30
1 1 10 11 20 I/CLK I I I I I I I I GND Vcc I/O/Q I/O/Q I/O/Q I/O/Q I/O/Q I/O/Q I/O/Q I/O/Q I/OE 5 15 FUNCTIONAL BLOCK DIAGRAM FEATURES PIN CONFIGURATION HIGH PERFORMANCE E 2 CMOS ® TECHNOLOGY 3.5 ns Maximum Propagation Delay — Fmax = 250 MHz 3.0 ns Maximum from Clock Input to Data Output — UltraMOS ® Advanced CMOS Technology 50% to 75% REDUCTION IN POWER FROM BIPOLAR 75mA Typ Icc on Low Power Device 45mA Typ Icc on Quarter Power Device ACTIVE PULL-UPS ON ALL PINS •E 2 CELL TECHNOLOGY Reconfigurable Logic Reprogrammable Cells 100% Tested/Guaranteed 100% Yields High Speed Electrical Erasure (<100ms) 20 Year Data Retention EIGHT OUTPUT LOGIC MACROCELLS Maximum Flexibility for Complex Logic Designs Programmable Output Polarity Also Emulates 20-pin PAL ® Devices with Full Function/Fuse Map/Parametric Compatibility PRELOAD AND POWER-ON RESET OF ALL REGISTERS 100% Functional Testability APPLICATIONS INCLUDE: DMA Control State Machine Control High Speed Graphics Processing Standard Logic Speed Upgrade ELECTRONIC SIGNATURE FOR IDENTIFICATION DESCRIPTION The GAL16V8D, at 3.5 ns maximum propagation delay time, com- bines a high performance CMOS process with Electrically Eras- able (E 2 ) floating gate technology to provide the highest speed performance available in the PLD market. High speed erase times (<100ms) allow the devices to be reprogrammed quickly and ef- ficiently. The generic architecture provides maximum design flexibility by allowing the Output Logic Macrocell (OLMC) to be configured by the user. An important subset of the many architecture configu- rations possible with the GAL16V8 are the PAL architectures listed in the table of the macrocell description section. GAL16V8 devices are capable of emulating any of these PAL architectures with full function/fuse map/parametric compatibility. Unique test circuitry and reprogrammable cells allow complete AC, DC, and functional testing during manufacture. As a result, Lattice Semiconductor guarantees 100% field programmability and functionality of all GAL products. In addition, 100 erase/write cycles and data retention in excess of 20 years are guaranteed. PLCC GAL 16V8 DIP GAL16V8 Top View 2 20 I/CLK I I I I I I I I GND Vcc I/O/Q I/O/Q I/O/Q I/O/Q I/O/Q I/O/Q I/O/Q I/O/Q I/OE 4 6 8 9 11 13 14 16 18 I/CLK I I/O/Q I I/O/Q I I/O/Q I I/O/Q I I/O/Q I I/O/Q I I/O/Q I I/O/Q CLK 8 8 8 8 8 8 8 8 OE OLMC OLMC OLMC OLMC OLMC OLMC OLMC OLMC PROGRAMMABLE AND-ARRAY (64 X 32) I/OE GAL16V8 High Performance E 2 CMOS PLD Generic Array Logic™ Copyright © 1996 Lattice Semiconductor Corp. All brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice. LATTICE SEMICONDUCTOR CORP., 5555 Northeast Moore Ct., Hillsboro, Oregon 97124, U.S.A. 1996 Data Book Tel. (503) 681-0118; 1-888-ISP-PLDS; FAX (503) 681-3037; http://www.latticesemi.com 16v8_02

GAL16V8 - AppleLogicand functionality of all GAL products. In addition, 100 erase/write cycles and data retention in excess of 20 years are guaranteed. PLCC GAL 16V8 DIP GAL16V8 Top

  • Upload
    others

  • View
    1

  • Download
    0

Embed Size (px)

Citation preview

  • 1

    1

    10 11

    20I/CLK

    I

    I

    I

    I

    I

    I

    I

    I

    GND

    Vcc

    I/O/Q

    I/O/Q

    I/O/Q

    I/O/Q

    I/O/Q

    I/O/Q

    I/O/Q

    I/O/Q

    I/OE

    5

    15

    FUNCTIONAL BLOCK DIAGRAMFEATURES

    PIN CONFIGURATION

    • HIGH PERFORMANCE E2CMOS® TECHNOLOGY— 3.5 ns Maximum Propagation Delay— Fmax = 250 MHz— 3.0 ns Maximum from Clock Input to Data Output— UltraMOS ® Advanced CMOS Technology

    • 50% to 75% REDUCTION IN POWER FROM BIPOLAR— 75mA Typ Icc on Low Power Device— 45mA Typ Icc on Quarter Power Device

    • ACTIVE PULL-UPS ON ALL PINS

    • E2 CELL TECHNOLOGY— Reconfigurable Logic— Reprogrammable Cells— 100% Tested/Guaranteed 100% Yields— High Speed Electrical Erasure (

  • Specifications GAL16V8

    1996 Data Book2

    GAL16V8 ORDERING INFORMATION

    Commercial Grade Specifications

    PART NUMBER DESCRIPTION

    Blank = CommercialI = Industrial

    Grade

    PackagePowerL = Low PowerQ = Quarter Power

    Speed (ns)

    XXXXXXXX XX X X X

    Device Name

    _

    P = Plastic DIPJ = PLCC

    GAL16V8DGAL16V8CGAL16V8B

    )sn(dpT )sn(usT )sn(ocT )Am(ccI #gniredrO egakcaP

    5.3 5.2 0.3 511 JL3-D8V61LAG CCLPdaeL-02

    5 3 4 511 PL5-C8V61LAG PIDcitsalPniP-02

    511 8V61LAG 5-C JL CCLPdaeL-02

    5.7 7 5 1 51 8V61LAG C PL7- PIDcitsalPniP-02

    1 51 8V61LAG C JL7- CCLPdaeL-02

    511 PL7-B8V61LAG PIDcitsalPniP-02

    511 JL7-B8V61LAG CCLPdaeL-02

    01 01 7 511 PL01-B8V61LAG PIDcitsalPniP-02

    511 JL01-B8V61LAG CCLPdaeL-02

    01 01 5.7 55 PQ01-D8V61LAG PIDcitsalPniP-02

    55 JQ01-D8V61LAG CCLPdaeL-02

    51 21 01 55 PQ51-D8V61LAG PQ51-B8V61LAGro PIDcitsalPniP-02

    55 JQ51-D8V61LAG ro JQ51-B8V61LAG CCLPdaeL-02

    09 PL51-D8V61LAG ro PL51-B8V61LAG PIDcitsalPniP-02

    09 JL51-D8V61LAG ro JL51-B8V61LAG CCLPdaeL-02

    52 51 21 55 PQ52-D8V61LAG ro PQ52-B8V61LAG PIDcitsalPniP-02

    55 JQ52-D8V61LAG ro JQ52-B8V61LAG CCLPdaeL-02

    09 PL52-D8V61LAG ro PL52-B8V61LAG PIDcitsalPniP-02

    09 JL52-D8V61LAG ro JL52-B8V61LAG CCLPdaeL-02

    )sn(dpT )sn(usT )sn(ocT )Am(ccI #gniredrO egakcaP

    5.7 7 5 031 IPL7-C8V61LAG PIDcitsalPniP-02

    031 IJL7-C8V61LAG CCLPdaeL-02

    01 01 7 031 IPL01-B8V61LAG PIDcitsalPniP-02

    031 IJL01-B8V61LAG CCLPdaeL-02

    51 21 01 031 IPL51-D8V61LAG ro IPL51-B8V61LAG PIDcitsalPniP-02

    031 IJL51-D8V61LAG ro IJL51-B8V61LAG CCLPdaeL-02

    02 31 11 56 IPQ02-D8V61LAG ro IPQ02-B8V61LAG PIDcitsalPniP-02

    56 IJQ02-D8V61LAG ro IJQ02-B8V61LAG CCLPdaeL-02

    52 51 21 56 IPQ52-D8V61LAG ro IPQ52-B8V61LAG PIDcitsalPniP-02

    56 IJQ52-D8V61LAG ro IJQ52-B8V61LAG CCLPdaeL-02

    031 IPL52-D8V61LAG ro IPL52-B8V61LAG PIDcitsalPniP-02

    031 IJL52-D8V61LAG ro IJL52-B8V61LAG CCLPdaeL-02

    Industrial Grade Specifications

  • Specifications GAL16V8

    1996 Data Book3

    OUTPUT LOGIC MACROCELL (OLMC)

    The following discussion pertains to configuring the output logicmacrocell. It should be noted that actual implementation is ac-complished by development software/hardware and is completelytransparent to the user.

