29
1 Features • HIGH PERFORMANCE E 2 CMOS ® TECHNOLOGY 4 ns Maximum Propagation Delay — Fmax = 250 MHz 3.5 ns Maximum from Clock Input to Data Output — UltraMOS ® Advanced CMOS Technology ACTIVE PULL-UPS ON ALL PINS • COMPATIBLE WITH STANDARD 22V10 DEVICES Fully Function/Fuse-Map/Parametric Compatible with Bipolar and UVCMOS 22V10 Devices • 50% to 75% REDUCTION IN POWER VERSUS BIPOLAR 90mA Typical Icc on Low Power Device 45mA Typical Icc on Quarter Power Device •E 2 CELL TECHNOLOGY Reconfigurable Logic Reprogrammable Cells 100% Tested/100% Yields High Speed Electrical Erasure (<100ms) 20 Year Data Retention • TEN OUTPUT LOGIC MACROCELLS Maximum Flexibility for Complex Logic Designs PRELOAD AND POWER-ON RESET OF REGISTERS 100% Functional Testability • APPLICATIONS INCLUDE: DMA Control State Machine Control High Speed Graphics Processing Standard Logic Speed Upgrade • ELECTRONIC SIGNATURE FOR IDENTIFICATION ESCRIPTION Description The GAL22V10, at 4ns maximum propagation delay time, combines a high performance CMOS process with Electrically Erasable (E 2 ) floating gate technology to provide the highest performance avail- able of any 22V10 device on the market. CMOS circuitry allows the GAL22V10 to consume much less power when compared to bipolar 22V10 devices. E 2 technology offers high speed (<100ms) erase times, providing the ability to reprogram or reconfigure the device quickly and efficiently. The generic architecture provides maximum design flexibility by allowing the Output Logic Macrocell (OLMC) to be configured by the user. The GAL22V10 is fully function/fuse map/parametric com- patible with standard bipolar and CMOS 22V10 devices. Unique test circuitry and reprogrammable cells allow complete AC, DC, and functional testing during manufacture. As a result, Lat- tice Semiconductor delivers 100% field programmability and func- tionality of all GAL products. In addition, 100 erase/write cycles and data retention in excess of 20 years are specified. GAL22V10 High Performance E 2 CMOS PLD Generic Array Logic™ PROGRAMMABLE AND-ARRAY (132X44) I/O/Q I/O/Q I/O/Q I/O/Q I/O/Q I/O/Q I/O/Q I/O/Q I/O/Q I/O/Q I I/CLK I I I I I I I I I I RESET PRESET 8 10 12 14 16 16 14 12 10 8 OLMC OLMC OLMC OLMC OLMC OLMC OLMC OLMC OLMC OLMC Copyright © 1997 Lattice Semiconductor Corp. All brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice. LATTICE SEMICONDUCTOR CORP., 5555 Northeast Moore Ct., Hillsboro, Oregon 97124, U.S.A. March 1998 Tel. (503) 681-0118; 1-888-ISP-PLDS; FAX (503) 681-3037; http://www.latticesemi.com GAL22V10 Top View PLCC 1 12 13 24 I/CLK I I I I I I I I I I GND Vcc I/O/Q I/O/Q I/O/Q I/O/Q I/O/Q I/O/Q I/O/Q I/O/Q I/O/Q I/O/Q I 6 18 GAL 22V10 2 28 NC I/CLK I I I I I I I I NC NC NC GND I I I I/O/Q I/O/Q I/O/Q I/O/Q I/O/Q I/O/Q I/O/Q Vcc I/O/Q I/O/Q I/O/Q 4 26 25 19 18 21 23 16 14 12 11 9 7 5 DIP 22v10_05 Functional Block Diagram Pin Configuration

GAL22V10 Data Sheet

  • Upload
    vuquynh

  • View
    225

  • Download
    1

Embed Size (px)

Citation preview

Page 1: GAL22V10 Data Sheet

Specifications GAL22V10

1

Features

• HIGH PERFORMANCE E2CMOS® TECHNOLOGY— 4 ns Maximum Propagation Delay— Fmax = 250 MHz— 3.5 ns Maximum from Clock Input to Data Output— UltraMOS® Advanced CMOS Technology

• ACTIVE PULL-UPS ON ALL PINS

• COMPATIBLE WITH STANDARD 22V10 DEVICES— Fully Function/Fuse-Map/Parametric Compatible

with Bipolar and UVCMOS 22V10 Devices

• 50% to 75% REDUCTION IN POWER VERSUS BIPOLAR— 90mA Typical Icc on Low Power Device— 45mA Typical Icc on Quarter Power Device

• E2 CELL TECHNOLOGY— Reconfigurable Logic— Reprogrammable Cells— 100% Tested/100% Yields— High Speed Electrical Erasure (<100ms)— 20 Year Data Retention

• TEN OUTPUT LOGIC MACROCELLS— Maximum Flexibility for Complex Logic Designs

• PRELOAD AND POWER-ON RESET OF REGISTERS— 100% Functional Testability

• APPLICATIONS INCLUDE:— DMA Control— State Machine Control— High Speed Graphics Processing— Standard Logic Speed Upgrade

• ELECTRONIC SIGNATURE FOR IDENTIFICATIONESCRIPTION

Description

The GAL22V10, at 4ns maximum propagation delay time, combinesa high performance CMOS process with Electrically Erasable (E2)floating gate technology to provide the highest performance avail-able of any 22V10 device on the market. CMOS circuitry allowsthe GAL22V10 to consume much less power when compared tobipolar 22V10 devices. E2 technology offers high speed (<100ms)erase times, providing the ability to reprogram or reconfigure thedevice quickly and efficiently.

The generic architecture provides maximum design flexibility byallowing the Output Logic Macrocell (OLMC) to be configured bythe user. The GAL22V10 is fully function/fuse map/parametric com-patible with standard bipolar and CMOS 22V10 devices.

Unique test circuitry and reprogrammable cells allow complete AC,DC, and functional testing during manufacture. As a result, Lat-tice Semiconductor delivers 100% field programmability and func-tionality of all GAL products. In addition, 100 erase/write cycles anddata retention in excess of 20 years are specified.

GAL22V10High Performance E2CMOS PLD

Generic Array Logic™

PR

OG

RA

MM

AB

LE

AN

D-A

RR

AY

(132

X44

)

I/O/Q

I/O/Q

I/O/Q

I/O/Q

I/O/Q

I/O/Q

I/O/Q

I/O/Q

I/O/Q

I/O/Q

I

I/CLK

I

I

I

I

I

I

I

I

I

I

RESET

PRESET

8

10

12

14

16

16

14

12

10

8

OLMC

OLMC

OLMC

OLMC

OLMC

OLMC

OLMC

OLMC

OLMC

OLMC

Copyright © 1997 Lattice Semiconductor Corp. All brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subjectto change without notice.

LATTICE SEMICONDUCTOR CORP., 5555 Northeast Moore Ct., Hillsboro, Oregon 97124, U.S.A. March 1998Tel. (503) 681-0118; 1-888-ISP-PLDS; FAX (503) 681-3037; http://www.latticesemi.com

