11
SPECIAL ISSUE Geochemistry and health aspects of F-rich mountainous streams and groundwaters from sierras Pampeanas de Cordoba, Argentina M. G. Garcı ´a  K. L. Lecomte  Y. Stupar  S. M. Formica  M. Barrionuevo  M. Vesco  R. Gallara ´  R. Ponce Recei ved: 15 Novembe r 2010 / Accep ted: 8 March 2011 / Publi shed online : 18 March 2011  Springer-Verlag 2011 Abstract  Symptoms of de nt al uor os is ha ve be en obse rve d in rural communit ies located in the Si err as Pampea nas de Co ´ rdoba, a mou nta inous are a in Cen tral Argentina. The clinical assessment was performed in the Charbonier Department, where the uoride (F - ) intake was determined to be 3.90  ± 0.20 mg day -1 (n  = 16). In this community, mild and severe uorosis reach an incidence of 86.7% (total teeth surface = 636 teeth) among the children pop ula tion . To det ermine the ori gin and dis tri buti on of uorine in natural water s from the Char bonier Department and nearby regions, sampling was performed in the area covering the San Marcos River basin. The obtained results show that F - con centra tions var y bet wee n  *1 to *2.5 mg l -1 , wi th an outlier value of 8 mg l -1 . The spa tia l distri but ion of F - shows that the lowest concen- trations are found at the basin’ s cat chment s. Maximum values are located in two sectors of the basin: the Char- bonier depression in the eastern part and at the San Marcos villag e, downstream the main collecto r, in the western part of the ba sin . In these two regi ons, the F - conte nts in ground - and sur fac e wat ers are [2.0 mg l -1 and nearly constant. Dissolved F - in natural waters from the study area has its origin in the weathering of F-bearing minerals present in the region’s dominant lithology. The extent of mineral weathering is mostly determined by the residence time of wa ter wit hin the aqu ati c res ervoir . Longer res i- dence times and a ma jor sol id–wat er int era ctio n lead to enhanced release of F - . This explains the higher F - con- centrations found in basin areas with lower run off. The remo val of F - from wat er app ear s to occ ur by nei ther uorite precipitation, nor by adsorption. Hence, variations in F - concentrations seem to be more related to regional hydrological conditions. Keywords  Dental uorosis   Geogenic F-biotites  Pampean ranges    Weathering Introduction High levels of naturally occurring F - in Argentina have been traditionally described in groundwaters from different par ts of the Cha cop amp ean pla in (i. e., Fioren tino et al. 2007; Go ´ mez et al.  2009; Kruse and Ainsil 2003; Warren et al.  2005), and the source was generally attributed to the presence of volcanic shards spread within the loessic sed- iments that are in contact with these water reservoirs. It is estimated that about 1.2 million inhabitants in the Chaco Pampean plain drink groundwaters with contents of uo- ride tha t exc eed the Arg ent ine an and the inte rnat ional guideline value of 1.5 mg l -1 for drinking water (Co ´ digo Alimentario Argentino 1994; WHO World Health Orga- nization 2004). In contrast, there are almost no references in the scientic literature about the occurrence of F - -rich river waters in the mountainous region of Sierras Pampe- anas (central and north Argentina), where the occurrence of F-bearing minerals in crystalline rocks from the northern to M. G. Garcı ´a    K. L. Lecomte   S. M. Formica Centro de Investigaciones en Ciencias de la Tierra (CICTERRA/CIGeS) CONICET, Co ´ rdoba, Argentina M. G. Garcı ´a (&)    K. L. Lecomte   Y. Stupar   S. M. Formica    M. Barrionuevo    M. Vesco FCEF yN, Univer sidad Nacional de Co ´ rdoba, Av. Ve ´ lez Sarseld 1611, X5016CGA Co ´ rdoba, Argentina e-mail: [email protected] R. Gallar a ´    R. Ponce Ca ´ tedra ‘‘A’’ de Quı ´mica y Fı ´sica Biolo ´ gicas, Facultad de Odontologı ´a, Universidad Nacional de Co ´ rdoba, Co ´ rdoba, Argentina  1 3 Environ Eart h Sci (2012) 65:535 –545 DOI 10.1007/s12665-011-1006-z

Garcia Et Al 2012

Embed Size (px)

Citation preview

8/11/2019 Garcia Et Al 2012

http://slidepdf.com/reader/full/garcia-et-al-2012 1/11

S P E C I A L I S S U E

Geochemistry and health aspects of F-rich mountainous streamsand groundwaters from sierras Pampeanas de Cordoba,

Argentina

M. G. Garcıa   • K. L. Lecomte   • Y. Stupar   •

S. M. Formica   • M. Barrionuevo   • M. Vesco   •

R. Gallara   • R. Ponce

Received: 15 November 2010 / Accepted: 8 March 2011 / Published online: 18 March 2011  Springer-Verlag 2011

Abstract   Symptoms of dental fluorosis have been

observed in rural communities located in the SierrasPampeanas de Cordoba, a mountainous area in Central

