  1.0   30.1   2.4   1734.21  1.5   31.18   3.46   1878  

Page 23: FYP FINAL REPORT

20  |  P a g e  

The  mechanical  properties  of  the  composite   improve  as  the  amount  of  CNT  embedded  in  the  matrix  increases.  The  optimal  percentage  of  CNT  is  0.3%  in  this  experiment  and  the  results  are  supported   by   Yuanxin   et.   al.   (2007).   The   apparent   decrease   in  mechanical   properties   is   best  described   in   terms  of   the  molecular   interactions  between   the  CNT.   The  weak  Van  der  Waals  forces   of   attraction   between   the   carbon   nanotube   graphene   layers   will   deteriorate   the  properties   and   ductility   of   the  matrix   (Bai   2003).   The   carbon   nanotube   reinforcement   has   a  small  diameter  which  promotes  adhesion  with  the  epoxy  matrix  and  desirable  as  an   interface  for  stress   transfer.  However,   the  downside  of   this   large   total   surface  area   is   strong  attractive  forces  between  the  carbon  nanotube  fibres  are  induced  (Gojny,  Wichmann  et  al.  2005).  When  the   amount  of   CNT   is   increased,  more  CNT   fibres   are  present   to   form  bundles   via  molecular  attraction.  This  reagglomeration  scenario  is  not  ideal  as  the  CNT  can  experience  a  failure  mode  called  pull-­‐out  of  fibres.    Gojny  et.  al.  also  experienced  the  same  phenomenon  and  concluded  that   the   discrepancy   is   a   result   of   the   variation   in   quality   of   dispersion   in   all   nanocomposite  samples   after   performing   sonication   (2005).   The   upper   limit   to   the   addition   of   CNT   is   4%  because   the  nanotube   content  would  be   saturated   and   this   leads   to   a   significant   increase   in  viscosity  that  causes  void  defects  in  the  composite  (Zhu,  Peng  et  al.  2004).  

Conclusion  In   the   beginning   of   the   year,   a   comprehensive   literature   review   and   experiments  were   conducted   to  study   the   properties,   problems   and   potential   of   carbon   nanotubes   (CNT).   Despite   its   exceptional  mechanical,   thermal   and   electrical   properties,   agglomeration   is   the   biggest   problem   that   limits   the  mechanical   properties   of   CNT.   To   overcome   the   string   intermolecular   forces,   dispersion   during  fabrication  is  necessary  to  enhance  the  mechanical  properties.  Experiments  using  chemical  and  physical  dispersion  were  performed  to  achieve  this  goal.  Several  experiments  were  conducted  to  investigate  the  possible  factors  that  may  improve  dispersion  in  CNT  and  ultimately  improve  its  mechanical  properties.    

The  second  semester  is  focused  on  the  effect  of  CNT  geometry  on  efficiency  of  CNT  dispersion  in  media.  Results   show   that   CNT   diameter   has   significant   influence   on   quality   of   CNT   dispersion   in  media,   the  bigger  diameter  the  better  CNT  exfoliation  in  matrix.  In  contrast,  CNT  length  has  insignificant  influence  on  quality  of  CNT  dispersion  in  matrix.  In  mathematical  terms,  the  total  Surface  area  to  volume  ratio  is  independent   from   CNT   length   but   proportional   to   inverse   CNT   radius.   Therefore,   for   a   constant   CNT  content,   CNT   length   variation   converse   to   radius   variation   has   no   significant   effect   on   its   dispersion  efficiency.  

   

Page 24: FYP FINAL REPORT

21  |  P a g e  

References  1. Amal,  M.  K.,  Esawi  and  M.  Mahmoud,  Farag  (2007).  "Carbon  Nanotube  Reinforced  Composites:  

Potential  and  Current  Challenges."  Composites  Elsevier(28):  8.  2. Bai,  J.  (2003).  "Evidence  of  the  reinforcement  role  of  chemical  vapour  deposition  multi-­‐walled  

carbon  nanotubes  in  a  polymer  matrix."  Carbon  41(6):  1325-­‐1328.  3. Fukui,  N.,  A.  Taninaka,  et  al.  (2007).  "Placing  and  Imaging  Individual  Carbon  Nanotubes  on  Cu  

(111)  Clean  Surface  Using  In  Situ  Pulsed-­‐Jet  Deposition-­‐STM  Technique."  Journal  of  Nanoscience  and  Nanotechnology  7(12):  4267-­‐4271.  

4. Gojny,  F.  H.,  M.  H.  G.  Wichmann,  et  al.  (2005).  "Influence  of  different  carbon  nanotubes  on  the  mechanical  properties  of  epoxy  matrix  composites  -­‐  A  comparative  study."  Composites  Science  and  Technology  65(15-­‐16  SPEC.  ISS.):  2300-­‐2313.  