GAL22V10

Top View

PLCC1

12 13

24I/CLK

I

I

I

I

I

I

I

I

I

I

GND

Vcc

I/O/Q

I/O/Q

I/O/Q

I/O/Q

I/O/Q

I/O/Q

I/O/Q

I/O/Q

I/O/Q

I/O/Q

I

6

18

GAL22V10

2 28

NC

I/CL

K

II

I

I

I

I

I

I

NC NC

NC

GN

D

II I

I/O/Q

I/O/Q

I/O/Q

I/O/Q

I/O/Q

I/O/Q

I/O/Q

Vcc I/O

/Q

I/O/Q

I/O/Q

4 2625

1918

21

23

16141211

9

7

5

DIP

22v10_05

Functional Block Diagram

Pin Configuration

Page 2: GAL22V10 Data Sheet

Specifications GAL22V10

2

)sn(dpT )sn(usT )sn(ocT )Am(ccI #gniredrO egakcaP

4 5.2 5.3 041 JL4-D01V22LAG CCLPdaeL-82

5 3 4 041 JL5-D01V22LAG CCLPdaeL-82

051 JL5-C01V22LAG CCLPdaeL-82

5.7 5.4 5.4 041 PL7-D01V22LAG PIDcitsalPniP-42

5 5.4 041 PL7-C01V22LAG PIDcitsalPniP-42

5.4 5.4 041 JL7-C01V22LAGroJL7-D01V22LAG CCLPdaeL-82

5.6 5 041 PL7-B01V22LAG PIDcitsalPniP-42

041 JL7-B01V22LAG CCLPdaeL-82

01 7 7 55 PQ01-D01V22LAG PIDcitsalPniP-42

55 JQ01-D01V22LAG CCLPdaeL-82

031 PL01-B01V22LAGroPL01-C01V22LAG,PL01-D01V22LAG PIDcitsalPniP-42

031 JL01-B01V22LAGroJL01-C01V22LAG,JL01-D01V22LAG CCLPdaeL-82

51 01 8 55 PQ51-B01V22LAGroPQ51-D01V22LAG PIDcitsalPniP-42

55 JQ51-B01V22LAGroJQ51-D01V22LAG CCLPdaeL-82

031 PL51-B01V22LAGroPL51-D01V22LAG PIDcitsalPniP-42

031 JL51-B01V22LAGroJL51-D01V22LAG CCLPdaeL-82

52 51 51 55 PQ52-B01V22LAGroPQ52-D01V22LAG PIDcitsalPniP-42

55 JQ52-B01V22LAGroJQ52-D01V22LAG CCLPdaeL-82

09 PL52-B01V22LAGroPL52-D01V22LAG piDcitsalPniP-42

09 JL52-B01V22LAGroJL52-D01V22LAG CCLPniP-82

)sn(dpT )sn(usT )sn(ocT )Am(ccI #gniredrO egakcaP

5.7 5 5.4 061 01V22LAG D IPL7- ro IPL7-C01V22LAG PIDcitsalPniP-42

5.4 5.4 061 01V22LAG D IJL7- ro IJL7-C01V22LAG CCLPdaeL-82

01 7 7 061 01V22LAG D IPL01- ro IPL01-C01V22LAG PIDcitsalPniP-42

061 01V22LAG D IJL01- ro IJL01-C01V22LAG CCLPdaeL-82

51 01 8 051 roIPL51-D01V22LAG IPL51-B01V22LAG PIDcitsalPniP-42

051 roIJL51-D01V22LAG IJL51-B01V22LAG CCLPdaeL-82

02 41 01 051 roIPL02-D01V22LAG IPL02-B01V22LAG PIDcitsalPniP-42

051 roIJL02-D01V22LAG IJL02-B01V22LAG CCLPdaeL-82

52 51 51 051 roIPL52-D01V22LAG IPL52-B01V22LAG PIDcitsalPniP-42

051 roIJL52-D01V22LAG IJL52-B01V22LAG CCLPdaeL-82

Commercial Grade Specifications

Industrial Grade Specifications

Blank = CommercialI = Industrial

Grade

PackagePowerL = Low PowerQ = Quarter Power

Speed (ns)

XXXXXXXX XX X X X

Device Name

_

P = Plastic DIPJ = PLCC

GAL22V10DGAL22V10CGAL22V10B

GAL22V10 Ordering Information

Part Number Description

Page 3: GAL22V10 Data Sheet

Specifications GAL22V10

3

GAL22V10 OUTPUT LOGIC MACROCELL (OLMC)

Each of the Macrocells of the GAL22V10 has two primary functionalmodes: registered, and combinatorial I/O. The modes and theoutput polarity are set by two bits (SO and S1), which are normallycontrolled by the logic compiler. Each of these two primary modes,and the bit settings required to enable them, are described belowand on the following page.

REGISTEREDIn registered mode the output pin associated with an individualOLMC is driven by the Q output of that OLMC’s D-type flip-flop.Logic polarity of the output signal at the pin may be selected byspecifying that the output buffer drive either true (active high) orinverted (active low). Output tri-state control is available as an in-dividual product-term for each OLMC, and can therefore be definedby a logic equation. The D flip-flop’s /Q output is fed back into theAND array, with both the true and complement of the feedbackavailable as inputs to the AND array.

NOTE: In registered mode, the feedback is from the /Q output ofthe register, and not from the pin; therefore, a pin defined as reg-istered is an output only, and cannot be used for dynamicI/O, as can the combinatorial pins.

COMBINATORIAL I/OIn combinatorial mode the pin associated with an individual OLMCis driven by the output of the sum term gate. Logic polarity of theoutput signal at the pin may be selected by specifying that the outputbuffer drive either true (active high) or inverted (active low). Out-put tri-state control is available as an individual product-term foreach output, and may be individually set by the compiler as either“on” (dedicated output), “off” (dedicated input), or “product-termdriven” (dynamic I/O). Feedback into the AND array is from the pinside of the output enable buffer. Both polarities (true and inverted)of the pin are fed back into the AND array.

The GAL22V10 has a variable number of product terms per OLMC.Of the ten available OLMCs, two OLMCs have access to eightproduct terms (pins 14 and 23, DIP pinout), two have ten productterms (pins 15 and 22), two have twelve product terms (pins 16 and21), two have fourteen product terms (pins 17 and 20), and twoOLMCs have sixteen product terms (pins 18 and 19). In additionto the product terms available for logic, each OLMC has an addi-tional product-term dedicated to output enable control.

The output polarity of each OLMC can be individually programmedto be true or inverting, in either combinatorial or registered mode.This allows each output to be individually configured as either activehigh or active low.

The GAL22V10 has a product term for Asynchronous Reset (AR)and a product term for Synchronous Preset (SP). These two prod-uct terms are common to all registered OLMCs. The AsynchronousReset sets all registers to zero any time this dedicated product termis asserted. The Synchronous Preset sets all registers to a logicone on the rising edge of the next clock pulse after this product termis asserted.

NOTE: The AR and SP product terms will force the Q output of theflip-flop into the same state regardless of the polarity of the output.Therefore, a reset operation, which sets the register output to a zero,may result in either a high or low at the output pin, depending onthe pin polarity chosen.

A R

S P

D

Q

QC L K

4 T O 1M U X

2 T O 1M U X

Output Logic Macrocell (OLMC)

Output Logic Macrocell Configurations

Page 4: GAL22V10 Data Sheet

Specifications GAL22V10

4

ACTIVE HIGHACTIVE LOW

ACTIVE HIGHACTIVE LOW

S0 = 1S1 = 1

S0 = 0S1 = 1

S0 = 0S1 = 0

S0 = 1S1 = 0

A R

S P

D Q

QC L K

A R

S P

D Q

QC L K

Registered Mode

Combinatorial Mode

Page 5: GAL22V10 Data Sheet

Specifications GAL22V10

5

DIP (PLCC) Package Pinouts1 (2)

22 (26)OLMCS0

5810S1

5811

0440....

0880

2 (3)

ASYNCHRONOUS RESET(TO ALL REGISTERS)

0 4 8 12 16 20 24 28 32 36 40

SYNCHRONOUS PRESET(TO ALL REGISTERS)

10 (12)

0000

5764

0044...

039623 (27)S0

5808S1

5809

21 (25)OLMCS0

5812S1

5813

0924.....

1452

3 (4)

4 (5)

5 (6)

20 (24)OLMCS0

5814S1

5815

1496......

2112

19 (23)OLMC

S05816S1

5817

2156.......

2860

18 (21)OLMC

S05818S1

5819

2904.......

3608

17 (20)OLMCS0

5820S1

5821

3652......

4268

OLMCS0

5822S1

5823

4312.....

4840

8 (10)

16 (19)

15 (18)OLMCS0

5824S1

5825

4884....

5324

9 (11)5368

.

.

.5720

14 (17)OLMCS0

5826S1

5827

7 (9)

6 (7)

11 (13) 13 (16)

8

10

14

16

12

12

16

14

10

8 OLMC

Electronic Signature 5828, 5829 ... ... 5890, 5891

LSB

MSB

Byte 7 Byte 6 Byte 5 Byte 4 Byte 2 Byte 1 Byte 0Byte 3

GAL22V10 Logic Diagram / JEDEC Fuse Map

Page 6: GAL22V10 Data Sheet

Specifications GAL22V10

6

Supply voltage VCC

....................................... -0.5 to +7V

Input voltage applied ........................... -2.5 to VCC

+1.0VOff-state output voltage applied........... -2.5 to V

CC +1.0V

Storage Temperature.................................. -65 to 150°CAmbient Temperature with

Power Applied ......................................... -55 to 125°C1. Stresses above those listed under the “Absolute Maximum

Ratings” may cause permanent damage to the device. Theseare stress only ratings and functional operation of the deviceat these or at any other conditions above those indicated inthe operational sections of this specification is not implied(while programming, follow the programming specifications).