    There are three global OLMC configuration modes possible:simple , complex , and registered . Details of each of thesemodes are illustrated in the following pages. Two global bits, SYNand AC0, control the mode configuration for all macrocells. TheXOR bit of each macrocell controls the polarity of the output in anyof the three modes, while the AC1 bit of each of the macrocellscontrols the input/output configuration. These two global and 16individual architecture bits define all possible configurations in aGAL16V8 . The information given on these architecture bits isonly to give a better understanding of the device. Compiler soft-ware will transparently set these architecture bits from the pindefinitions, so the user should not need to directly manipulatethese architecture bits.

    The following is a list of the PAL architectures that the GAL16V8can emulate. It also shows the OLMC mode under which theGAL16V8 emulates the PAL architecture.

    PAL Architectures GAL16V8Emulated by GAL16V8 Global OLMC Mode

    16R8 Registered16R6 Registered16R4 Registered

    16RP8 Registered16RP6 Registered16RP4 Registered

    16L8 Complex16H8 Complex16P8 Complex

    10L8 Simple12L6 Simple14L4 Simple16L2 Simple10H8 Simple12H6 Simple14H4 Simple16H2 Simple10P8 Simple12P6 Simple14P4 Simple16P2 Simple

    COMPILER SUPPORT FOR OLMC

    Software compilers support the three different global OLMCmodes as different device types. These device types are listedin the table below. Most compilers have the ability to automati-cally select the device type, generally based on the register usageand output enable (OE) usage. Register usage on the deviceforces the software to choose the registered mode. All combina-torial outputs with OE controlled by the product term will force thesoftware to choose the complex mode. The software will choosethe simple mode only when all outputs are dedicated combinatorialwithout OE control. The different device types listed in the tablecan be used to override the automatic device selection by thesoftware. For further details, refer to the compiler softwaremanuals.

    When using compiler software to configure the device, the usermust pay special attention to the following restrictions in eachmode.

    In registered mode pin 1 and pin 11 are permanently configuredas clock and output enable, respectively. These pins cannot beconfigured as dedicated inputs in the registered mode.

    In complex mode pin 1 and pin 11 become dedicated inputs anduse the feedback paths of pin 19 and pin 12 respectively. Becauseof this feedback path usage, pin 19 and pin 12 do not have thefeedback option in this mode.

    In simple mode all feedback paths of the output pins are routedvia the adjacent pins. In doing so, the two inner most pins ( pins15 and 16) will not have the feedback option as these pins arealways configured as dedicated combinatorial output.

    Registered Complex Simple Auto Mode Select

    ABEL P16V8R P16V8C P16V8AS P16V8CUPL G16V8MS G16V8MA G16V8AS G16V8LOG/iC GAL16V8_R GAL16V8_C7 GAL16V8_C8 GAL16V8OrCAD-PLD "Registered"1 "Complex"1 "Simple"1 GAL16V8APLDesigner P16V8R2 P16V8C2 P16V8C2 P16V8ATANGO-PLD G16V8R G16V8C G16V8AS3 G16V8

    1) Used with Configuration keyword.2) Prior to Version 2.0 support.3) Supported on Version 1.20 or later.

  • Specifications GAL16V8

    1996 Data Book4

    REGISTERED MODE

    In the Registered mode, macrocells are configured as dedicatedregistered outputs or as I/O functions.

    Architecture configurations available in this mode are similar tothe common 16R8 and 16RP4 devices with various permutationsof polarity, I/O and register placement.

    All registered macrocells share common clock and output enablecontrol pins. Any macrocell can be configured as registered orI/O. Up to eight registers or up to eight I/O's are possible in this

    mode. Dedicated input or output functions can be implementedas subsets of the I/O function.

    Registered outputs have eight product terms per output. I/O'shave seven product terms per output.

    The JEDEC fuse numbers, including the User Electronic Signature(UES) fuses and the Product Term Disable (PTD) fuses, areshown on the logic diagram on the following page.

    Registered Configuration for Registered Mode

    - SYN=0.- AC0=1.- XOR=0 defines Active Low Output.- XOR=1 defines Active High Output.- AC1=0 defines this output configuration.- Pin 1 controls common CLK for the registered outputs.- Pin 11 controls common OE for the registered outputs.- Pin 1 & Pin 11 are permanently configured as CLK & OE.

    Combinatorial Configuration for Registered Mode

    - SYN=0.- AC0=1.- XOR=0 defines Active Low Output.- XOR=1 defines Active High Output.- AC1=1 defines this output configuration.- Pin 1 & Pin 11 are permanently configured as CLK & OE.

    Note: The development software configures all of the architecture control bits and checks for proper pin usage automatically.

    D Q

    Q

    CLK

    OE

    XOR

    XOR

  • Specifications GAL16V8

    1996 Data Book5

    REGISTERED MODE LOGIC DIAGRAM

    DIP & PLCC Package Pinouts

    1

    2

    3

    4

    5

    6

    7

    8

    9

    11

    12

    13

    14

    15

    16

    17

    18

    0000

    0224

    0256

    0480

    0512

    0736

    0768

    0992

    1024

    1248

    1280

    1504

    1536

    1760

    1792

    2016

    19

    XOR-2048AC1-2120

    XOR-2049AC1-2121

    XOR-2050AC1-2122

    XOR-2051AC1-2123

    XOR-2052AC1-2124

    XOR-2053AC1-2125

    XOR-2054AC1-2126

    XOR-2055AC1-2127

    2824201612840 PTD2128

    2191OE

    OLMC

    OLMC

    OLMC

    OLMC

    OLMC

    OLMC

    OLMC

    OLMC

    SYN-2192AC0-2193

  • Specifications GAL16V8

    1996 Data Book6

    COMPLEX MODEIn the Complex mode, macrocells are configured as output onlyor I/O functions.

    Architecture configurations available in this mode are similar tothe common 16L8 and 16P8 devices with programmable polarityin each macrocell.

    Up to six I/O's are possible in this mode. Dedicated inputs oroutputs can be implemented as subsets of the I/O function. Thetwo outer most macrocells (pins 12 & 19) do not have input ca-

    pability. Designs requiring eight I/O's can be implemented in theRegistered mode.

    All macrocells have seven product terms per output. One productterm is used for programmable output enable control. Pins 1 and11 are always available as data inputs into the AND array.

    The JEDEC fuse numbers including the UES fuses and PTD fusesare shown on the logic diagram on the following page.

    Note: The development software configures all of the architecture control bits and checks for proper pin usage automatically.

    Combinatorial I/O Configuration for Complex Mode

    - SYN=1.- AC0=1.- XOR=0 defines Active Low Output.- XOR=1 defines Active High Output.- AC1=1.- Pin 13 through Pin 18 are configured to this function.

    Combinatorial Output Configuration for Complex Mode

    - SYN=1.- AC0=1.- XOR=0 defines Active Low Output.- XOR=1 defines Active High Output.- AC1=1.- Pin 12 and Pin 19 are configured to this function.

    XOR

    XOR

  • Specifications GAL16V8

    1996 Data Book7

    COMPLEX MODE LOGIC DIAGRAM

    DIP & PLCC Package Pinouts

    0000

    0224

    0256

    0480

    0512

    0736

    0768

    0992

    1024

    1248

    1280

    1504

    1536

    1760

    1792

    2016

    PTD

    2128

    2191

    11

    12

    13

    14

    15

    16

    17

    18

    19

    1

    2

    3

    4

    5

    6

    7

    8

    9

    OLMC

    OLMC

    OLMC

    OLMC

    OLMC

    OLMC

    SYN-2192AC0-2193

    XOR-2055AC1-2127

    XOR-2054AC1-2126

    XOR-2053AC1-2125

    XOR-2052AC1-2124

    XOR-2051AC1-2123

    XOR-2050AC1-2122

    XOR-2049AC1-2121

    XOR-2048AC1-2120

    OLMC

    OLMC

    2824201612840

  • Specifications GAL16V8

    1996 Data Book8

    SIMPLE MODEIn the Simple mode, macrocells are configured as dedicated inputsor as dedicated, always active, combinatorial outputs.

    Architecture configurations available in this mode are similar tothe common 10L8 and 12P6 devices with many permutations ofgeneric output polarity or input choices.

    All outputs in the simple mode have a maximum of eight productterms that can control the logic. In addition, each output has pro-grammable polarity.

    Pins 1 and 11 are always available as data inputs into the ANDarray. The center two macrocells (pins 15 & 16) cannot be usedas input or I/O pins, and are only available as dedicated outputs.

    The JEDEC fuse numbers including the UES fuses and PTD fusesare shown on the logic diagram.

    Combinatorial Output with Feedback Configurationfor Simple Mode

    - SYN=1.- AC0=0.- XOR=0 defines Active Low Output.- XOR=1 defines Active High Output.- AC1=0 defines this configuration.- All OLMC except pins 15 & 16 can be configured to this function.