Argentina. The clinical assessment was performed in the

Charbonier Department, where the fluoride (F-) intake was

determined to be 3.90  ±  0.20 mg day-1 (n  =  16). In this

community, mild and severe fluorosis reach an incidence of 

86.7% (total teeth surface =  636 teeth) among the children

population. To determine the origin and distribution of 

fluorine in natural waters from the Charbonier Department

and nearby regions, sampling was performed in the area

covering the San Marcos River basin. The obtained results

show that F- concentrations vary between   *1 to

*2.5 mg l-1, with an outlier value of 8 mg l-1. The

spatial distribution of F- shows that the lowest concen-

trations are found at the basin’s catchments. Maximum

values are located in two sectors of the basin: the Char-

bonier depression in the eastern part and at the San Marcos

village, downstream the main collector, in the western part

of the basin. In these two regions, the F- contents in

ground- and surface waters are [2.0 mg l-1 and nearly

constant. Dissolved F- in natural waters from the study

area has its origin in the weathering of F-bearing minerals

present in the region’s dominant lithology. The extent of mineral weathering is mostly determined by the residence

time of water within the aquatic reservoir. Longer resi-

dence times and a major solid–water interaction lead to

enhanced release of F-. This explains the higher F- con-

centrations found in basin areas with lower run off. The

removal of F- from water appears to occur by neither

fluorite precipitation, nor by adsorption. Hence, variations

in F- concentrations seem to be more related to regional

hydrological conditions.

Keywords   Dental fluorosis    Geogenic F-biotites 

Pampean ranges    Weathering

Introduction

High levels of naturally occurring F- in Argentina have

been traditionally described in groundwaters from different

parts of the Chacopampean plain (i.e., Fiorentino et al.

2007; Gomez et al. 2009; Kruse and Ainsil 2003; Warren

et al. 2005), and the source was generally attributed to the

presence of volcanic shards spread within the loessic sed-

iments that are in contact with these water reservoirs. It is

estimated that about 1.2 million inhabitants in the Chaco

Pampean plain drink groundwaters with contents of fluo-

ride that exceed the Argentinean and the international

guideline value of 1.5 mg l-1 for drinking water (Codigo

Alimentario Argentino  1994; WHO World Health Orga-

nization 2004). In contrast, there are almost no references

in the scientific literature about the occurrence of F--rich

river waters in the mountainous region of Sierras Pampe-

anas (central and north Argentina), where the occurrence of 

F-bearing minerals in crystalline rocks from the northern to

M. G. Garcıa    K. L. Lecomte    S. M. Formica

Centro de Investigaciones en Ciencias de la Tierra(CICTERRA/CIGeS) CONICET, Cordoba, Argentina

M. G. Garcıa (&)    K. L. Lecomte    Y. Stupar  S. M. Formica     M. Barrionuevo    M. Vesco

FCEFyN, Universidad Nacional de Cordoba,

Av. Velez Sarsfield 1611, X5016CGA Cordoba, Argentina

e-mail: [email protected]

R. Gallara   R. Ponce

Catedra ‘‘A’’ de Quımica y Fısica Biologicas,

Facultad de Odontologıa, Universidad Nacional de Cordoba,

Cordoba, Argentina

 1 3

Environ Earth Sci (2012) 65:535–545

DOI 10.1007/s12665-011-1006-z

8/11/2019 Garcia Et Al 2012

http://slidepdf.com/reader/full/garcia-et-al-2012 2/11

the southernmost extreme have been extensively informed

(e.g. Colombo et al. 2010; Dahlquist et al. 2006, 2010).

Fluoride has very interesting properties related to human

health, particularly in preventing dental caries. However,

when its concentration in drinking water is higher than

1 mg l-1, a clinical condition called dental fluorosis may

appear. This consists of a dental enamel hypomineraliza-

tion that manifest through a greater surface and subsurfaceporosity than normal enamel, and which develops as a

result of an excessive fluoride intake during its formation

(Burt and Eklund   1992). Typical symptoms of dental

fluorosis are fine white stripes to dark stains in the teeth

surface.

Dental fluorosis in primary dentition is often described

as less severe than that found in permanent teeth (Fejeskov

et al. 1988), but fluorosis in primary teeth usually predicts

the occurrence of the illness in the permanent dentition

(Mann et al.   1990; Warren et al.   2001). The primary

molars, especially the second molars, are usually the most

affected (Browne et al. 2005; Weeks et al. 1993).A number of studies have described the prevalence of 

dental fluorosis worldwide, and in most cases, the illness is

closely associated with the consumption of F-rich waters

(i.e., Dean et al.   1950; Milsom et al.   1996; Oruc   2008;

Shitumbanuma et al. 2006; Yadav et al.  2009). The inci-

dence of this illness is also closely correlated with climatic

conditions, eating habits, and the social status of the

population.

Most of the fluoride found in natural waters is geo-

genic. Because fluorine is an incompatible lithophile

element (Faure 1991), it preferentially partitions into sili-

cate melts as magmatic crystallization proceeds (Xiaolin

and Zhenhua 1998). For that reason, F-bearing minerals are

generally associated with late-stage pegmatite granites,

hydrothermal vein deposits and rocks that crystallize from

highly evolved pristine magmas (Nagadu et al.  2003;

Scaillet and Macdonald  2004; Taylor and Fallick   1997).