Commercial Devices:Ambient Temperature (T

A) ............................. 0 to +75°C

Supply voltage (VCC

) with Respect to Ground ..................... +4.75 to +5.25V

Industrial Devices:Ambient Temperature (T

A) ............................ -40 to 85°C

Supply voltage (VCC

) with Respect to Ground ..................... +4.50 to +5.50V

Specifications GAL22V10D

COMMERCIALICC Operating Power VIL = 0.5V VIH = 3.0V L-4/-5/-7 — 90 140 mA

Supply Current ftoggle = 15MHz Outputs Open L-10/-15 — 90 130 mA

L-25 — 75 90 mA

Q-10/-15/-25 — 45 55 mA

VIL Input Low Voltage Vss – 0.5 — 0.8 V

VIH Input High Voltage 2.0 — Vcc+1 V

IIL1 Input or I/O Low Leakage Current 0V ≤ VIN ≤ VIL (MAX.) — — –100 µA

IIH Input or I/O High Leakage Current 3.5V ≤ VIN ≤ VCC — — 10 µA

VOL Output Low Voltage IOL = MAX. Vin = VIL or VIH — — 0.5 V

VOH Output High Voltage IOH = MAX. Vin = VIL or VIH 2.4 — — V

IOL Low Level Output Current — — 16 mA

IOH High Level Output Current — — –3.2 mA

IOS2 Output Short Circuit Current VCC = 5V VOUT = 0.5V TA = 25°C –30 — –130 mA

Over Recommended Operating Conditions (Unless Otherwise Specified)

SYMBOL PARAMETER CONDITION MIN. TYP.3 MAX. UNITS

INDUSTRIAL

ICC Operating Power VIL = 0.5V VIH = 3.0V L-7/-10 — 90 160 mA

Supply Current ftoggle = 15MHz Outputs Open L-15/-20/-25 — 75 150 mA

1) The leakage current is due to the internal pull-up on all pins. See Input Buffer section for more information.2) One output at a time for a maximum duration of one second. Vout = 0.5V was selected to avoid test problems caused by testerground degradation. Characterized but not 100% tested.3) Typical values are at Vcc = 5V and TA = 25 °C

Absolute Maximum Ratings1 Recommended Operating Conditions

DC Electrical Characteristics

Page 7: GAL22V10 Data Sheet

Specifications GAL22V10

7

tpd A Input or I/O to Combinatorial Output 1 4 1 5 1 7.5 ns

tco A Clock to Output Delay 1 3.5 1 4 1 4.5 ns

tcf2 — Clock to Feedback Delay — 2.5 — 3 — 3 ns

tsu — Setup Time, Input or Fdbk before Clk↑ 2.5 — 3 — 4.5 — ns

th — Hold Time, Input or Fdbk after Clk↑ 0 — 0 — 0 — ns

A Maximum Clock Frequency with 167 — 142.8 — 111 — MHzExternal Feedback, 1/(tsu + tco)

fmax3 A Maximum Clock Frequency with 200 — 166 — 133 — MHzInternal Feedback, 1/(tsu + tcf)

A Maximum Clock Frequency with 250 — 200 — 166 — MHzNo Feedback

twh — Clock Pulse Duration, High 2 — 2.5 — 3 — ns

twl — Clock Pulse Duration, Low 2 — 2.5 — 3 — ns

ten B Input or I/O to Output Enabled 1 5 1 6 1 7.5 ns

tdis C Input or I/O to Output Disabled 1 5 1 6 1 7.5 ns

tar A Input or I/O to Asynch. Reset of Reg. 1 4.5 1 5.5 1 9 ns

tarw — Asynch. Reset Pulse Duration 4.5 — 5.5 — 7 — ns

tarr — Asynch. Reset to Clk↑ Recovery Time 3 — 4 — 5 — ns

tspr — Synch. Preset to Clk↑ Recovery Time 3 — 4 — 5 — ns

Over Recommended Operating Conditions

UNITS

1) Refer to Switching Test Conditions section.2) Calculated from fmax with internal feedback. Refer to fmax Description section.3) Refer to fmax Description section. Characterized initially and after any design or process changes that may affect these

parameters.

PARAMTEST

COND.1 DESCRIPTION

SYMBOL PARAMETER MAXIMUM* UNITS TEST CONDITIONS

CI Input Capacitance 8 pF VCC = 5.0V, VI = 2.0V

CI/O I/O Capacitance 8 pF VCC = 5.0V, VI/O = 2.0V

*Characterized but not 100% tested.

-5

MIN. MAX.

COM/INDCOM

-7

MIN. MAX.

AC Switching Characteristics

Capacitance (TA = 25°C, f = 1.0 MHz)

Specifications GAL22V10D

COM

-4

MIN. MAX.

Page 8: GAL22V10 Data Sheet

Specifications GAL22V10

8

tpd A Input or I/O to Comb. Output 1 10 3 15 3 20 3 25 ns

tco A Clock to Output Delay 1 7 2 8 2 10 2 15 ns

tcf2 — Clock to Feedback Delay — 2.5 — 2.5 — 8 — 13 ns

tsu — Setup Time, Input or Fdbk before Clk↑ 7 — 10 — 14 — 15 — ns

th — Hold Time, Input or Fdbk after Clk↑ 0 — 0 — 0 — 0 — ns

A Maximum Clock Frequency with 71.4 — 55.5 — 41.6 — 33.3 — MHzExternal Feedback, 1/(tsu + tco)

fmax3 A Maximum Clock Frequency with 105 — 80 — 45.4 — 35.7 — MHzInternal Feedback, 1/(tsu + tcf)

A Maximum Clock Frequency with 105 — 83.3 — 50 — 38.5 — MHzNo Feedback

twh — Clock Pulse Duration, High 4 — 6 — 10 — 13 — ns

twl — Clock Pulse Duration, Low 4 — 6 — 10 — 13 — ns

ten B Input or I/O to Output Enabled 1 10 3 15 3 20 3 25 ns

tdis C Input or I/O to Output Disabled 1 9 3 15 3 20 3 25 ns

tar A Input or I/O to Asynch. Reset of Reg. 1 13 3 20 3 25 3 25 ns

tarw — Asynch. Reset Pulse Duration 8 — 15 — 20 — 25 — ns

tarr — Asynch. Reset to Clk↑ Recovery Time 8 — 10 — 20 — 25 — ns

tspr — Synch. Preset to Clk↑ Recovery Time 10 — 10 — 14 — 15 — ns

Specifications GAL22V10D

-10

MIN. MAX.

-25

MIN. MAX.

-20

MIN. MAX.

-15

MIN. MAX.

Over Recommended Operating Conditions

UNITS

1) Refer to Switching Test Conditions section.2) Calculated from fmax with internal feedback. Refer to fmax Description section.3) Refer to fmax Description section.

SYMBOL PARAMETER MAXIMUM* UNITS TEST CONDITIONS

CI Input Capacitance 8 pF VCC = 5.0V, VI = 2.0V

CI/O I/O Capacitance 8 pF VCC = 5.0V, VI/O = 2.0V

*Characterized but not 100% tested.

PARAM.TEST

COND.1DESCRIPTION

COM / IND IND COM / INDCOM / IND

Capacitance (TA = 25°C, f = 1.0 MHz)

AC Switching Characteristics

Page 9: GAL22V10 Data Sheet

Specifications GAL22V10

9

Specifications GAL22V10C

Supply voltage VCC

....................................... -0.5 to +7V

Input voltage applied ........................... -2.5 to VCC

+1.0VOff-state output voltage applied .......... -2.5 to V

CC +1.0V

Storage Temperature ................................. -65 to 150°CAmbient Temperature with

Power Applied ......................................... -55 to 125°C1. Stresses above those listed under the “Absolute Maximum

Ratings” may cause permanent damage to the device. Theseare stress only ratings and functional operation of the deviceat these or at any other conditions above those indicated inthe operational sections of this specification is not implied(while programming, follow the programming specifications).