    Combinatorial Output Configuration for Simple Mode

    - SYN=1.- AC0=0.- XOR=0 defines Active Low Output.- XOR=1 defines Active High Output.- AC1=0 defines this configuration.- Pins 15 & 16 are permanently configured to this function.

    Dedicated Input Configuration for Simple Mode

    - SYN=1.- AC0=0.- XOR=0 defines Active Low Output.- XOR=1 defines Active High Output.- AC1=1 defines this configuration.- All OLMC except pins 15 & 16 can be configured to this function.

    Note: The development software configures all of the architecture control bits and checks for proper pin usage automatically.

    Vcc

    XOR

    Vcc

    XOR

  • Specifications GAL16V8

    1996 Data Book9

    SIMPLE MODE LOGIC DIAGRAM

    DIP & PLCC Package Pinouts

    1

    11

    12

    13

    14

    15

    16

    17

    18

    19

    2

    3

    4

    5

    6

    7

    9

    0000

    0224

    0256

    0480

    0512

    0736

    0768

    0992

    1024

    1248

    1280

    1504

    1536

    1760

    1792

    2016

    PTD

    2128

    2191

    8

    XOR-2048AC1-2120

    OLMC

    XOR-2049AC1-2121

    XOR-2050AC1-2122

    XOR-2051AC1-2123

    XOR-2052AC1-2124

    XOR-2053AC1-2125

    XOR-2054AC1-2126

    XOR-2055AC1-2127

    OLMC

    OLMC

    OLMC

    OLMC

    OLMC

    OLMC

    OLMC

    SYN-2192AC0-2193

    2824201612840

  • Specifications GAL16V8

    1996 Data Book10

    Specifications GAL16V8D

    ABSOLUTE MAXIMUM RATINGS (1) RECOMMENDED OPERATING COND.

    Commercial Devices:Ambient Temperature (T

    A) ............................... 0 to 75°C

    Supply voltage (VCC

    ) with Respect to Ground ..................... +4.75 to +5.25V

    Industrial Devices:Ambient Temperature (T

    A) ........................... –40 to 85°C

    Supply voltage (VCC

    ) with Respect to Ground ..................... +4.50 to +5.50V

    Supply voltage VCC

    ...................................... –0.5 to +7VInput voltage applied .......................... –2.5 to V

    CC +1.0V

    Off-state output voltage applied.......... –2.5 to VCC

    +1.0VStorage Temperature................................. –65 to 150°CAmbient Temperature with

    Power Applied ........................................ –55 to 125°C1.Stresses above those listed under the “Absolute Maximum

    Ratings” may cause permanent damage to the device. Theseare stress only ratings and functional operation of the deviceat these or at any other conditions above those indicated in theoperational sections of this specification is not implied (whileprogramming, follow the programming specifications).

    VIL Input Low Voltage Vss – 0.5 — 0.8 V

    VIH Input High Voltage 2.0 — Vcc+1 V

    IIL1 Input or I/O Low Leakage Current 0V ≤ VIN ≤ VIL (MAX.) — — –100 µA

    IIH Input or I/O High Leakage Current 3.5V ≤ VIN ≤ VCC — — 10 µA

    VOL Output Low Voltage IOL = MAX. Vin = VIL or VIH — — 0.5 V

    VOH Output High Voltage IOH = MAX. Vin = VIL or VIH 2.4 — — V

    L-3 — — 16 mA

    IOL Low Level Output Current L-15/-25 — — 24 mAQ-10/-15/-20/-25

    IOH High Level Output Current — — –3.2 mA

    IOS2 Output Short Circuit Current VCC = 5V VOUT = 0.5V TA= 25°C –30 — –150 mA

    DC ELECTRICAL CHARACTERISTICSOver Recommended Operating Conditions (Unless Otherwise Specified)

    SYMBOL PARAMETER CONDITION MIN. TYP. 3 MAX. UNITS

    COMMERCIAL

    ICC Operating Power VIL = 0.5V VIH = 3.0V L -3 — 75 115 mASupply Current ftoggle = 15MHz Outputs Open L-15/-25 — 75 90 mA

    Q-10/-15/-25 — 45 55 mA

    INDUSTRIAL

    ICC Operating Power VIL = 0.5V VIH = 3.0V L -15/-25 — 75 130 mASupply Current ftoggle = 15MHz Outputs Open Q -20/-25 — 45 65 mA

    1) The leakage current is due to the internal pull-up resistor on all pins. See Input Buffer section for more information.2) One output at a time for a maximum duration of one second. Vout = 0.5V was selected to avoid test problems caused by testerground degradation. Guaranteed but not 100% tested.3) Typical values are at Vcc = 5V and TA = 25 °C

  • Specifications GAL16V8

    1996 Data Book11

    tpd A Input or I/O to Comb. Output 1 3.5 3 10 3 15 3 20 3 25 ns

    tco A Clock to Output Delay 1 3 2 7.5 2 10 2 11 2 12 ns

    tcf2 — Clock to Feedback Delay — 2.5 — 6 — 8 — 9 — 10 ns

    tsu — Setup Time, Input or Fdbk before Clk↑ 2.5 — 10 — 12 — 13 — 15 — ns

    th — Hold Time, Input or Fdbk after Clk↑ 0 — 0 — 0 — 0 — 0 — nsA Maximum Clock Frequency with 182 — 57.1 — 45.5 — 41.6 — 37 — MHz

    External Feedback, 1/(tsu + tco)

    fmax3 A Maximum Clock Frequency with 200 — 62.5 — 50 — 45.4 — 40 — MHzInternal Feedback, 1/(tsu + tcf)

    A Maximum Clock Frequency with 250 — 62.5 — 62.5 — 50 — 41.6 — MHzNo Feedback

    twh — Clock Pulse Duration, High 2 — 8 — 8 — 10 — 12 — ns

    twl — Clock Pulse Duration, Low 2 — 8 — 8 — 10 — 12 — ns

    ten B Input or I/O to Output Enabled — 4.5 3 10 — 15 — 18 — 20 ns

    t B OE to Output Enabled — 4.5 2 10 — 15 — 18 — 20 ns

    tdis C Input or I/O to Output Disabled — 4.5 2 10 — 15 — 18 — 20 ns

    t C OE to Output Disabled — 4.5 1 10 — 15 — 18 — 20 ns

    Specifications GAL16V8D

    AC SWITCHING CHARACTERISTICSOver Recommended Operating Conditions

    UNITS-25

    MIN. MAX.

    -20

    MIN. MAX.

    -15

    MIN. MAX.

    -10

    MIN. MAX.PARAM. DESCRIPTION

    TESTCOND1.

    -3

    MIN. MAX.

    COM COM COM / IND IND COM / IND

    CAPACITANCE (T A = 25°C, f = 1.0 MHz)

    SYMBOL PARAMETER MAXIMUM* UNITS TEST CONDITIONS

    CI Input Capacitance 8 pF VCC = 5.0V, VI = 2.0V

    CI/O I/O Capacitance 8 pF VCC = 5.0V, VI/O = 2.0V

    *Guaranteed but not 100% tested.

  • Specifications GAL16V8

    1996 Data Book12

    Specifications GAL16V8C

    VIL Input Low Voltage Vss – 0.5 — 0.8 V

    VIH Input High Voltage 2.0 — Vcc+1 V

    IIL1 Input or I/O Low Leakage Current 0V ≤ VIN ≤ VIL (MAX.) — — –100 µA

    IIH Input or I/O High Leakage Current 3.5V ≤ VIN ≤ VCC — — 10 µA

    VOL Output Low Voltage IOL = MAX. Vin = VIL or VIH — — 0.5 V

    VOH Output High Voltage IOH = MAX. Vin = VIL or VIH 2.4 — — V

    IOL Low Level Output Current — — 16 mA

    IOH High Level Output Current — — –3.2 mA

    IOS2 Output Short Circuit Current VCC = 5V VOUT = 0.5V TA= 25°C –30 — –150 mA

    ABSOLUTE MAXIMUM RATINGS (1) RECOMMENDED OPERATING COND.

    Commercial Devices:Ambient Temperature (T

    A) ............................... 0 to 75°C

    Supply voltage (VCC

    ) with Respect to Ground ..................... +4.75 to +5.25V

    Supply voltage VCC

    ...................................... –0.5 to +7VInput voltage applied .......................... –2.5 to V

    CC +1.0V

    Off-state output voltage applied.......... –2.5 to VCC

    +1.0VStorage Temperature................................. –65 to 150°CAmbient Temperature with

    Power Applied ........................................ –55 to 125°C1.Stresses above those listed under the “Absolute Maximum

    Ratings” may cause permanent damage to the device. Theseare stress only ratings and functional operation of the deviceat these or at any other conditions above those indicated in theoperational sections of this specification is not implied (whileprogramming, follow the programming specifications).

