35
Gamma-ray pulsars discovery by Fermi Space Observatory Sergei Popov (SAI MSU)

Gamma-ray pulsars discovery by Fermi Space Observatory Sergei Popov (SAI MSU)

Embed Size (px)

Citation preview

Page 1: Gamma-ray pulsars discovery by Fermi Space Observatory Sergei Popov (SAI MSU)

Gamma-ray pulsars discovery by Fermi Space Observatory

Sergei Popov(SAI MSU)

Page 2: Gamma-ray pulsars discovery by Fermi Space Observatory Sergei Popov (SAI MSU)

Plan

1. General intro2. Pulsar models3. Population synthesis4. Summary of discoveries

Page 3: Gamma-ray pulsars discovery by Fermi Space Observatory Sergei Popov (SAI MSU)

EGRET legacy

Just 6 pulsars:

• Crab• Geminga• Vela• PSR B1055-52• PSR B1706-44 • PSR B1951+32

Nolan et al. 1996astro-ph/9607079

(plus one by COMPTEL)

Page 4: Gamma-ray pulsars discovery by Fermi Space Observatory Sergei Popov (SAI MSU)

Fermi PSR light curves

The first catalogue of Fermi pulsars: arXiv:0910.1608

Page 5: Gamma-ray pulsars discovery by Fermi Space Observatory Sergei Popov (SAI MSU)

Galactic map

arXiv:0910.1608

Page 6: Gamma-ray pulsars discovery by Fermi Space Observatory Sergei Popov (SAI MSU)

Luminosity vs Edot

arXiv:0910.1608

Page 7: Gamma-ray pulsars discovery by Fermi Space Observatory Sergei Popov (SAI MSU)

Spectra

arXiv:0910.1608 arXiv: 1007.1142

Geminga

Page 8: Gamma-ray pulsars discovery by Fermi Space Observatory Sergei Popov (SAI MSU)

Light cylinder magnetic field vs. age

Caraveo arXiv: 1009.2421

Total of 46 pulsars 29 of which detected in radio (further divided between 8 mPSRs and 21 “classical” pulsars) and 17 selected in gamma-rays (i.e. 16 discovered by LAT + Geminga)

Page 9: Gamma-ray pulsars discovery by Fermi Space Observatory Sergei Popov (SAI MSU)

Emission geometry

D. Thomson, NASA/GSFC)From Encyclopedia article 'Gamma-ray astronomy'

gsfc.nasa.gov

Page 10: Gamma-ray pulsars discovery by Fermi Space Observatory Sergei Popov (SAI MSU)

Crab pulsar profile

arXiv: 1007.2183Gamma pulse is shiftedrelative to the radio pulse

Now there are examplesthat radio and gammapulses can be both:at nearly the same positions andsignificantly shifted.

Gamma – OG,Radio – TPC?

Page 11: Gamma-ray pulsars discovery by Fermi Space Observatory Sergei Popov (SAI MSU)

Several models

• Polar cap (inner gap or space-charge limited flow)• Outer gap• Slot gap and TPC• Striped wind

Page 12: Gamma-ray pulsars discovery by Fermi Space Observatory Sergei Popov (SAI MSU)

Inner gap (polar cap) model

Page 13: Gamma-ray pulsars discovery by Fermi Space Observatory Sergei Popov (SAI MSU)

Outer gap model

Page 14: Gamma-ray pulsars discovery by Fermi Space Observatory Sergei Popov (SAI MSU)

Slot gap and TPC model

Gonthier et al. 2004 Dyks, Rudak 2003

Page 15: Gamma-ray pulsars discovery by Fermi Space Observatory Sergei Popov (SAI MSU)

Polar vs. Slot (TPC) gap

Harding arXiv:0710.3517

Page 16: Gamma-ray pulsars discovery by Fermi Space Observatory Sergei Popov (SAI MSU)

In brief

Fermi data favors outer gap

Page 17: Gamma-ray pulsars discovery by Fermi Space Observatory Sergei Popov (SAI MSU)

Population synthesis of gamma-ray PSRs

(following Gonthier et al astro-ph/0312565)

Ingredients1. Geometry of radio and gamma beam2. Period evolution3. Magnetic field evolution4. Initial spatial distribution5. Initial velocity distribution6. Radio and gamma spectra7. Radio and gamma luminosity8. Properties of gamma detectors9. Radio surveys to compare with.