COMMERCIALICC Operating Power Supply Current VIL = 0.5V VIH = 3.0V L-5 — 90 150 mA

ftoggle = 15MHz Outputs Open L-7 — 90 140 mA

L-10 — 90 130 mA

VIL Input Low Voltage Vss – 0.5 — 0.8 V

VIH Input High Voltage 2.0 — Vcc+1 V

IIL1 Input or I/O Low Leakage Current 0V ≤ VIN ≤ VIL (MAX.) — — –100 µA

IIH Input or I/O High Leakage Current 3.5V ≤ VIN ≤ VCC — — 10 µA

VOL Output Low Voltage IOL = MAX. Vin = VIL or VIH — — 0.5 V

VOH Output High Voltage IOH = MAX. Vin = VIL or VIH 2.4 — — V

IOL Low Level Output Current — — 16 mA

IOH High Level Output Current — — –3.2 mA

IOS2 Output Short Circuit Current VCC = 5V VOUT = 0.5V TA = 25°C –30 — –130 mA

Commercial Devices:Ambient Temperature (T

A) ............................. 0 to +75°C

Supply voltage (VCC

) with Respect to Ground ..................... +4.75 to +5.25V

Industrial Devices:Ambient Temperature (T

A) ............................ -40 to 85°C

Supply voltage (VCC

) with Respect to Ground ..................... +4.50 to +5.50V

Over Recommended Operating Conditions (Unless Otherwise Specified)

SYMBOL PARAMETER CONDITION MIN. TYP.3 MAX. UNITS

INDUSTRIAL

ICC Operating Power Supply Current VIL = 0.5V VIH = 3.0V L-7/-10 — 90 160 mA

ftoggle = 15MHz Outputs Open

1) The leakage current is due to the internal pull-up on all pins. See Input Buffer section for more information.2) One output at a time for a maximum duration of one second. Vout = 0.5V was selected to avoid test problems caused by testerground degradation. Characterized but not 100% tested.3) Typical values are at Vcc = 5V and TA = 25 °C

Absolute Maximum Ratings1 Recommended Operating Conditions

DC Electrical Characteristics

Page 10: GAL22V10 Data Sheet

Specifications GAL22V10

10

tpd A Input or I/O to Combinatorial Output 1 5 1 7.5 1 7.5 3 10 1 10 ns

tco A Clock to Output Delay 1 4 1 4.5 1 4.5 2 7 1 7 ns

tcf2 — Clock to Feedback Delay — 3 — 3 — 3 — 2.5 — 2.5 ns

tsu — Setup Time, Input or Fdbk before Clk↑ 3 — 4.5 — 5 — 7 — 7 — ns

th — Hold Time, Input or Fdbk after Clk↑ 0 — 0 — 0 — 0 — 0 — ns

A Maximum Clock Frequency with 142.8 — 111 — 105 — 71.4 — 71.4 — MHzExternal Feedback, 1/(tsu + tco)

fmax3 A Maximum Clock Frequency with 166 — 133 — 125 — 105 — 105 — MHzInternal Feedback, 1/(tsu + tcf)

A Maximum Clock Frequency with 200 — 166 — 142.8 — 105 — 105 — MHzNo Feedback

twh — Clock Pulse Duration, High 2.5 — 3 — 3.5 — 4 — 4 — ns

twl — Clock Pulse Duration, Low 2.5 — 3 — 3.5 — 4 — 4 — ns

ten B Input or I/O to Output Enabled 1 6 1 7.5 1 7.5 3 10 1 10 ns

tdis C Input or I/O to Output Disabled 1 6 1 7.5 1 7.5 3 9 1 9 ns

tar A Input or I/O to Asynch. Reset of Reg. 1 5.5 1 9 1 9 3 13 1 13 ns

tarw — Asynch. Reset Pulse Duration 5.5 — 7 — 7 — 8 — 8 — ns

tarr — Asynch. Reset to Clk↑ Recovery Time 4 — 5 — 5 — 8 — 8 — ns

tspr — Synch. Preset to Clk↑ Recovery Time 4 — 5 — 5 — 10 — 10 — ns

Specifications GAL22V10C

Over Recommended Operating Conditions

UNITS

1) Refer to Switching Test Conditions section.2) Calculated from fmax with internal feedback. Refer to fmax Description section.3) Refer to fmax Description section. Characterized initially and after any design or process changes that may affect these

parameters.

PARAMTEST

COND.1DESCRIPTION

SYMBOL PARAMETER MAXIMUM* UNITS TEST CONDITIONS

CI Input Capacitance 8 pF VCC = 5.0V, VI = 2.0V

CI/O I/O Capacitance 8 pF VCC = 5.0V, VI/O = 2.0V

*Characterized but not 100% tested.

-5

MIN. MAX.

COM/INDCOM

-7 (PLCC)

MIN. MAX.

-10

MIN. MAX.

-7 (PDIP)

MIN. MAX.

COMCOM/IND

-10

MIN. MAX.

IND

AC Switching Characteristics

Capacitance (TA = 25°C, f = 1.0 MHz)

Page 11: GAL22V10 Data Sheet

Specifications GAL22V10

11

Specifications GAL22V10B

Supply voltage VCC

....................................... -0.5 to +7V

Input voltage applied ........................... -2.5 to VCC

+1.0VOff-state output voltage applied .......... -2.5 to V

CC +1.0V

Storage Temperature ................................. -65 to 150°CAmbient Temperature with

Power Applied ......................................... -55 to 125°C1. Stresses above those listed under the “Absolute Maximum

Ratings” may cause permanent damage to the device. Theseare stress only ratings and functional operation of the deviceat these or at any other conditions above those indicated inthe operational sections of this specification is not implied(while programming, follow the programming specifications).

Commercial Devices:Ambient Temperature (T

A) ............................. 0 to +75°C

Supply voltage (VCC

) with Respect to Ground ..................... +4.75 to +5.25V

Industrial Devices:Ambient Temperature (T

A) ............................ -40 to 85°C

Supply voltage (VCC

) with Respect to Ground ..................... +4.50 to +5.50V

Over Recommended Operating Conditions (Unless Otherwise Specified)

SYMBOL PARAMETER CONDITION MIN. TYP.3 MAX. UNITS

VIL Input Low Voltage Vss – 0.5 — 0.8 V

VIH Input High Voltage 2.0 — Vcc+1 V

IIL1 Input or I/O Low Leakage Current 0V ≤ VIN ≤ VIL (MAX.) — — –100 µA

IIH Input or I/O High Leakage Current 3.5V ≤ VIN ≤ VCC — — 10 µA

VOL Output Low Voltage IOL = MAX. Vin = VIL or VIH — — 0.5 V

VOH Output High Voltage IOH = MAX. Vin = VIL or VIH 2.4 — — V

IOL Low Level Output Current — — 16 mA

IOH High Level Output Current — — –3.2 mA

IOS2 Output Short Circuit Current VCC = 5V VOUT = 0.5V TA = 25°C –30 — –130 mA

COMMERCIAL

ICC Operating Power VIL = 0.5V VIH = 3.0V L-7 — 90 140 mA

Supply Current ftoggle = 15MHz Outputs Open L-10/-15 — 90 130 mA

L-25 — 75 90 mA

Q-15/-25 — 45 55 mA

INDUSTRIAL

ICC Operating Power VIL = 0.5V VIH = 3.0V L-15/-20/-25 — 90 150 mA

Supply Current ftoggle = 15MHz Outputs Open

1) The leakage current is due to the internal pull-up on all pins. See Input Buffer section for more information.2) One output at a time for a maximum duration of one second. Vout = 0.5V was selected to avoid test problems caused by testerground degradation. Characterized but not 100% tested.3) Typical values are at Vcc = 5V and TA = 25 °C

Absolute Maximum Ratings1 Recommended Operating Conditions

DC Electrical Characteristics

Page 12: GAL22V10 Data Sheet

Specifications GAL22V10

12

Specifications GAL22V10B

-10

MIN. MAX.

-25

MIN. MAX.

-20

MIN. MAX.

-15

MIN. MAX.

-7

MIN. MAX.