    DC ELECTRICAL CHARACTERISTICSOver Recommended Operating Conditions (Unless Otherwise Specified)

    SYMBOL PARAMETER CONDITION MIN. TYP. 3 MAX. UNITS

    COMMERCIAL

    ICC Operating Power VIL = 0.5V VIH = 3.0V L -5/-7 — 75 115 mASupply Current ftoggle = 15MHz Outputs Open

    INDUSTRIAL

    ICC Operating Power VIL = 0.5V VIH = 3.0V L -7 — 75 130 mASupply Current ftoggle = 15MHz Outputs Open

    1) The leakage current is due to the internal pull-up resistor on all pins. See Input Buffer section for more information.2) One output at a time for a maximum duration of one second. Vout = 0.5V was selected to avoid test problems caused by testerground degradation. Guaranteed but not 100% tested.3) Typical values are at Vcc = 5V and TA = 25 °C

    Industrial Devices:Ambient Temperature (TA) ........................... –40 to 85°CSupply voltage (VCC) with Respect to Ground ..................... +4.50 to +5.50V

  • Specifications GAL16V8

    1996 Data Book13

    Specifications GAL16V8C

    AC SWITCHING CHARACTERISTICSOver Recommended Operating Conditions

    -7

    MIN. MAX.

    -7

    MIN. MAX.

    tpd A Input or I/O to 8 outputs switching 1 5 3 7.5 1 7.5 nsComb. Output 1 output switching — — — 7 — — ns

    tco A Clock to Output Delay 1 4 2 5 1 5 ns

    tcf2 — Clock to Feedback Delay — 3 — 3 — 3 ns

    tsu — Setup Time, Input or Feedback before Clock↑ 3 — 7 — 7 — ns

    th — Hold Time, Input or Feedback after Clock↑ 0 — 0 — 0 — nsA Maximum Clock Frequency with 142.8 — 83.3 — 83.3 — MHz

    External Feedback, 1/(tsu + tco)

    A Maximum Clock Frequency with 166 — 100 — 100 — MHzInternal Feedback, 1/(tsu + tcf)

    A Maximum Clock Frequency with 166 — 100 — 100 — MHzNo Feedback

    twh — Clock Pulse Duration, High 3 — 5 — 5 — ns

    twl — Clock Pulse Duration, Low 3 — 5 — 5 — ns

    ten B Input or I/O to Output Enabled 1 6 3 9 1 9 nsB OE to Output Enabled 1 6 2 6 1 6 ns

    tdis C Input or I/O to Output Disabled 1 5 2 9 1 9 nsC OE to Output Disabled 1 5 1.5 6 1 6 ns

    UNITSPARAMETERTEST

    COND1.DESCRIPTION

    INDCOMCOM

    -5

    MIN. MAX.

    1) Refer to Switching Test Conditions section.2) Calculated from fmax with internal feedback. Refer to fmax Descriptions section.3) Refer to fmax Descriptions section. Characterized initially and after any design or process changes that may affect these

    parameters.

    CAPACITANCE (T A = 25°C, f = 1.0 MHz)

    SYMBOL PARAMETER MAXIMUM* UNITS TEST CONDITIONS

    CI Input Capacitance 8 pF VCC = 5.0V, VI = 2.0V

    CI/O I/O Capacitance 8 pF VCC = 5.0V, VI/O = 2.0V

    *Guaranteed but not 100% tested.

    fmax3

  • Specifications GAL16V8

    1996 Data Book14

    Specifications GAL16V8B

    INDUSTRIAL

    ICC Operating Power VIL = 0.5V VIH = 3.0V L -10/-15/-25 — 75 130 mASupply Current ftoggle = 15MHz Outputs Open Q -20/-25 — 45 65 mA

    COMMERCIAL

    ICC Operating Power VIL = 0.5V VIH = 3.0V L -7/-10 — 75 115 mASupply Current ftoggle = 15MHz Outputs Open L -15/-25 — 75 90 mA

    Q -15/-25 — 45 55 mA

    ABSOLUTE MAXIMUM RATINGS (1) RECOMMENDED OPERATING COND.

    Commercial Devices:Ambient Temperature (T

    A) ............................... 0 to 75°C

    Supply voltage (VCC

    ) with Respect to Ground ..................... +4.75 to +5.25V

    Supply voltage VCC

    ...................................... –0.5 to +7VInput voltage applied .......................... –2.5 to V

    CC +1.0V

    Off-state output voltage applied.......... –2.5 to VCC

    +1.0VStorage Temperature................................. –65 to 150°CAmbient Temperature with

    Power Applied ........................................ –55 to 125°C1.Stresses above those listed under the “Absolute Maximum

    Ratings” may cause permanent damage to the device. Theseare stress only ratings and functional operation of the deviceat these or at any other conditions above those indicated in theoperational sections of this specification is not implied (whileprogramming, follow the programming specifications).

    Industrial Devices:Ambient Temperature (T

    A) ........................... –40 to 85°C

    Supply voltage (VCC

    ) with Respect to Ground ..................... +4.50 to +5.50V

    DC ELECTRICAL CHARACTERISTICSOver Recommended Operating Conditions (Unless Otherwise Specified)

    SYMBOL PARAMETER CONDITION MIN. TYP. 3 MAX. UNITS

    VIL Input Low Voltage Vss – 0.5 — 0.8 V

    VIH Input High Voltage 2.0 — Vcc+1 V

    IIL1 Input or I/O Low Leakage Current 0V ≤ VIN ≤ VIL (MAX.) — — –100 µA

    IIH Input or I/O High Leakage Current 3.5V ≤ VIN ≤ VCC — — 10 µA

    VOL Output Low Voltage IOL = MAX. Vin = VIL or VIH — — 0.5 V

    VOH Output High Voltage IOH = MAX. Vin = VIL or VIH 2.4 — — V

    IOL Low Level Output Current — — 24 mA

    IOH High Level Output Current — — –3.2 mA

    IOS2 Output Short Circuit Current VCC = 5V VOUT = 0.5V TA= 25°C –30 — –150 mA

    1) The leakage current is due to the internal pull-up resistor on all pins. See Input Buffer section for more information.2) One output at a time for a maximum duration of one second. Vout = 0.5V was selected to avoid test problems caused by testerground degradation. Guaranteed but not 100% tested.3) Typical values are at Vcc = 5V and TA = 25 °C

  • Specifications GAL16V8

    1996 Data Book15

    Specifications GAL16V8B

    AC SWITCHING CHARACTERISTICSOver Recommended Operating Conditions

    tpd A Input or I/O to 8 outputs switching 3 7.5 3 10 3 15 3 20 3 25 nsComb. Output 1 output switching — 7 — — — — — — — — ns

    tco A Clock to Output Delay 2 5 2 7 2 10 2 11 2 12 ns

    tcf2 — Clock to Feedback Delay — 3 — 6 — 8 — 9 — 10 ns

    tsu — Setup Time, Input or Fdbk before Clk↑ 7 — 10 — 12 — 13 — 15 — ns

    th — Hold Time, Input or Fdbk after Clk↑ 0 — 0 — 0 — 0 — 0 — nsA Maximum Clock Frequency with 83.3 — 58.8 — 45.5 — 41.6 — 37 — MHz

    External Feedback, 1/(tsu + tco)

    fmax3 A Maximum Clock Frequency with 100 — 62.5 — 50 — 45.4 — 40 — MHzInternal Feedback, 1/(tsu + tcf)

    A Maximum Clock Frequency with 100 — 62.5 — 62.5 — 50 — 41.6 — MHzNo Feedback

    twh — Clock Pulse Duration, High 5 — 8 — 8 — 10 — 12 — ns

    twl — Clock Pulse Duration, Low 5 — 8 — 8 — 10 — 12 — ns

    ten B Input or I/O to Output Enabled 3 9 3 10 — 15 — 20 — 25 nsB OE to Output Enabled 2 6 2 10 — 15 — 18 — 20 ns

    tdis C Input or I/O to Output Disabled 2 9 2 10 — 15 — 20 — 25 nsC OE to Output Disabled 1.5 6 1.5 10 — 15 — 18 — 20 ns

    UNITS

    1) Refer to Switching Test Conditions section.2) Calculated from fmax with internal feedback. Refer to fmax Descriptions section.3) Refer to fmax Descriptions section.

    -25

    MIN. MAX.

    -20

    MIN. MAX.

    -15

    MIN. MAX.

    -10

    MIN. MAX.PARAM. DESCRIPTIONTESTCOND1.

    -7

    MIN. MAX.