Tasks

1. To test models2. To make predictions for GLAST and AGILE

Page 18: Gamma-ray pulsars discovery by Fermi Space Observatory Sergei Popov (SAI MSU)

Beams

1. Radio beam

2. Gamma beam.

Geometry of gamma-ray beam was adapted from the slot gap model (Muslimov, Harding 2003)

Page 19: Gamma-ray pulsars discovery by Fermi Space Observatory Sergei Popov (SAI MSU)

Other properties• Pulsars are initially distributed in an exponential (in R and z) disc,

following Paczynski (1990).• Birthrate is 1.38 per century• Velocity distribution from Arzoumanian, Chernoff and Cordes (2002).• Dispersion measure is calculated with the new model by Cordes and Lazio• Initial period distribution is taken to be flat from 0 to 150 ms.• Magnetic field decays with the time scale 2.8 Myrs

(note, that it can be mimicked by the evolution of the inclination angle between spin and magnetic axis).

The code is run till the number of detected (artificially) pulsars is 10 timeslarger than the number of really detected objects.

Results are compared with nine surveys (including PMBPS)

Page 20: Gamma-ray pulsars discovery by Fermi Space Observatory Sergei Popov (SAI MSU)

Drawbacks of the scenario• Simplified initial spatial distribution (no spiral arms)• Uncertainties in beaming at different energies• Uncertainties and manipulations with luminosity• Unknown correlations between parameters

Page 21: Gamma-ray pulsars discovery by Fermi Space Observatory Sergei Popov (SAI MSU)

P-Pdot diagrams

Detected Simulated

Page 22: Gamma-ray pulsars discovery by Fermi Space Observatory Sergei Popov (SAI MSU)

Comparison of distributions

Shaded – detected, plain - simulated

Page 23: Gamma-ray pulsars discovery by Fermi Space Observatory Sergei Popov (SAI MSU)

Distributions on the sky

Page 24: Gamma-ray pulsars discovery by Fermi Space Observatory Sergei Popov (SAI MSU)

Results for Fermi

Crosses – radio-quietDots – radio-loud

Examples of pulse profiles

Page 25: Gamma-ray pulsars discovery by Fermi Space Observatory Sergei Popov (SAI MSU)

Predictions for Fermi and AGILE

(prediction just for detection as a source, not as a pulsating sources!)

Page 26: Gamma-ray pulsars discovery by Fermi Space Observatory Sergei Popov (SAI MSU)

Spatial distribution of gamma sources

Page 27: Gamma-ray pulsars discovery by Fermi Space Observatory Sergei Popov (SAI MSU)

New population synthesis

Watters, Romani arXiv: 1009.5305

Outer gap model is prefered

Page 28: Gamma-ray pulsars discovery by Fermi Space Observatory Sergei Popov (SAI MSU)

Another one

Takata et al. arXiv: 1010.5870

Outer gap

Page 29: Gamma-ray pulsars discovery by Fermi Space Observatory Sergei Popov (SAI MSU)

The first Fermi catalogue56 pulsating sources out from 1451 sources in total

arXiv: 1002.2280

Page 30: Gamma-ray pulsars discovery by Fermi Space Observatory Sergei Popov (SAI MSU)

Blind searches

arXiv: 1007.2183

PSR J1957+5033

24 PSRs found in blind searches.

See details in arXiv: 1009.0748 and arXiv: 1006.2134

Page 31: Gamma-ray pulsars discovery by Fermi Space Observatory Sergei Popov (SAI MSU)

Blind search

arXiv: 1009.0748

Up to now few (3) are foundalso in radio, but it is not easy!

Page 32: Gamma-ray pulsars discovery by Fermi Space Observatory Sergei Popov (SAI MSU)

Pulsar timing

arXiv: 1007.2183

PSR J1836+592518 months timing

Page 33: Gamma-ray pulsars discovery by Fermi Space Observatory Sergei Popov (SAI MSU)

Millisecond pulsars

PSR J0218+4232 was probably detected by EGRET.With Fermi we now have 11+18 clearly detected in gamma mPSRs.Many “black widows”.No radio-quiet mPSR, yet.Plus, there are 8 gamma-sources coincident with globular clusters.

More are coming.

Page 34: Gamma-ray pulsars discovery by Fermi Space Observatory Sergei Popov (SAI MSU)

P-Pdot diagram

arXiv: 1007.2183

63 PSRs detected by Fermi

Page 35: Gamma-ray pulsars discovery by Fermi Space Observatory Sergei Popov (SAI MSU)

Bottom line

- 63 clearly detected pulsating PSRs: ~20 radio selected (with 7 known from CGRO time) 24 – in blind searches (several detected also in radio) 27 - mPSRs

- 18 mPSRs candidates from radio (non-pulsating in gamma)

About radio pulsar populationsee Lorimer arXiv: 1008.1928

The outer gap models seems to bemore probable on the base of Fermi data.