AC SWITCHING CHARACTERISTICS

Over Recommended Operating Conditions

tpd A Input or I/O to Comb. Output 3 7.5 3 10 3 15 3 20 3 25 ns

tco A Clock to Output Delay 2 5 2 7 2 8 2 10 2 15 ns

tcf2 — Clock to Feedback Delay — 2.5 — 2.5 — 2.5 — 8 — 13 ns

tsu1 — Setup Time, Input or Fdbk before Clk↑ 6.5 — 7 — 10 — 14 — 15 — ns

tsu2 — Setup Time, SP before Clock↑ 10 — 10 — 10 — 14 — 15 — ns

th — Hold Time, Input or Fdbk after Clk↑ 0 — 0 — 0 — 0 — 0 — ns

A Maximum Clock Frequency with 87 — 71.4 — 55.5 — 41.6 — 33.3 — MHzExternal Feedback, 1/(tsu + tco)

fmax3 A Maximum Clock Frequency with 111 — 105 — 80 — 45.4 — 35.7 — MHzInternal Feedback, 1/(tsu + tcf)

A Maximum Clock Frequency with 111 — 105 — 83.3 — 50 — 38.5 — MHzNo Feedback

twh — Clock Pulse Duration, High 4 — 4 — 6 — 10 — 13 — ns

twl — Clock Pulse Duration, Low 4 — 4 — 6 — 10 — 13 — ns

ten B Input or I/O to Output Enabled 3 8 3 10 3 15 3 20 3 25 ns

tdis C Input or I/O to Output Disabled 3 8 3 9 3 15 3 20 3 25 ns

tar A Input or I/O to Asynch. Reset of Reg. 3 13 3 13 3 20 3 25 3 25 ns

tarw — Asynch. Reset Pulse Duration 8 — 8 — 15 — 20 — 25 — ns

tarr — Asynch. Reset to Clk↑ Recovery Time 8 — 8 — 10 — 20 — 25 — ns

tspr — Synch. Preset to Clk↑ Recovery Time 10 — 10 — 10 — 14 — 15 — ns

UNITS

1) Refer to Switching Test Conditions section.2) Calculated from fmax with internal feedback. Refer to fmax Description section.3) Refer to fmax Description section.

SYMBOL PARAMETER MAXIMUM* UNITS TEST CONDITIONS

CI Input Capacitance 8 pF VCC = 5.0V, VI = 2.0V

CI/O I/O Capacitance 8 pF VCC = 5.0V, VI/O = 2.0V

*Characterized but not 100% tested.

PARAM.TEST

COND.1DESCRIPTION

COM COM COM / IND IND COM / IND

AC Switching Characteristics

Capacitance (TA = 25°C, f = 1.0 MHz)

Page 13: GAL22V10 Data Sheet

Specifications GAL22V10

13

Input or I/O to Output Enable/Disable

Registered Output

Combinatorial Output

VALID INPUTINPUT orI/O FEEDBACK

tpd

COMBINATORIALOUTPUT

INPUT orI/O FEEDBACK

REGISTEREDOUTPUT

CLK

VALID INPUT

tsu

tco

th

(external fdbk)1/ fmax

tentdis

INPUT orI/O FEEDBACK

OUTPUT

CLK

(w/o fdbk)

tw h tw l

1 / fm a x

Clock Width

REGISTEREDOUTPUT

CLK

INPUT orI/O FEEDBACKDRIVING SP

tsu th

tco

tspr

R EGIST ER EDO U T P U T

CLK

tarw

tar

tarr

INPUT orI /O FEEDBACKDRIVING AR

fmax with Feedback

Asynchronous ResetSynchronous Preset

CLK

REGISTEREDFEEDBACK

tcf tsu

1/ fmax (internal fdbk)

Switching Waveforms

Page 14: GAL22V10 Data Sheet

Specifications GAL22V10

14

fmax with Internal Feedback 1/(tsu+tcf)

Note: fmax with external feedback is cal-culated from measured tsu and tco.

fmax with External Feedback 1/(tsu+tco)

Note: tcf is a calculated value, derived by sub-tracting tsu from the period of fmax w/internalfeedback (tcf = 1/fmax - tsu). The value of tcf isused primarily when calculating the delay fromclocking a register to a combinatorial output(through registered feedback), as shown above.For example, the timing from clock to a combi-natorial output is equal to tcf + tpd.

fmax with No Feedback

Note: fmax with no feedback may be lessthan 1/(twh + twl). This is to allow for aclock duty cycle of other than 50%.

REG I S TE RLOGICARR AY

tc ots u

C L K

REGISTERLOGICARRAY

CLK

tsu + th

CLK

REGISTER

LOGICARRAY

tcf

tpd

fmax Descriptions

Page 15: GAL22V10 Data Sheet

Specifications GAL22V10

15

GAL22V10D-4 Output Load Conditions (see figure below)

Test Condition R1 CL

A 50Ω 50pF

B Z to Active High at 1.9V 50Ω 50pF

Z to Active Low at 1.0V 50Ω 50pF

C Active High to Z at 1.9V 50Ω 50pF

Active Low to Z at 1.0V 50Ω 50pF

Input Pulse Levels GND to 3.0V

Input Rise and D-4/-5/-7, C-5 1.5ns 10% – 90%

Fall Times D-10/-15/-20/-25 2.0ns 10% – 90%

B & C-7/-10

B-15/-20/-25 3ns 10% – 90%

Input Timing Reference Levels 1.5V

Output Timing Reference Levels 1.5V

Output Load See Figure

3-state levels are measured 0.5V from steady-state activelevel.

TEST POINT

C *L

FROM OUTPUT (O/Q) UNDER TEST

+5V

*C L INCLUDES TEST FIXTURE AND PROBE CAPACITANCE

R 2

R 1

Output Load Conditions (except D-4) (see figure below)

Test Condition R1 R2 CL

A 300Ω 390Ω 50pF

B Active High ∞ 390Ω 50pF

Active Low 300Ω 390Ω 50pF

C Active High ∞ 390Ω 5pF

Active Low 300Ω 390Ω 5pF

TEST POINT

Z0 = 50Ω, CL*FROM OUTPUT (O/Q)UNDER TEST

+1.45V

R1

Switching Test Conditions

Page 16: GAL22V10 Data Sheet

Specifications GAL22V10

16

Electronic Signature

An electronic signature (ES) is provided in every GAL22V10device. It contains 64 bits of reprogrammable memory that cancontain user-defined data. Some uses include user ID codes,revision numbers, or inventory control. The signature data isalways available to the user independent of the state of the se-curity cell.

The electronic signature is an additional feature not present inother manufacturers' 22V10 devices. To use the extra feature ofthe user-programmable electronic signature it is necessary tochoose a Lattice Semiconductor 22V10 device type when com-piling a set of logic equations. In addition, many device program-mers have two separate selections for the device, typically aGAL22V10 and a GAL22V10-UES (UES = User Electronic Sig-nature) or GAL22V10-ES. This allows users to maintain compat-ibility with existing 22V10 designs, while still having the option touse the GAL device's extra feature.

The JEDEC map for the GAL22V10 contains the 64 extra fusesfor the electronic signature, for a total of 5892 fuses. However,the GAL22V10 device can still be programmed with a standard22V10 JEDEC map (5828 fuses) with any qualified device pro-grammer.

Security Cell

A security cell is provided in every GAL22V10 device to preventunauthorized copying of the array patterns. Once programmed,this cell prevents further read access to the functional bits in thedevice. This cell can only be erased by re-programming thedevice, so the original configuration can never be examined oncethis cell is programmed. The Electronic Signature is always avail-able to the user, regardless of the state of this control cell.

Latch-Up Protection

GAL22V10 devices are designed with an on-board charge pumpto negatively bias the substrate. The negative bias is of sufficientmagnitude to prevent input undershoots from causing the circuitryto latch. Additionally, outputs are designed with n-channel pullupsinstead of the traditional p-channel pullups to eliminate any pos-sibility of SCR induced latching.

Device Programming

GAL devices are programmed using a Lattice Semiconductor-approved Logic Programmer, available from a number of manu-facturers (see the the GAL Development Tools section). Com-plete programming of the device takes only a few seconds. Eras-ing of the device is transparent to the user, and is done automati-cally as part of the programming cycle.

Typical Input Current

1 . 0 2 . 0 3 . 0 4 . 0 5 . 0- 6 0

0

- 2 0

- 4 0

0

Inpu t Vo ltage (V o lts)

Inp

ut

Cu

rre

nt

(uA

)

Output Register Preload

When testing state machine designs, all possible states and statetransitions must be verified in the design, not just those requiredin the normal machine operations. This is because certain eventsmay occur during system operation that throw the logic into anillegal state (power-up, line voltage glitches, brown-outs, etc.). Totest a design for proper treatment of these conditions, a way mustbe provided to break the feedback paths, and force any desired(i.e., illegal) state into the registers. Then the machine can besequenced and the outputs tested for correct next state condi-tions.

The GAL22V10 device includes circuitry that allows each regis-tered output to be synchronously set either high or low. Thus, anypresent state condition can be forced for test sequencing. Ifnecessary, approved GAL programmers capable of executing testvectors perform output register preload automatically.