5. Grossiord,  N.,  J.  Loos,  et  al.  (2007).  "Conductive  carbon-­‐nanotube/polymer  composites:  Spectroscopic  monitoring  of  the  exfoliation  process  in  water."  Composites  Science  and  Technology  67(5):  778-­‐782.  

6. Jin,  Z.,  G.  Qipeng,  et  al.  (2010).  "Thermal  and  Mechanical  Properties  of  a  Dendritic  Hydroxyl-­‐Functional  Hyperbranched  Polymer  and  Tetrafunctional  Epoxy  Resin  Blends."  Journal  of  Polymer  Science,  Part  B:  Polymer  Physics  48(4):  417-­‐424.  

7. Jones,  J.  M.,  Malcolm,  R.  P.,  Thoma,  K.  M.  and  Bottrell,  S.  H.,  (1996),  Anode  deposit  formed  during  the  carbon-­‐arc  evaporation  of  graphite  for  the  synthesis  of  fullerenes  and  carbon  nanotubes,  Vol.  34,  Pergamon  Press  Inc,  Tarrytown,  NY,  United  States  

8. Coll,  B.F.,  Sathrum,  P.,  Aharonov,  R.  and  Tamor,  M.A.,  (1992)  Diamond-­‐like  carbon  films  synthesized  by  cathodic  arc  evaporation,  Thin  Solid  Films,  v  209,  n  2,  pp.  165-­‐173  

9. Nikolaev  P.,Bronikowski,  M.J.,Bradley  R.K.,  Fohmund  F.,Colbert  D.T.,Smith  K.A.  and  Smalley,  R.E.,  (1999)  Gas-­‐phase  catalytic  growth  of  single-­‐walled  carbon  nanotubes  from  carbon  monoxide,  Chemical  Physics  Letters,313(1-­‐2):91–7  

10. Ebbesen,  T.W.,  (1997),  Carbon  nanotubes  :  preparation  and  properties,  Boca  Raton  :  CRC  Press,  pp.  225-­‐246  

11. Kim,  P.,  Shi,  L.,  Majumdar,  A.  and  McEuen,  P.L.,  (2001),  Thermal  transport  measurements  of  individual  multiwalled  nanotubes.  Phys.  Rev.  Lett.,  8721  

12. Hone,  J.,  (2004)  Carbon  nanotube:  thermal  properties,    Dekker  Encyclopedia  of  Nanoscience  and  Nanotechnology  p  603  

13. Pipes  R.B.,  Frankland  S.J.,  Hubert  P.  and  Saether  E.,(2003),  Self-­‐consistent  properties  of  the  SWCN  and  hexagonal  arrays  as  composite  reinforcements.  Compos  Sci  Technol,  63(10):1349–58  

14. Makar,  J.M.  and  Beaudoin,  J.J.,  (2003),  Carbon  nanotubes  and  their  application  in  the  construction  industr  y,  NRC-­‐CNC  

15. Harris,  P.J.,  2009,  Carbon  nanotube  science:  synthesis,  properties  and  applications,  Cambridge,  pp.  108-­‐141  

16. Thostenson  E.  T.,  Ren  Z.F.  and  Chou,  T.W.,  (2001),  Advances  in  the  science  and  technology  of  Carbon  nanotubes  and  their  composites:  a  review,  Composite  science  and  technology,  pp.  1899-­‐1912  

Page 25: FYP FINAL REPORT

22  |  P a g e  

 17. Loos,  M.  R.,  J.  Yang,  et  al.  (2012).  "Effect  of  block-­‐copolymer  dispersants  on  properties  of  carbon  

nanotube/epoxy  systems."  Composites  Science  and  Technology  72(4):  482-­‐488.  18. Montazeri,  A.,  N.  Montazeri,  et  al.  (2011).  "Thermo-­‐mechanical  properties  of  multi-­‐walled  

carbon  nanotube  (mwcnt)/epoxy  composites."  International  Journal  of  Polymer  Analysis  and  Characterization  16(3):  199-­‐210.  

19. Nho,  Y.  C.,  P.  H.  Kang,  et  al.  (2004).  The  characteristics  of  epoxy  resin  cured  by  -­‐ray  and  E-­‐beam,  Elsevier  Ltd.  

20. Peng-­‐Cheng,  M.,  M.  Shan-­‐Yin,  et  al.  (2010).  "Dispersion,  Interfacial  Interaction  and  Re-­‐agglomeration  of  Functionalized  Carbon  Nanotubes  in  Epoxy  Composites."  Composites  Elsevier(48):  11.  

21. Rana,  S.,  R.  Alagirusamy,  et  al.  (2009).  "A  review  on  carbon  epoxy  nanocomposites."  Journal  of  Reinforced  Plastics  and  Composites  28(4):  461-­‐487.  