    CAPACITANCE (T A = 25°C, f = 1.0 MHz)

    SYMBOL PARAMETER MAXIMUM* UNITS TEST CONDITIONS

    CI Input Capacitance 8 pF VCC = 5.0V, VI = 2.0V

    CI/O I/O Capacitance 8 pF VCC = 5.0V, VI/O = 2.0V

    *Guaranteed but not 100% tested.

    COM COM / IND COM / IND IND COM / IND

  • Specifications GAL16V8

    1996 Data Book16

    SWITCHING WAVEFORMS

    Registered OutputCombinatorial Output

    OEOEOEOEOE to Output Enable/DisableInput or I/O to Output Enable/Disable

    fmax with Feedback

    Clock Width

    COMBINATIONALOUTPUT

    VALID INPUTINPUT orI/O FEEDBACK

    tpd

    COMBINATIONALOUTPUT

    INPUT orI/O FEEDBACK

    tentdis

    CLK

    (w/o fb)1/fmax

    twltwh

    INPUT orI/O FEEDBACK

    REGISTEREDOUTPUT

    CLK

    VALID INPUT

    (external fdbk)

    tsu

    tco

    th

    1/fmax

    OE

    REGISTEREDOUTPUT

    tentdis

    CLK

    REGISTEREDFEEDBACK

    tcf tsu1/fmax (internal fdbk)

  • Specifications GAL16V8

    1996 Data Book17

    fmax DESCRIPTIONS

    fmax with Internal Feedback 1/( tsu+tcf)

    Note: tcf is a calculated value, derived by subtracting tsu fromthe period of fmax w/internal feedback (tcf = 1/fmax - tsu). Thevalue of tcf is used primarily when calculating the delay fromclocking a register to a combinatorial output (through registeredfeedback), as shown above. For example, the timing from clockto a combinatorial output is equal to tcf + tpd.

    fmax with External Feedback 1/( tsu+ tco)

    Note: fmax with external feedback is calculated from measuredtsu and tco.

    fmax with No Feedback

    Note: fmax with no feedback may be less than 1/(twh + twl). Thisis to allow for a clock duty cycle of other than 50%.

    SWITCHING TEST CONDITIONS

    REGISTERLOGICARRAY

    CLK

    tsu + th

    REGISTERLOGICARRAY

    tcotsu

    CLK

    Test Condition R 1 R2 CL

    A 200Ω 390Ω 50pFB Active High ∞ 390Ω 50pF

    Active Low 200Ω 390Ω 50pFC Active High ∞ 390Ω 5pF

    Active Low 200Ω 390Ω 5pF

    CLK

    REGISTER

    LOGICARRAY

    tcftpd

    TEST POINT

    C *L

    FROM OUTPUT (O/Q) UNDER TEST

    +5V

    *C L INCLUDES TEST FIXTURE AND PROBE CAPACITANCE

    R 2

    R 1

    Input Pulse Levels

    Table 2-0003/16V8

    Input Rise and Fall Times

    Input Timing Reference Levels

    Ouput Timing Reference Levels

    Output Load

    GND to 3.0V

    1.5V

    1.5V

    See figure at right3-state levels are measured 0.5V from steady-state active level.

    2 – 3ns 10% – 90%

    1.5ns 10% – 90%

    GAL16V8B andGAL16V8D-10 (andslower)

    GAL16V8C andGAL16V8D-3

    GAL16V8B and GAL16V8D-10/-15/-20/-25 Output LoadConditions (see figure above) GAL16V8C Output Load Conditions (see figure above)

    Test Condition R 1 R2 CL

    A 200Ω 200Ω 50pFB Active High ∞ 200Ω 50pF

    Active Low 200Ω 200Ω 50pFC Active High ∞ 200Ω 5pF

    Active Low 200Ω 200Ω 5pF

  • Specifications GAL16V8

    1996 Data Book18

    SWITCHING TEST CONDITIONS, CONTINUED

    *CL includes test fixture and probe capacitance.

    ELECTRONIC SIGNATURE

    An electronic signature is provided in every GAL16V8 device. Itcontains 64 bits of reprogrammable memory that can contain userdefined data. Some uses include user ID codes, revision num-bers, or inventory control. The signature data is always availableto the user independent of the state of the security cell.

    NOTE: The electronic signature is included in checksum calcu-lations. Changing the electronic signature will alter the checksum.

    SECURITY CELL

    A security cell is provided in the GAL16V8 devices to prevent un-authorized copying of the array patterns. Once programmed, thiscell prevents further read access to the functional bits in the de-vice. This cell can only be erased by re-programming the device,so the original configuration can never be examined once this cellis programmed. The Electronic Signature is always available tothe user, regardless of the state of this control cell.

    LATCH-UP PROTECTION

    GAL16V8 devices are designed with an on-board charge pumpto negatively bias the substrate. The negative bias minimizes thepotential of latch-up caused by negative input undershoots.Additionally, outputs are designed with n-channel pull-ups insteadof the traditional p-channel pull-ups in order to eliminate latch-updue to output overshoots.

    DEVICE PROGRAMMING

    GAL devices are programmed using a Lattice Semiconductor-approved Logic Programmer, available from a number of manu-facturers. Complete programming of the device takes only a fewseconds. Erasing of the device is transparent to the user, and isdone automatically as part of the programming cycle.

    OUTPUT REGISTER PRELOAD

    When testing state machine designs, all possible states and statetransitions must be verified in the design, not just those requiredin the normal machine operations. This is because, in systemoperation, certain events occur that may throw the logic into anillegal state (power-up, line voltage glitches, brown-outs, etc.). Totest a design for proper treatment of these conditions, a way mustbe provided to break the feedback paths, and force any desired(i.e., illegal) state into the registers. Then the machine can besequenced and the outputs tested for correct next state conditions.

    GAL16V8 devices include circuitry that allows each registeredoutput to be synchronously set either high or low. Thus, anypresent state condition can be forced for test sequencing. Ifnecessary, approved GAL programmers capable of executing textvectors perform output register preload automatically.

    INPUT BUFFERS

    GAL16V8 devices are designed with TTL level compatible inputbuffers. These buffers have a characteristically high impedance,and present a much lighter load to the driving logic than bipolarTTL devices.

    The GAL16V8 input and I/O pins have built-in active pull-ups. Asa result, unused inputs and I/O's will float to a TTL "high" (logi-cal "1"). Lattice Semiconductor recommends that all unusedinputs and tri-stated I/O pins be connected to another active input,VCC, or Ground. Doing this will tend to improve noise immunityand reduce ICC for the device.

    Typical Input Pull-up Characteristic

    1 . 0 2 . 0 3 . 0 4 . 0 5 . 0- 6 0

    0

    - 2 0

    - 4 0

    0

    In p u t Vo ltag e (V o lt s)

    Inp

    ut

    Cu

    rre

    nt

    (uA

    )

    TEST POINT

    Z0 = 50Ω, CL = 35pF*FROM OUTPUT (O/Q)UNDER TEST

    +1.45V

    R1

    GAL16V8D-3 Output Load Conditions (see figure at right)

    Test Condition R 1 CL

    A 50Ω 35pFB High Z to Active High at 1.9V 50Ω 35pF

    High Z to Active Low at 1.0V 50Ω 35pFC Active High to High Z at 1.9V 50Ω 35pF

    Active Low to High Z at 1.0V 50Ω 35pF

  • Specifications GAL16V8

    1996 Data Book19

    Typ. Vref = 3.2V

    Typical Output

    Typ. Vref = 3.2V

    Typical Input

    INPUT/OUTPUT EQUIVALENT SCHEMATICS

    POWER-UP RESET

    Circuitry within the GAL16V8 provides a reset signal to all reg-isters during power-up. All internal registers will have their Qoutputs set low after a specified time (tpr, 1µs MAX). As a result,the state on the registered output pins (if they are enabled) willalways be high on power-up, regardless of the programmedpolarity of the output pins. This feature can greatly simplify statemachine design by providing a known state on power-up. Be-cause of the asynchronous nature of system power-up, some

    Vcc

    PIN

    Vcc Vref

    Active Pull-up Circuit

    ESD ProtectionCircuit

    ESD ProtectionCircuit

    Vcc

    PIN

    Vcc

    PIN

    VrefTri-StateControl

    Active Pull-up Circuit

    Feedback(To Input Buffer)

    PIN

    Feedback

    Data Output

    Vcc

    CLK

    INTERNAL REGISTERQ - OUTPUT

    FEEDBACK/EXTERNALOUTPUT REGISTER

    Vcc (min.)

    tprInternal RegisterReset to Logic "0"

    Device PinReset to Logic "1"

    twl

    tsu

    conditions must be met to guarantee a valid power-up reset of thedevice. First, the VCC rise must be monotonic. Second, the clockinput must be at static TTL level as shown in the diagram duringpower up. The registers will reset within a maximum of tpr time.As in normal system operation, avoid clocking the device until allinput and feedback path setup times have been met. The clockmust also meet the minimum pulse width requirements.