Input Buffers

GAL22V10 devices are designed with TTL level compatible in-put buffers. These buffers have a characteristically high imped-ance, and present a much lighter load to the driving logic than bi-polar TTL devices.

The input and I/O pins also have built-in active pull-ups. As a re-sult, floating inputs will float to a TTL high (logic 1). However,Lattice Semiconductor recommends that all unused inputs andtri-stated I/O pins be connected to an adjacent active input, Vcc,or ground. Doing so will tend to improve noise immunity andreduce Icc for the device. (See equivalent input and I/O schemat-ics on the following page.)

Page 17: GAL22V10 Data Sheet

Specifications GAL22V10

17

(Vref Typical = 3.2V)

(Vref Typical = 3.2V)

Circuitry within the GAL22V10 provides a reset signal to all reg-isters during power-up. All internal registers will have their Q out-puts set low after a specified time (tpr, 1µs MAX). As a result, thestate on the registered output pins (if they are enabled) will beeither high or low on power-up, depending on the programmedpolarity of the output pins. This feature can greatly simplify statemachine design by providing a known state on power-up. Thetiming diagram for power-up is shown below. Because of the asyn-

chronous nature of system power-up, some conditions must bemet to guarantee a valid power-up reset of the GAL22V10. First,the Vcc rise must be monotonic. Second, the clock input mustbe at static TTL level as shown in the diagram during power up.The registers will reset within a maximum of tpr time. As in nor-mal system operation, avoid clocking the device until all input andfeedback path setup times have been met. The clock must alsomeet the minimum pulse width requirements.

Vcc

PIN

Vcc Vref

Active Pull-up Circuit

ESD ProtectionCircuit

ESD ProtectionCircuit

Vcc

PIN

Vcc (min.)

tpr

Internal RegisterReset to Logic "0"

Device PinReset to Logic "1"

twl

tsu

Device PinReset to Logic "0"

Vcc

C L K

INTERNAL REGISTERQ - OUTPUT

ACTIVE LOWOUTPUT REGISTER

ACTIVE HIGHOUTPUT REGISTER

Vcc

PIN

VrefTri-StateControl

Active Pull-up Circuit

Feedback(To Input Buffer)

PIN

Feedback

Data Output

Typical Input Typical Output

Power-Up Reset

Input/Output Equivalent Schematics

Page 18: GAL22V10 Data Sheet

Specifications GAL22V10

18

Delta Tpd vs # of OutputsSwitching

-0.3

-0.2

-0.1

0

1 2 3 4 5 6 7 8 9 10

Number of Outputs Switching

Del

ta T

pd (n

s)

RISEFALL

Delta Tco vs # of OutputsSwitching

-0.4

-0.3

-0.2

-0.1

0

1 2 3 4 5 6 7 8 9 10

Number of Outputs Switching

Del

ta T

co (n

s)D

elta

Tco

(ns)

RISEFALL

Delta Tpd vs Output Loading

Output Loading (pF)

Del

ta T

pd (n

s)

RISEFALL

Delta Tco vs Output Loading

RISEFALL

Normalized Tpd vs Vcc

Nor

mal

ized

Tpd

Nor

mal

ized

Tpd

RISEFALL

Normalized Tco vs Vcc

RISEFALL

Normalized Tsu vs Vcc

Supply Voltage (V)Supply Voltage (V)Supply Voltage (V)

RISEFALL

Normalized Tpd vs Temp Normalized Tco vs Temp Normalized Tsu vs Temp

1251007550250-25-551251007550250-25-55

300250200150100500

Output Loading (pF)

300250200150100500

Temperature (deg. C) Temperature (deg. C) Temperature (deg. C)

1251007550250-25-55

RISEFALL

RISEFALL

RISEFALL

5.55.2554.754.50.9

1.3

1.2

1.1

1

0.9

0.8

12

8

4

0

-4

12

8

4

0

-4

1.3

1.2

1.1

1

0.9

0.80.9

1

1.1

1.2

0.95

1

1.05

1.1

Nor

mal

ized

Tco

Nor

mal

ized

Tco

0.9

0.95

1

1.05

1.1

Nor

mal

ized

TN

orm

aliz

ed T

su

0.9

0.95

1

1.05

1.1

5.55.2554.754.5 5.55.2554.754.5

GAL22V10D-4/-5/-7/-10L (PLCC): Typical AC and DC Characteristic Diagrams

Page 19: GAL22V10 Data Sheet

Specifications GAL22V10

19

Vol vs Iol

0

0.2

0.4

0.6

0 5 10 15 20 25 30 35 40

Iol (mA)

Vol

(V)

Voh vs Ioh

0

1

2

3

4

0 5 10 15 20 25 30 35 40 45 50 55 60

Ioh(mA)V

oh (V

)

Voh vs Ioh

3.15

3.25

3.35

3.45

3.55

3.65

3.75

3.85

3.95

0.00 1.00 2.00 3.00 4.00 5.00

Ioh(mA)

Voh

(V)

Normalized Icc vs Vcc

0.8

0.9

1

1.1

1.2

4.5 4.75 5 5.25 5.5

Supply Voltage (V)

Nor

mal

ized

Icc

Normalized Icc vs Temp

0.7

0.8

0.9

1

1.1

1.2

1.3

-55 -25 0 25 50 88 100 125

Temperature (deg. C)

Nor

mal

ized

Icc

Normalized Icc vs Freq

0.95

1

1.05

1.1

1.15

1.2

1 15 25 50 75 100

Frequency (MHz)

Nor

mal

ized

Icc

Input Clamp (Vik)

Vik (V)

Iik (m

A)

Delta Icc vs Vin (1 input)6

5

4

3

2

1

0

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5-3

100

80

60

40

20

0

-2.5 -2 -1.5 -1 -0.5 1

Vin (V)

Del

ta Ic

c (m

A)

GAL22V10D-4/-5/-7/-10L (PLCC): Typical AC and DC Characteristic Diagrams

Page 20: GAL22V10 Data Sheet

Specifications GAL22V10

20

GAL22V10D-7/10L (PDIP): Typical AC and DC Characteristic DiagramsNormalized Tpd vs Vcc

0.9

0.95

1

1.05

1.1

4.5 4.75 5 5.25 5.5

Supply Voltage (V)

Nor

mal

ized

Tpd

RISEFALL

Normalized Tco vs Vcc

0.95

1

1.05

1.1

4.5 4.75 5 5.25 5.5

Supply Voltage (V)N

orm

aliz

ed T

co

RISEFALL

Normalized Tsu vs Vcc

0.8

0.9

1

1.1

1.2

4.5 4.75 5 5.25 5.5

Supply Voltage (V)

Nor

mal

ized

Tsu

RISEFALL

Normalized Tpd vs Temp

0.8

0.9

1

1.1

1.2

1.3

-55 -25 0 25 50 75 100 125

Temperature (deg. C)

Nor

mal

ized

Tpd

RISEFALL

Normalized Tsu vs Temp

0.8

0.9

1

1.1

1.2

1.3

-55 -25 0 25 50 75 100 125

Temperature (deg. C)N

orm

aliz

ed T

su

RISEFALL

Normalized Tco vs Temp

0.8

0.9

1

1.1

1.2

-55 -25 0 25 50 75 100 125

Temperature (deg. C)

Nor

mal

ized

Tco

RISEFALL

Delta Tpd vs # of Outputs Switching

-1.1

-1

-0.9

-0.8

-0.7

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0

1 2 3 4 5 6 7 8 9 10

Number of Outputs Switching

Del

ta T

pd (

ns)

RISEFALL

Delta Tco vs # of Outputs Switching

-1.1

-1

-0.9

-0.8

-0.7

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0

1 2 3 4 5 6 7 8 9 10

Number of Outputs Switching

Del

ta T

co (

ns)

RISEFALL

Delta Tpd vs Output Loading

-4

0

4

8

12

0 50 100 150 200 250 300

Output Loading (pF)

Del

ta T

pd (

ns)

RISEFALL

Delta Tco vs Output Loading

-4

0

4

8

12

0 50 100 150 200 250 300

Output Loading (pF)

Del

ta T

co (

ns)

RISEFALL

Page 21: GAL22V10 Data Sheet

Specifications GAL22V10

21

GAL22V10D-7/10L (PDIP): Typical AC and DC Characteristic Diagrams

Vol vs Iol

0

0.1

0.2

0.3

0.4

0.5

0 5 10 15 20 25 30

Iol (mA)