22. S.  Iijima  (1991).  "Helical  microtubules  of  graphitic  carbon."  Nature  354(6348):  56-­‐58.  23. Sun,  L.,  G.  Warren,  et  al.  (2008).  "Mechanical  properties  of  surface-­‐functionalized  SWCNT/epoxy  

composites."  Carbon  46(2):  320-­‐328.  24. Sun,  Z.,  V.  Nicolosi,  et  al.  (2008).  "Quantitative  evaluation  of  surfactant-­‐stabilized  single-­‐walled  

carbon  nanotubes:  Dispersion  quality  and  its  correlation  with  zeta  potential."  Journal  of  Physical  Chemistry  C  112(29):  10692-­‐10699.  

25. Sohel,  R.,  A.  R.,  and  J.  Mangala,  (2009).  A  Review  on  Carbon  Epoxy  Nanocomposites.  Journal  of  Reinforced  Plastics  and  Composites.  

26. Bai,  (2003),  Evidence  of  the  reinforcement  role  of  chemical  vapour  deposition  multi-­‐walled  carbon  nanotubes  in  a  polymer  matrix  

27. K.T.  Lau,  (2005)  Composites  Science  and  Technology  65  719–725  28. F.H.  Gojny  et  al.  (2005),  Composites  Science  and  Technology  65  2300–2313  29. Mechanical  and  Tribological  Properties  of  Epoxy-­‐CNT  Nanocomposite  Coatings    30. H.  R.  Le,  A.  Howson  and  M.  Ramanauskas  Mechanical  and  Tribological  Properties  of  

Epoxy-­‐CNT  Nanocomposite  Coatings  31. John  Kathi,  Kyong-­‐Yop  Rhee,  Joong  Hee  Lee,  2009,  Effect  of  chemical  functionalization  of  

multi-­‐walled  carbon  nanotubes  with  3-­‐aminopropyltriethoxysilane  on  mechanical  and  morphological  properties  of  epoxy  nanocomposites  

32. Lan-­‐Hui  Sun,  Zoub  eida  Ounaies,  Xin-­‐Lin  Gao,  Casey  A.  Whalen,  and  Zhen-­‐Guo  Yang  (2011)  Prepar  at  ion,  Char  acter  i  zat  i  on,  a  nd  Mo  deling  of  C  ar  b  on  Nanofib  er/Ep  oxy  Nanocomp  osite  s  

33. Philip,  M.  and  Bolton,  W,  2002,  “Technology  of  engineering  materials”,  Butterworth-­‐Heinemann,  Great  Britain,  p.  296  

34. A.R.,  Jeefferie,  M.Y.  Yuhazri,  O.  NooririnahM.M.  Haidir,  Haeryip  Sihombing,  M.A.,  Mohd  Salleh,    N.A.,  Ibrahim,    THERMOMECHANICAL  AND  MORPHOLOGICAL  INTERRELATIONSHIP  OF  POLYPROPYLENE-­‐MUTIWALLED  CARBON  NANOTUBES  (PP/MWCNTs)  NANOCOMPOSITES,  International  Journal  of  Basic  &  Applie  d  Sciences  IJBAS-­‐IJENS  Vol:  10  No:04  

35. Vaisman,  L.,  H.  D.  Wagner,  et  al.  (2006).  "The  role  of  surfactants  in  dispersion  of  carbon  nanotubes."  Advances  in  Colloid  and  Interface  Science  128-­‐130:  37-­‐46.  

Page 26: FYP FINAL REPORT

23  |  P a g e  

36. Wladyka-­‐Przybylak,  M.,  D.  Wesolek,  et  al.  (2011).  "Functionalization  effect  on  physico-­‐mechanical  properties  of  multi-­‐walled  carbon  nanotubes/epoxy  composites."  Polymers  for  Advanced  Technologies  22(1):  48-­‐59.  

37. Xiao-­‐Lin,  X.,  M.  Yiu-­‐Wing,  et  al.  (2005).  "Dispersion  and  alignment  of  carbon  nanotubes  in  polymer  matrix:  A  review."  Materials  Science  and  Engineering  49:  24.  

38. Young  Seok,  S.  and  Y.  Jae  Ryoun  (2005).  "Influence  of  dispersion  states  of  carbon  nanotubes  on  physical  properties  of  epoxy  nanocomposites."  Carbon  43(7):  1378-­‐1385.  

39. Yu,  J.,  N.  Grossiord,  et  al.  (2007).  "Controlling  the  dispersion  of  multi-­‐wall  carbon  nanotubes  in  aqueous  surfactant  solution."  Carbon  45(3):  618-­‐623.  