  • Specifications GAL16V8

    1996 Data Book20

    GAL 16V8D-3: TYPICAL AC AND DC CHARACTERISTIC DIAGRAMS

    Normalized Tpd vs Vcc

    0.8

    0.9

    1

    1.2

    4.50 4.75 5.00 5.25 5.50

    Supply Voltage (V)

    Nor

    mal

    ized

    Tpd

    Normalized Tco vs Vcc

    0.8

    0.9

    1

    1.1

    1.2

    4.50 4.75 5.00 5.25 5.50

    Supply Voltage (V)

    Nor

    mal

    ized

    Tco

    Normalized Tsu vs Vcc

    0.8

    0.9

    1

    1.1

    1.2

    4.50 4.75 5.00 5.25 5.50

    Supply Voltage (V)

    Nor

    mal

    ized

    Tsu

    Normalized Tpd vs Temp

    0.7

    0.8

    0.9

    1

    1.1

    1.2

    1.3

    -55 -25 0 25 50 75 100 125

    Temperature (deg. C)

    Nor

    mal

    ized

    Tpd

    Normalized Tco vs Temp

    0.7

    0.8

    0.9

    1

    1.1

    1.2

    1.3

    -55 -25 0 25 50 75 100 125

    Temperature (deg. C)

    Nor

    mal

    ized

    Tco

    Normalized Tsu vs Temp

    0.7

    0.9

    1

    1.1

    -55 -25 0 25 50 75 100 125

    Temperature (deg. C)N

    orm

    aliz

    ed T

    su

    PT H->LPT L->H

    PT H->LPT L->H1.1

    PTH->LPT L->H

    1.3

    1.2

    0.8

    RISEFALL

    PT H->LPT L->H

    RISEFALL

    Delta Tpd vs # of OutputsSwitching

    -0.4

    -0.3

    -0.2

    -0.1

    0

    1 2 3 4 5 6 7 8

    Number of Outputs Switching

    Del

    ta T

    pd (

    ns)

    Delta Tco vs # of OutputsSwitching

    -0.4

    -0.3

    -0.2

    -0.1

    0

    1 2 3 4 5 6 7 8

    Number of Outputs Switching

    Del

    ta T

    co (

    ns)

    Delta Tpd vs Output Loading

    -2

    10

    12

    14

    0 50 100 150 200 250 300

    Output Loading (pF)

    Del

    ta T

    pd (

    ns)

    Delta Tco vs Output Loading

    -2

    0

    14

    12

    10

    8

    6

    4

    2

    0 50 100 150 200 250 300

    Output Loading (pF)

    Del

    ta T

    co (

    ns)

    RISEFALL

    RISEFALL

    RISEFALL

    RISEFALL

    8

    6

    4

    2

    0

  • Specifications GAL16V8

    1996 Data Book21

    GAL 16V8D-3: TYPICAL AC AND DC CHARACTERISTIC DIAGRAMS

    Vol vs Iol

    0

    0.25

    0.5

    0.75

    1

    0 10 20 30 40

    Iol (mA)

    Vol

    (V

    )

    Voh vs Ioh

    0

    1

    2

    3

    4

    5

    0 10 20 30 40 50

    Ioh (mA)

    Voh

    (V

    )

    Voh vs Ioh

    2.5

    2.75

    3

    3.25

    0 1 2 3 4

    Ioh (mA)

    Voh

    (V

    )

    Normalized Icc vs Vcc

    0.8

    0.9

    1

    1.1

    1.2

    4.50 4.75 5.00 5.25 5.50

    Supply Voltage (V)

    Nor

    mal

    ized

    Icc

    Normalized Icc vs Temp

    0.8

    0.9

    1

    1.1

    1.2

    1.3

    -55 -25 0 25 50 75 100 125

    Temperature (deg. C)

    Nor

    mal

    ized

    Icc

    Normalized Icc vs Freq.

    0.9

    0.95

    1

    1.05

    1.1

    1.15

    1.2

    0 25 50 75 100

    Frequency (MHz)

    Nor

    mal

    ized

    Icc

    Delta Icc vs Vin (1 input)

    0

    2

    4

    6

    8

    10

    0 0.5 1 1.5 2 2.5 3 3.5 4

    Vin (V)

    Del

    ta Ic

    c (m

    A)

    Input Clamp (Vik)

    0

    10

    20

    30

    40

    50

    60

    70

    80

    90-2 -1.5 -1 -0.5 0

    Vik (V)

    Iik (

    mA

    )

  • Specifications GAL16V8

    1996 Data Book22

    GAL 16V8D-10 (and Slower): TYPICAL AC AND DC CHARACTERISTIC DIAGRAMS

    Normalized Tpd vs Vcc

    0.8

    0.9

    1

    1.1

    1.2

    4.50 4.75 5.00 5.25 5.50

    Supply Voltage (V)

    Nor

    mal

    ized

    Tpd PT H->L

    PT L->H

    Normalized Tco vs Vcc

    0.8

    0.9

    1

    1.1

    1.2

    4.50 4.75 5.00 5.25 5.50

    Supply Voltage (V)N

    orm

    aliz

    ed T

    co

    RISEFALL

    Normalized Tsu vs Vcc

    0.8

    0.9

    1

    1.1

    1.2

    4.50 4.75 5.00 5.25 5.50

    Supply Voltage (V)

    Nor

    mal

    ized

    Tsu PT H->L

    PT L->H

    Normalized Tpd vs Temp

    0.7

    0.8

    0.9

    1

    1.1

    1.2

    1.3

    -55 -25 0 25 50 75 100 125

    Temperature (deg. C)

    Nor

    mal

    ized

    Tpd

    PT H->LPT L->H

    Normalized Tco vs Temp

    0.7

    0.8

    0.9

    1

    1.1

    1.2

    1.3

    -55 -25 0 25 50 75 100 125

    Temperature (deg. C)

    Nor

    mal

    ized

    Tco

    RISEFALL

    Normalized Tsu vs Temp

    0.7

    0.8

    0.9

    1

    1.1

    1.2

    1.3

    -55 -25 0 25 50 75 100 125

    Temperature (deg. C)N

    orm

    aliz

    ed T

    su

    PT H->LPT L->H

    Delta Tpd vs # of Outputs Switching

    -1.2

    -1

    -0.8

    -0.6

    -0.4

    -0.2

    0

    1 2 3 4 5 6 7 8

    Number of Outputs Switching

    Del

    ta T

    pd (

    ns)

    RISEFALL

    Delta Tco vs # of Outputs Switching

    -1.2

    -1

    -0.8

    -0.6

    -0.4

    -0.2

    0

    1 2 3 4 5 6 7 8

    Number of Outputs Switching

    Del

    ta T

    co (

    ns)

    RISEFALL

    Delta Tpd vs Output Loading

    -6

    -4

    -2

    0

    2

    4

    6

    8

    10

    12

    0 50 100 150 200 250 300

    Output Loading (pF)

    Del

    ta T

    pd (

    ns) RISE

    FALL

    Delta Tco vs Output Loading

    -4

    -2

    0

    2

    4

    6

    8

    10

    12

    0 50 100 150 200 250 300

    Output Loading (pF)

    Del

    ta T

    co (

    ns) RISE

    FALL

  • Specifications GAL16V8

    1996 Data Book23

    GAL 16V8D-10 (and Slower): TYPICAL AC AND DC CHARACTERISTIC DIAGRAMS

    Vol vs Iol

    0

    0.2

    0.4

    0.6

    0 10 20 30 40

    Iol (mA)

    Vol

    (V

    )

    Voh vs Ioh

    0

    1

    2

    3

    4

    5

    0 10 20 30 40 50

    Ioh (mA)V

    oh (

    V)

    Voh vs Ioh

    3

    3.2

    3.4

    3.6

    3.8

    4

    0 1 2 3 4

    Ioh (mA)

    Voh

    (V

    )

    Normalized Icc vs Vcc

    0.8

    0.9

    1

    1.1

    1.2

    4.50 4.75 5.00 5.25 5.50

    Supply Voltage (V)

    Nor

    mal

    ized

    Icc

    Normalized Icc vs Temp

    0.7

    0.8

    0.9

    1

    1.1

    1.2

    1.3

    -55 -25 0 25 50 75 100 125

    Temperature (deg. C)

    Nor

    mal

    ized

    Icc

    Normalized Icc vs Freq.