Vol

(V

)

Voh vs Ioh

0

1

2

3

4

0 5 10 15 20 25 30 35 40

Ioh (mA)

Voh

(V

)

Voh vs Ioh

2.8

2.9

3

3.1

3.2

3.3

3.4

3.5

3.6

3.7

3.8

0.00 1.00 2.00 3.00 4.00 5.00

Ioh (mA)

Voh

(V

)

Normalized Icc vs Vcc

0.85

0.9

0.95

1

1.05

1.1

1.15

4.5 4.75 5 5.25 5.5

Supply Voltage (V)

Nor

mal

ized

Icc

Normalized Icc vs Temp

0.7

0.8

0.9

1

1.1

1.2

1.3

-55 0 25 100

Temperature (deg. C)

Nor

mal

ized

Icc

Normalized Icc vs Freq

0.95

1

1.05

1.1

1.15

1.2

1 15 25 50 75 100

Frequency (MHz)

Nor

mal

ized

Icc

Input Clamp (Vik)0

10

20

30

40

50

60

70

80

90

100-2.5 -2 -1.5 -1 -0.5 0

Vik (V)

Iik (

mA

)

Delta Isb vs Vin (1 input)

0

1

2

3

4

5

6

7

8

9

10

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Vin (V)

Del

ta Ic

c (m

A)

Page 22: GAL22V10 Data Sheet

Specifications GAL22V10

22

Normalized Tpd vs Vcc

0.9

0.95

1

1.05

1.1

4.5 4.75 5 5.25 5.5

Supply Voltage (V)

Nor

mal

ized

Tpd RISE

FALL

Normalized Tco vs Vcc

0.9

0.95

1

1.05

1.1

1.15

4.5 4.75 5 5.25 5.5

Supply Voltage (V)

Nor

mal

ized

Tco

RISEFALL

Normalized Tsu vs Vcc

0.8

0.9

1

1.1

1.2

4.5 4.75 5 5.25 5.5

Supply Voltage (V)

Nor

mal

ized

Tsu

RISEFALL

Normalized Tpd vs Temp

0.8

0.9

1

1.1

1.2

1.3

-55 -25 0 25 50 75 100 125

Temperature (deg. C)

Nor

mal

ized

Tpd

RISEFALL

Normalized Tsu vs Temp

0.75

0.85

0.95

1.05

1.15

1.25

1.35

1.45

-55 -25 0 25 50 75 100 125

Temperature (deg. C)N

orm

aliz

ed T

su

RISEFALL

Normalized Tco vs Temp

0.8

0.9

1

1.1

1.2

1.3

-55 -25 0 25 50 75 100 125

Temperature (deg. C)

Nor

mal

ized

Tco

RISEFALL

Delta Tpd vs # of OutputsSwitching

-1.2

-0.8

-0.4

0

1 2 3 4 5 6 7 8 9 10

Number of Outputs Switching

Del

ta T

pd (n

s)

RISEFALL

Delta Tco vs # of OutputsSwitching

-1.2

-0.8

-0.4

0

1 2 3 4 5 6 7 8 9 10

Number of Outputs Switching

Del

ta T

co (n

s)

RISEFALL

Delta Tpd vs Output Loading

-8

-4

0

4

8

12

16

20

0 50 100 150 200 250 300

Output Loading (pF)

Del

ta T

pd (n

s)

RISEFALL

Delta Tco vs Output Loading

-4

0

4

8

12

16

20

0 50 100 150 200 250 300

Output Loading (pF)

Del

ta T

co (n

s)

RISEFALL

GAL22V10D-10Q and Slower (L & Q): Typical AC and DC Characteristic Diagrams

Page 23: GAL22V10 Data Sheet

Specifications GAL22V10

23

Vol vs Iol

0

0.2

0.4

0.6

0 5 10 15 20 25 30 35 40

Iol (mA)

Vol

(V)

Voh vs Ioh

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

0 20 40 60

Ioh (mA)V

oh (V

)

Voh vs Ioh

2.5

3

3.5

4

4.5

0.00 1.00 2.00 3.00 4.00 5.00

Ioh (mA)

Voh

(V)

Normalized Icc vs Vcc

0.8

0.9

1

1.1

1.2

4.5 4.75 5 5.25 5.5

Supply Voltage (V)

Nor

mal

ized

Icc

Normalized Icc vs Temp

0.75

0.85

0.95

1.05

1.15

1.25

1.35

-55 -25 0 25 50 88 100 125

Temperature (deg. C)

Nor

mal

ized

Icc

Normalized Icc vs Freq

0.9

1

1.1

1.2

1.3

1.4

1 15 25 50 75 100

Frequency (MHz)

Nor

mal

ized

Icc

Input Clamp (Vik)0

10

20

30

40

50

60

70

80

90-2.5 -2 -1.5 -1 -0.5 0

Vik (V)

Iik (m

A)

Delta Icc vs Vin (1 input)

0

1

2

3

4

5

6

7

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Vin (V)

Del

ta Ic

c (m

A)

GAL22V10DQ-10 and Slower (L & Q): Typical AC and DC Characteristic Diagrams

Page 24: GAL22V10 Data Sheet

Specifications GAL22V10

24

Normalized Tpd vs Vcc

Supply Voltage (V)

Nor

mal

ized

Tpd

0.8

0.9

1

1.1

1.2

4.50 4.75 5.00 5.25 5.50

PT H->L

PT L->H

Normalized Tco vs Vcc

Supply Voltage (V)N

orm

aliz

ed T

co

0.8

0.9

1

1.1

1.2

4.50 4.75 5.00 5.25 5.50

RISE

FALL

Normalized Tsu vs Vcc

Supply Voltage (V)

Nor

mal

ized

Tsu

0.8

0.9

1

1.1

1.2

4.50 4.75 5.00 5.25 5.50

PT H->L

PT L->H

Normalized Tpd vs Temp

Temperature (deg. C)

Nor

mal

ized

Tpd

0.7

0.8

0.9

1

1.1

1.2

1.3

-55 -25 0 25 50 75 100 125

PT H->L

PT L->H

Normalized Tco vs Temp

Temperature (deg. C)

Nor

mal

ized

Tco

0.7

0.8

0.9

1

1.1

1.2

1.3

-55 -25 0 25 50 75 100 125

RISE

FALL

Normalized Tsu vs Temp

Temperature (deg. C)N

orm

aliz

ed T

su

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

-55 -25 0 25 50 75 100 125

PT H->L

PT L->H

Delta Tpd vs # of OutputsSwitching

Number of Outputs Switching

Del

ta T

pd (

ns)

-1.5

-1.25

-1

-0.75

-0.5

-0.25

0

1 2 3 4 5 6 7 8 9 10

RISE

FALL

Delta Tco vs # of OutputsSwitching

Number of Outputs Switching

Del

ta T

co (

ns)

-1

-0.75

-0.5

-0.25

0

1 2 3 4 5 6 7 8 9 10

RISE

FALL

Delta Tpd vs Output Loading

Output Loading (pF)

Del

ta T

pd (

ns)

-2

0

2

4

6

8

10

12

0 50 100 150 200 250 300

RISE

FALL

Delta Tco vs Output Loading

Output Loading (pF)

Del

ta T

co (

ns)

-2

0

2

4

6

8

10

12

0 50 100 150 200 250 300

RISE

FALL

GAL22V10C-5/-7/-10: Typical AC and DC Characteristic Diagrams

Page 25: GAL22V10 Data Sheet

Specifications GAL22V10

25

Vol vs Iol

Iol (mA)

Vol

(V

)

0

0.5

1

1.5

2

2.5

3

0.00 20.00 40.00 60.00 80.00 100.00

Voh vs Ioh

Ioh(mA)V

oh (

V)

0

1

2

3

4

5

0.00 10.00 20.00 30.00 40.00 50.00 60.00

Voh vs Ioh

Ioh(mA)

Voh

(V

)

3

3.25

3.5

3.75

4

0.00 1.00 2.00 3.00 4.00

Normalized Icc vs Vcc

Supply Voltage (V)

Nor

mal

ized

Icc

0.80

0.90

1.00

1.10

1.20

4.50 4.75 5.00 5.25 5.50

Normalized Icc vs Temp

Temperature (deg. C)

Nor

mal

ized

Icc

0.8

0.9

1

1.1

1.2

-55 -25 0 25 50 75 100 125

Normalized Icc vs Freq.