40. Yuanxin,  Z.,  F.  Pervin,  et  al.  (2007).  "Experimental  study  on  the  thermal  and  mechanical  properties  of  multi-­‐walled  carbon  nanotube-­‐reinforced  epoxy."  Materials  Science  &amp;  Engineering  A  (Structural  Materials:  Properties,  Microstructure  and  Processing)  452-­‐453:  657-­‐664.  

41. Zheng,  Y.,  A.  Zhang,  et  al.  (2006).  "Functionalized  effect  on  carbon  nanotube/epoxy  nano-­‐composites."  Materials  Science  &amp;  Engineering  A  (Structural  Materials:  Properties,  Microstructure  and  Processing)  435-­‐436:  145-­‐149.  

42. Zhu,  J.,  H.  Peng,  et  al.  (2004).  "Reinforcing  epoxy  polymer  composites  through  covalent  integration  of  functionalized  nanotubes."  Advanced  Functional  Materials  14(7):  643-­‐648.  

43. Zhu,  J.,  H.  Peng,  et  al.  (2004).  "Reinforcing  epoxy  polymer  composites  through  covalent  integration  of  functionalized  nanotubes."  Advanced  Functional  Materials  14(7):  643-­‐648.  

 

Page 27: FYP FINAL REPORT

24  |  P a g e  

Appendix  A:  Conference  Paper  

 

 

 

   

Page 28: FYP FINAL REPORT

25  |  P a g e  

Appendix  B:  Project  Management  Statement  The  project  was  conducted  in  a  continuous  manner  beginning  from  the  first  week  of  the  first  semester  until  the  end  of  September  whereby  the  conference  paper  was  completed.  This  was  managed  effectively  by  prioritisation  of  tasks  with  the  guidance  of  the  lecturer,  Dr.  Wen  Hui  Duan.      The   literature   review   was   performed   individually   with   the   supervisor   providing   a   set   of   compulsory  reading  materials  to  be  reported  on  a  weekly  basis.  Software  such  as  JabRef,  Lyx  and  CTex  were  used  to  present  the  findings  in  a  systematic  and  organised  form.  On  the  other  hand,  I  assisted  the  supervisor  to  perform  the  laboratory  experiments.    In  the  first  semester,  the  first  two  weeks  were  utilised  to  familiarise  myself  with  the  topic  at  hand.  The  next   3  weeks   (Week   3   to  week   6)  were   spent   at   the   laboratory   performing   experiments.  During   that  time  period,  a  total  of  about  10  hours  were  spent  at  the  laboratory.  Tensile  tests  and  fabrication  of  CNT  epoxy   specimens   were   carried   out.   A   poster   presentation   was   delivered   Week   4   to   understand   the  requirements  of  the  task  and  begin  scoping  the  project.  In  addition,  the  literature  review  regarding  the  general  topic  of  the  “Properties,  Problems  and  Potential  of  CNT”  took  place  in  a  continuous  manner  till  the  end  of  the  semester.  At  the  end  of  the  semester  in  week  12,  a  preliminary  report  was  submitted  to  monitor  the  progress.    The  holidays  were  well-­‐spent  as  I  channelled  my  time  and  energy  on  the  final  year  project.  During  the  mid-­‐semester  break,  duration  of  four  weeks  was  set  aside  to  identify  the  specific  topic  for  the  final  year  project  and  conference  paper  submission.    As  a  result,  the  topic  of  “Fabrication  and  Characterisation  of  CNT  Epoxy  Nanocomposites:  Effect  of   the  Geometry  of  Carbon  Nanotubes”  was  selected.  As  shown   in  Appendix  A  and  B,  the  mid-­‐term  break  was  used  to  present  the  findings  in  a  presentable  manner.      During  the  second  semester,  the  first  three  weeks  was  used  to  perform  experiments  at  the  laboratory  to  investigate  the  effect  of  geometry  on  CNT.  About  12  hours  were  spent  at  the   laboratory  to  obtain  the  results.  The  remaining  time  until   the  end  of  September  was  dedicated  to  write  a  conference  paper  as  shown   in  Appendix  C.  Based  on   the   compiled  notes  gathered   throughout   the   semester,   the   literature  review   findings  were   applied   as   background   knowledge   and   references   to   help  write   the   conference  paper.      Overall,   the   unit   certainly   helped  me   to   juggle   and  manage  my   time   for   research   and   coursework.   In  addition,  the  time  used  during  the  mid-­‐term  and  mid  semester  breaks  allowed  ne  to  use  my  time  in  a  much   more   effective   manner.   As   a   result,   the   conference   paper   managed   to   be   produced   ahead   of  schedule.  Moreover,  a  full  day  (11  hours)  per  week  was  set  aside  to  familiarise  myself  with  the  topic  by  reading  the  conference  papers  in  the  database.