    0.8

    0.9

    1

    1.1

    1.2

    1.3

    1.4

    0 25 50 75 100

    Frequency (MHz)N

    orm

    aliz

    ed Ic

    c

    Delta Icc vs Vin (1 input)

    0

    2

    4

    6

    8

    0 0.5 1 1.5 2 2.5 3 3.5 4

    Vin (V)

    Del

    ta Ic

    c (m

    A)

    Input Clamp (Vik)

    0

    10

    20

    30

    40

    50

    60-2 -1.5 -1 -0.5 0

    Vik (V)

    Iik (

    mA

    )

  • Specifications GAL16V8

    1996 Data Book24

    Delta Tpd vs # of OutputsSwitching

    Number of Outputs Switching

    Del

    ta T

    pd (

    ns)

    -1

    -0.75

    -0.5

    -0.25

    0

    1 2 3 4 5 6 7 8

    RISE

    FALL

    Delta Tco vs # of OutputsSwitching

    Number of Outputs Switching

    Del

    ta T

    co (

    ns)

    -1

    -0.75

    -0.5

    -0.25

    0

    1 2 3 4 5 6 7 8

    RISE

    FALL

    Delta Tpd vs Output Loading

    Output Loading (pF)

    Del

    ta T

    pd (

    ns)

    -2

    0

    2

    4

    6

    8

    0 50 100 150 200 250 300

    RISE

    FALL

    Delta Tco vs Output Loading

    Output Loading (pF)

    Del

    ta T

    co (

    ns)

    -2

    0

    2

    4

    6

    8

    0 50 100 150 200 250 300

    RISE

    FALL

    Normalized Tpd vs Vcc

    Supply Voltage (V)

    Nor

    mal

    ized

    Tpd

    0.8

    0.9

    1

    1.1

    1.2

    4.50 4.75 5.00 5.25 5.50

    PT H->L

    PT L->H

    Normalized Tco vs Vcc

    Supply Voltage (V)N

    orm

    aliz

    ed T

    co

    0.8

    0.9

    1

    1.1

    1.2

    4.50 4.75 5.00 5.25 5.50

    RISE

    FALL

    Normalized Tsu vs Vcc

    Supply Voltage (V)

    Nor

    mal

    ized

    Tsu

    0.8

    0.9

    1

    1.1

    1.2

    4.50 4.75 5.00 5.25 5.50

    PT H->L

    PT L->H

    Normalized Tpd vs Temp

    Temperature (deg. C)

    Nor

    mal

    ized

    Tpd

    0.7

    0.8

    0.9

    1

    1.1

    1.2

    1.3

    -55

    -25 0

    25

    50

    75

    10

    0

    12

    5

    PT H->L

    PT L->H

    Normalized Tco vs Temp

    Temperature (deg. C)

    Nor

    mal

    ized

    Tco

    0.7

    0.8

    0.9

    1

    1.1

    1.2

    1.3

    -55

    -25 0

    25

    50

    75

    10

    0

    12

    5

    RISE

    FALL

    Normalized Tsu vs Temp

    Temperature (deg. C)N

    orm

    aliz

    ed T

    su

    0.7

    0.8

    0.9

    1

    1.1

    1.2

    1.3

    1.4

    -55

    -25 0

    25

    50

    75

    10

    0

    12

    5

    PT H->L

    PT L->H

    GAL 16V8C-5/-7: TYPICAL AC AND DC CHARACTERISTIC DIAGRAMS

  • Specifications GAL16V8

    1996 Data Book25

    GAL 16V8C-5/-7: TYPICAL AC AND DC CHARACTERISTIC DIAGRAMS

    Vol vs Iol

    Iol (mA)

    Vol

    (V

    )

    0

    0.5

    1

    1.5

    2

    0.00 20.00 40.00 60.00 80.00

    Voh vs Ioh

    Ioh(mA)

    Voh

    (V

    )0

    1

    2

    3

    4

    5

    0.00 10.00 20.00 30.00 40.00 50.00

    Voh vs Ioh

    Ioh(mA)

    Voh

    (V

    )

    3.25

    3.5

    3.75

    4

    4.25

    0.00 1.00 2.00 3.00 4.00

    Normalized Icc vs Vcc

    Supply Voltage (V)

    Nor

    mal

    ized

    Icc

    0.80

    0.90

    1.00

    1.10

    1.20

    4.50 4.75 5.00 5.25 5.50

    Normalized Icc vs Temp

    Temperature (deg. C)

    Nor

    mal

    ized

    Icc

    0.8

    0.9

    1

    1.1

    1.2

    1.3

    -55 -25 0 25 50 75 100 125

    Normalized Icc vs Freq.

    Frequency (MHz)N

    orm

    aliz

    ed I

    cc

    0.80

    0.90

    1.00

    1.10

    1.20

    1.30

    1.40

    1.50

    0 25 50 75 100

    Delta Icc vs Vin (1 input)

    Vin (V)

    Del

    ta I

    cc (

    mA

    )

    0

    2

    4

    6

    8

    10

    0.00 0.50 1.00 1.50 2.00 2.50 3.00 3.50 4.00

    Input Clamp (Vik)

    Vik (V)

    Iik (

    mA

    )

    0

    5

    10

    15

    20

    25

    30

    35

    40

    45

    -2.00 -1.50 -1.00 -0.50 0.00

  • Specifications GAL16V8

    1996 Data Book26

    GAL 16V8B-7/-10: TYPICAL AC AND DC CHARACTERISTIC DIAGRAMS

    Normalized Tpd vs Vcc

    Supply Voltage (V)

    Nor

    mal

    ized

    Tpd

    0.8

    0.9

    1

    1.1

    1.2

    4.50 4.75 5.00 5.25 5.50

    PT H->L

    PT L->H

    Normalized Tco vs Vcc

    Supply Voltage (V)N

    orm

    aliz

    ed T

    co0.8

    0.9

    1

    1.1

    1.2

    4.50 4.75 5.00 5.25 5.50

    RISE

    FALL

    Normalized Tsu vs Vcc

    Supply Voltage (V)

    Nor

    mal

    ized

    Tsu

    0.8

    0.9

    1

    1.1

    1.2

    4.50 4.75 5.00 5.25 5.50

    PT H->L

    PT L->H

    Normalized Tpd vs Temp

    Temperature (deg. C)

    Nor

    mal

    ized

    Tpd

    0.7

    0.8

    0.9

    1

    1.1

    1.2

    1.3

    -55

    -25 0

    25

    50

    75

    10

    0

    12

    5

    PT H->L

    PT L->H

    Normalized Tco vs Temp

    Temperature (deg. C)

    Nor

    mal

    ized

    Tco

    0.7

    0.8

    0.9

    1

    1.1

    1.2

    1.3

    -55

    -25 0

    25

    50

    75

    10

    0

    12

    5

    RISE

    FALL

    Normalized Tsu vs Temp

    Temperature (deg. C)N

    orm

    aliz

    ed T

    su

    0.7

    0.8

    0.9

    1

    1.1

    1.2

    1.3

    1.4

    -55

    -25 0

    25

    50

    75

    10

    0

    12

    5

    PT H->L

    PT L->H

    Delta Tpd vs # of OutputsSwitching

    Number of Outputs Switching

    Del

    ta T

    pd (

    ns)

    -2

    -1.5

    -1

    -0.5

    0

    1 2 3 4 5 6 7 8

    RISE

    FALL

    Delta Tco vs # of OutputsSwitching

    Number of Outputs Switching

    Del

    ta T

    co (

    ns)

    -2

    -1.5

    -1

    -0.5

    0

    1 2 3 4 5 6 7 8

    RISE

    FALL

    Delta Tpd vs Output Loading

    Output Loading (pF)

    Del

    ta T

    pd (

    ns)

    -2

    0

    2

    4

    6

    8

    10

    0 50 100 150 200 250 300

    RISE

    FALL

    Delta Tco vs Output Loading

    Output Loading (pF)

    Del

    ta T

    co (

    ns)

    -2

    0

    2

    4

    6

    8

    10

    0 50 100 150 200 250 300

    RISE

    FALL

  • Specifications GAL16V8

    1996 Data Book27

    GAL 16V8B-7/-10: TYPICAL AC AND DC CHARACTERISTIC DIAGRAMS

    Vol vs Iol

    Iol (mA)

    Vol

    (V

    )

    0

    0.25

    0.5

    0.75

    1

    0.00 20.00 40.00 60.00 80.00 100.00

    Voh vs Ioh

    Ioh(mA)

    Voh

    (V

    )0

    1

    2

    3

    4

    5

    0.00 10.00 20.00 30.00 40.00 50.00 60.00

    Voh vs Ioh

    Ioh(mA)

    Voh

    (V

    )

    3.5

    3.75

    4

    4.25

    4.5

    0.00 1.00 2.00 3.00 4.00

    Normalized Icc vs Vcc

    Supply Voltage (V)

    Nor

    mal

    ized

    Icc

    0.80

    0.90

    1.00

    1.10

    1.20

    4.50 4.75 5.00 5.25 5.50

    Normalized Icc vs Temp

    Temperature (deg. C)

    Nor

    mal

    ized

    Icc

    0.8

    0.9

    1

    1.1

    1.2

    -55 -25 0 25 50 75 100 125

    Normalized Icc vs Freq.