Frequency (MHz)N

orm

aliz

ed I

cc

0.90

1.00

1.10

1.20

1.30

0 25 50 75 100

Delta Icc vs Vin (1 input)

Vin (V)

Del

ta I

cc (

mA

)

0

2

4

6

8

10

0.00 0.50 1.00 1.50 2.00 2.50 3.00 3.50 4.00

Input Clamp (Vik)

Vik (V)

Iik (

mA

)

0

10

20

30

40

50

60

70

-2.50 -2.00 -1.50 -1.00 -0.50 0.00

GAL22V10C-5/-7/-10: Typical AC and DC Characteristic Diagrams

Page 26: GAL22V10 Data Sheet

Specifications GAL22V10

26

Normalized Tpd vs Vcc

Supply Voltage (V)

Nor

mal

ized

Tpd

0.8

0.9

1

1.1

1.2

4.50 4.75 5.00 5.25 5.50

PT H->L

PT L->H

Normalized Tco vs Vcc

Supply Voltage (V)N

orm

aliz

ed T

co

0.8

0.9

1

1.1

1.2

4.50 4.75 5.00 5.25 5.50

RISE

FALL

Normalized Tsu vs Vcc

Supply Voltage (V)

Nor

mal

ized

Tsu

0.8

0.9

1

1.1

1.2

4.50 4.75 5.00 5.25 5.50

PT H->L

PT L->H

Normalized Tpd vs Temp

Temperature (deg. C)

Nor

mal

ized

Tpd

0.7

0.8

0.9

1

1.1

1.2

1.3

-55

-25 0

25

50

75

10

0

12

5

PT H->L

PT L->H

Normalized Tco vs Temp

Temperature (deg. C)

Nor

mal

ized

Tco

0.7

0.8

0.9

1

1.1

1.2

1.3

-55

-25 0

25

50

75

10

0

12

5

RISE

FALL

Normalized Tsu vs Temp

Temperature (deg. C)

Nor

mal

ized

Tsu

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

-55

-25 0

25

50

75

10

0

12

5

PT H->L

PT L->H

Delta Tpd vs # of OutputsSwitching

Number of Outputs Switching

Del

ta T

pd (

ns)

-2

-1.5

-1

-0.5

0

1 2 3 4 5 6 7 8 9 10

RISE

FALL

Delta Tco vs # of OutputsSwitching

Number of Outputs Switching

Del

ta T

co (

ns)

-2

-1.5

-1

-0.5

0

1 2 3 4 5 6 7 8 9 10

RISE

FALL

Delta Tpd vs Output Loading

Output Loading (pF)

Del

ta T

pd (

ns)

-2

0

2

4

6

8

10

12

0 50 100 150 200 250 300

RISE

FALL

Delta Tco vs Output Loading

Output Loading (pF)

Del

ta T

co (

ns)

-2

0

2

4

6

8

10

12

0 50 100 150 200 250 300

RISE

FALL

GAL22V10B-7/-10/-15/-25L: Typical AC and DC Characteristic Diagrams

Page 27: GAL22V10 Data Sheet

Specifications GAL22V10

27

Vol vs Iol

Iol (mA)

Vol

(V

)

0

0.5

1

1.5

2

2.5

3

0.00 20.00 40.00 60.00 80.00 100.00

Voh vs Ioh

Ioh(mA)V

oh (

V)

0

1

2

3

4

5

0.00 10.00 20.00 30.00 40.00 50.00 60.00

Voh vs Ioh

Ioh(mA)

Voh

(V

)

3.5

3.75

4

4.25

4.5

0.00 1.00 2.00 3.00 4.00

Normalized Icc vs Vcc

Supply Voltage (V)

Nor

mal

ized

Icc

0.80

0.90

1.00

1.10

1.20

4.50 4.75 5.00 5.25 5.50

Normalized Icc vs Temp

Temperature (deg. C)

Nor

mal

ized

Icc

0.8

0.9

1

1.1

1.2

-55 -25 0 25 50 75 100 125

Normalized Icc vs Freq.

Frequency (MHz)N

orm

aliz

ed I

cc

0.80

0.90

1.00

1.10

1.20

0 25 50 75 100

Delta Icc vs Vin (1 input)

Vin (V)

Del

ta I

cc (

mA

)

0

2

4

6

8

10

0.00 0.50 1.00 1.50 2.00 2.50 3.00 3.50 4.00

Input Clamp (Vik)

Vik (V)

Iik (

mA

)

0

10

20

30

40

50

60

70

80

90

100

-2.00 -1.50 -1.00 -0.50 0.00

GAL22V10B-7/-10/-15/-25L: Typical AC and DC Characteristic Diagrams

Page 28: GAL22V10 Data Sheet

Specifications GAL22V10

28

Normalized Tpd vs Vcc

Supply Voltage (V)

Nor

mal

ized

Tpd

0.8

0.9

1

1.1

1.2

4.50 4.75 5.00 5.25 5.50

Normalized Tco vs Vcc

Supply Voltage (V)N

orm

aliz

ed T

co

0.8

0.9

1

1.1

1.2

4.50 4.75 5.00 5.25 5.50

Normalized Tsu vs Vcc

Supply Voltage (V)

Nor

mal

ized

Tsu

0.8

0.9

1

1.1

1.2

4.50 4.75 5.00 5.25 5.50

Normalized Tpd vs Temp

Temperature (deg. C)

Nor

mal

ized

Tpd

0.7

0.8

0.9

1

1.1

1.2

1.3

-55

-25 0

25

50

75

10

0

12

5

Normalized Tco vs Temp

Temperature (deg. C)

Nor

mal

ized

Tco

0.7

0.8

0.9

1

1.1

1.2

1.3

-55

-25 0

25

50

75

10

0

12

5

Normalized Tsu vs Temp

Temperature (deg. C)

Nor

mal

ized

Tsu

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

-55

-25 0

25

50

75

10

0

12

5

Delta Tpd vs # of OutputsSwitching

Number of Outputs Switching

Del

ta T

pd (

ns)

-1

-0.75

-0.5

-0.25

0

1 2 3 4 5 6 7 8 9 10

Delta Tco vs # of OutputsSwitching

Number of Outputs Switching

Del

ta T

co (

ns)

-2

-1.5

-1

-0.5

0

1 2 3 4 5 6 7 8 9 10

Delta Tpd vs Output Loading

Output Loading (pF)

Del

ta T

pd (

ns)

-2

0

2

4

6

8

10

12

0 50 100 150 200 250 300

RISE

FALL

Delta Tco vs Output Loading

Output Loading (pF)

Del

ta T

co (

ns)

-2

0

2

4

6

8

10

12

14

0 50 100 150 200 250 300

RISE

FALL

GAL22V10B-15/-25Q: Typical AC and DC Characteristic Diagrams

Page 29: GAL22V10 Data Sheet

Specifications GAL22V10

29

Vol vs Iol

Iol (mA)

Vol

(V

)

0

0.2

0.4

0.6

0.8

1

0.00 20.00 40.00

Voh vs Ioh

Ioh(mA)V

oh

(V

)

0

1

2

3

4

5

0.00 10.00 20.00 30.00 40.00 50.00 60.00 70.00 80.00

Voh vs Ioh

Ioh(mA)

Voh

(V

)

3

3.25

3.5

3.75

4

0.00 1.00 2.00 3.00 4.00

Normalized Icc vs Vcc

Supply Voltage (V)

Nor

mal

ized

Icc

0.80

0.90

1.00

1.10

1.20

4.50 4.75 5.00 5.25 5.50

Normalized Icc vs Temp

Temperature (deg. C)

Nor

mal

ized

Icc

0.7

0.8

0.9

1

1.1

1.2

1.3

-55 -25 0 25 75 100 125

Normalized Icc vs Freq.

Frequency (MHz)N

orm

aliz

ed I

cc

0.80

1.00

1.20

1.40

1.60

1.80

2.00

0 25 50 75 100

Delta Icc vs Vin (1 input)

Vin (V)

Del

ta I

cc (

mA

)

0

2

4

6

8

10

0.20 0.70 1.20 1.70 2.20 2.70 3.20 3.70

Input Clamp (Vik)

Vik (V)

Iik (

mA

)

0

10

20

30

40

50

60

70

80

90

-2.00 -1.50 -1.00 -0.50 0.00

GAL22V10B-15/-25Q: Typical AC and DC Characteristic Diagrams