    Frequency (MHz)N

    orm

    aliz

    ed I

    cc

    0.80

    0.90

    1.00

    1.10

    1.20

    1.30

    0 25 50 75 100

    Delta Icc vs Vin (1 input)

    Vin (V)

    Del

    ta I

    cc (

    mA

    )

    0

    2

    4

    6

    8

    10

    0.00 0.50 1.00 1.50 2.00 2.50 3.00 3.50 4.00

    Input Clamp (Vik)

    Vik (V)

    Iik (

    mA

    )

    0

    10

    20

    30

    40

    50

    60

    70

    80

    90

    100

    -2.00 -1.50 -1.00 -0.50 0.00

  • Specifications GAL16V8

    1996 Data Book28

    GAL 16V8B-15/-25: TYPICAL AC AND DC CHARACTERISTIC DIAGRAMS

    Normalized Tpd vs Vcc

    Supply Voltage (V)

    Nor

    mal

    ized

    Tpd

    0.8

    0.9

    1

    1.1

    1.2

    4.50 4.75 5.00 5.25 5.50

    PT H->L

    PT L->H

    Normalized Tco vs Vcc

    Supply Voltage (V)N

    orm

    aliz

    ed T

    co

    0.8

    0.9

    1

    1.1

    1.2

    4.50 4.75 5.00 5.25 5.50

    RISE

    FALL

    Normalized Tsu vs Vcc

    Supply Voltage (V)

    Nor

    mal

    ized

    Tsu

    0.8

    0.9

    1

    1.1

    1.2

    4.50 4.75 5.00 5.25 5.50

    PT H->L

    PT L->H

    Normalized Tpd vs Temp

    Temperature (deg. C)

    Nor

    mal

    ized

    Tpd

    0.7

    0.8

    0.9

    1

    1.1

    1.2

    1.3

    -55 -25 0 25 50 75 100 125

    PT H->L

    PT L->H

    Normalized Tco vs Temp

    Temperature (deg. C)

    Nor

    mal

    ized

    Tco

    0.7

    0.8

    0.9

    1

    1.1

    1.2

    1.3

    -55 -25 0 25 50 75 100 125

    RISE

    FALL

    Normalized Tsu vs Temp

    Temperature (deg. C)

    Nor

    mal

    ized

    Tsu

    0.7

    0.8

    0.9

    1

    1.1

    1.2

    1.3

    1.4

    -55 -25 0 25 50 75 100 125

    PT H->L

    PT L->H

    Delta Tpd vs # of OutputsSwitching

    Number of Outputs Switching

    Del

    ta T

    pd (

    ns)

    -2

    -1.5

    -1

    -0.5

    0

    1 2 3 4 5 6 7 8

    RISE

    FALL

    Delta Tco vs # of OutputsSwitching

    Number of Outputs Switching

    Del

    ta T

    co (

    ns)

    -2

    -1.5

    -1

    -0.5

    0

    1 2 3 4 5 6 7 8

    RISE

    FALL

    Delta Tpd vs Output Loading

    Output Loading (pF)

    Del

    ta T

    pd (

    ns)

    -2

    0

    2

    4

    6

    8

    10

    12

    0 50 100 150 200 250 300

    RISE

    FALL

    Delta Tco vs Output Loading

    Output Loading (pF)

    Del

    ta T

    co (

    ns)

    -2

    0

    2

    4

    6

    8

    10

    12

    0 50 100 150 200 250 300

    RISE

    FALL

  • Specifications GAL16V8

    1996 Data Book29

    GAL 16V8B-15/-25: TYPICAL AC AND DC CHARACTERISTIC DIAGRAMS

    Vol vs Iol

    Iol (mA)

    Vol

    (V

    )

    0

    0.5

    1

    1.5

    2

    0.00 20.00 40.00 60.00 80.00 100.00

    Voh vs Ioh

    Ioh(mA)

    Voh

    (V

    )0

    1

    2

    3

    4

    5

    0.00 10.00 20.00 30.00 40.00 50.00 60.00

    Voh vs Ioh

    Ioh(mA)

    Voh

    (V

    )

    3.25

    3.5

    3.75

    4

    4.25

    0.00 1.00 2.00 3.00 4.00

    Normalized Icc vs Vcc

    Supply Voltage (V)

    Nor

    mal

    ized

    Icc

    0.80

    0.90

    1.00

    1.10

    1.20

    4.50 4.75 5.00 5.25 5.50

    Normalized Icc vs Temp

    Temperature (deg. C)

    Nor

    mal

    ized

    Icc

    0.8

    0.9

    1

    1.1

    1.2

    -55 -25 0 25 50 75 100 125

    Normalized Icc vs Freq.

    Frequency (MHz)N

    orm

    aliz

    ed I

    cc

    0.80

    0.90

    1.00

    1.10

    1.20

    1.30

    1.40

    0 25 50 75 100

    Delta Icc vs Vin (1 input)

    Vin (V)

    Del

    ta I

    cc (

    mA

    )

    0

    2

    4

    6

    8

    10

    12

    0.00 0.50 1.00 1.50 2.00 2.50 3.00 3.50 4.00

    Input Clamp (Vik)

    Vik (V)

    Iik (

    mA

    )

    0

    10

    20

    30

    40

    50

    60

    70

    80

    90

    100

    -2.00 -1.50 -1.00 -0.50 0.00

  • Copyright © 1996 Lattice Semiconductor Corporation.

    E2CMOS, GAL, ispGAL, ispLSI, pLSI, pDS, Silicon Forest, UltraMOS, Lattice Logo, L with Lattice Semiconductor Corp. and L(Stylized) are registered trademarks of Lattice Semiconductor Corporation (LSC). The LSC Logo, Generic Array Logic, In-System Programmability, In-System Programmable, ISP, ispATE, ispCODE, ispDOWNLOAD, ispGDS, ispStarter,ispSTREAM, ispTEST, ispTURBO, Latch-Lock, pDS+, RFT, Total ISP and Twin GLB are trademarks of Lattice SemiconductorCorporation. ISP is a service mark of Lattice Semiconductor Corporation. All brand names or product names mentioned aretrademarks or registered trademarks of their respective holders.

    Lattice Semiconductor Corporation (LSC) products are made under one or more of the following U.S. and internationalpatents: 4,761,768 US, 4,766,569 US, 4,833,646 US, 4,852,044 US, 4,855,954 US, 4,879,688 US, 4,887,239 US, 4,896,296US, 5,130,574 US, 5,138,198 US, 5,162,679 US, 5,191,243 US, 5,204,556 US, 5,231,315 US, 5,231,316 US, 5,237,218 US,5,245,226 US, 5,251,169 US, 5,272,666 US, 5,281,906 US, 5,295,095 US, 5,329,179 US, 5,331,590 US, 5,336,951 US,5,353,246 US, 5,357,156 US, 5,359,573 US, 5,394,033 US, 5,394,037 US, 5,404,055 US, 5,418,390 US, 5,493,205 US,0194091 EP, 0196771B1 EP, 0267271 EP, 0196771 UK, 0194091 GB, 0196771 WG, P3686070.0-08 WG. LSC does notrepresent that products described herein are free from patent infringement or from any third-party right.

    The specifications and information herein are subject to change without notice. Lattice Semiconductor Corporation (LSC)reserves the right to discontinue any product or service without notice and assumes no obligation to correct any errorscontained herein or to advise any user of this document of any correction if such be made. LSC recommends its customersobtain the latest version of the relevant information to establish, before ordering, that the information being relied upon iscurrent.

    LSC warrants performance of its products to current and applicable specifications in accordance with LSC’s standardwarranty. Testing and other quality control procedures are performed to the extent LSC deems necessary. Specific testing ofall parameters of each product is not necessarily performed, unless mandated by government requirements.

    LSC assumes no liability for applications assistance, customer’s product design, software performance, or infringements ofpatents or services arising from the use of the products and services described herein.

    LSC products are not authorized for use in life-support applications, devices or systems. Inclusion of LSC products in suchapplications is prohibited.

    LATTICE SEMICONDUCTOR CORPORATION5555 Northeast Moore CourtHillsboro, Oregon 97124 U.S.A.Tel.: (503) 681-0118FAX: (503) 681-3037http://www.latticesemi.com November 1996

    Main DirectoryGAL16V8 Data SheetPin ConfigurationOrdering Information16V8D: DC Electrical Characteristics16V8D: AC Characteristics16V8C: DC Electrical Characteristics16V8C: AC Characteristics16V8B: DC Electrical Characteristics16V8B: AC Characteristics