Among primary minerals, biotite and muscovite may

contain about 1 wt% of F, while contents are higher in

accessory minerals, such as fluorapatite (*1.5 wt%),

apatite (*4 wt%), topaz (*11.5 wt%), and fluorite

(*48 wt%) (Bailey 1984).

In this paper, the geochemical and health aspects of the

occurrence of F-rich waters in a mountainous granitic

region in central Argentina are analyzed. Geochemical

assessment involves the identification of sources and the

proposal of some mechanisms that explain the variability

of F- concentrations within the basin. Health aspects

include the investigation of clinical evidence and fluoride

intake in a small community of the region. The achieved

conclusions may also be extrapolated to other sectors of the

Sierras Pampeanas region with similar lithology and

environmental conditions.

Study area

The study area is a mountainous region located in the

northern Sierras Pampeanas of Cordoba, Argentina,

between 30440 and 30550 S, and 64460 and 64280 W

(Fig. 1). Metamorphic rocks of middle to high amphibolite

facies are the most widespread component of the basement.

Medium-grade para- and ortho- gneisses and schists con-stitute the dominant lithology. Subordinate amounts of 

marble, amphibolite and discontinuous strings of ultrabasic

rocks complete the association (Rapela et al. 1998).

Igneous rocks in the northern Sierras Pampeanas of 

Cordoba are represented by a series of plutons emplaced

into medium grade polymetamorphic basement (Rapela

et al.  1998) along a prominent shear zone (Hockenreiner

et al.   2003). The intrusion of these granitoids with an

A-type signature (Dahlquist et al.  2006) followed several

periods of intense magmatic activity: Middle Cambrian,

Early Middle Ordovician, and Middle Devonian—Lower

Carboniferous. The Carboniferous granites were emplacedat shallow depth and are dominated by facies with K-fel-

spar megacrysts (Dahlquist et al. 2010).

Within the study area, two main granitic bodies are

emplaced: La Fronda, a trondhjemite–tonalite unit and the

Capilla del Monte monzogranite (Fig. 1). The first magmatic

unit was described by Caffe (1993), Lyons et al. (1997) and

Massabie (1982) and was geochemically characterized by

Rapelaetal.(1998). It is an ovoidal pluton that covers an area

of about 25 km2 and intrudes the gneisses, schists and

amphibolites of the Cruz del Eje-La Falda Metamorphic

Complex. La Fronda is a leucotonalite with granodioriticand

granitic facies, light gray colour, equigranular texture of 

coarse grain (2–10 mm), made of 30–40% quartz, 35–50%

plagioclase, 2–4% K-feldspar, 5–16% muscovite (primary

and secondary), and 3–6% biotite. Accessory minerals are

apatite, zircon, monazite, and opaques. Secondary epidote

and chlorite are found as alteration assemblages. The Capilla

del Monte monzogranitealso intrudes the metamorphic Cruz

del Eje-La Falda Complex. The pluton consists of a biotitic

muscovitic monzogranite, made of quartz, plagioclase,

microcline and biotite. Main accessory minerals are fluorite,

apatite, zircon, magnetite, topaz, and magmatic andalucite

(Pastore and Methol 1953; Saavedra et al. 1998). The pluton

is associated with aplites and apatite-rich pegmatites. Fluo-

rite is also present in pegmatitic veins that intrude the

metamorphic basement.

Metal ores are densely spread into the Sierras Pampe-

anas system. Mutti et al. (2005) proposed that successive

stages of deposition and mobilization of metallic elements

originated mineralized belts in Sierras Pampeanas rich in

Cr, W, Fe, Cu, Zn, Pb, Ti, Au, Bi, Be, Li, U, Mn, F and B,

with subordinated Sn, Mo, ETR, Ta, Nb, V, Cd, Ag, Sb,

Co, P, As, S, Te, Se and Ba.

536 Environ Earth Sci (2012) 65:535–545

 1 3

8/11/2019 Garcia Et Al 2012

http://slidepdf.com/reader/full/garcia-et-al-2012 3/11

The sedimentary sequence overlies discordantly the

crystalline rocks. The oldest deposit correspond to the

Cretacic conglomerate Los Terrones, which is made of 

granitic blocks spread in a conglomerate matrix and coarse

grained sand lenses (Massabie 1982). This formation con-

stitutes the nuclei of the ranges Pajarillo, Copacabana and

Maza (Pastore and Methol 1953). The sequence continues

with modern valley deposits, 35-m thick, consisting of 

agglomerates, sands and carbonate lenses (Massabie 1982)that were accumulated in an erosive depression that

extends from the Calabalumba River to the Charbonier

stream (Beltramone  2004). Loess-like sediments (alloch-

tonous) are present in some parts of the region. Typical

forms of bare granitic outcrops are found in the southern

border of the study area.

The San Marcos River basin occupies an area of about

362 km2 and the main collector is a fourth-order stream

(Horton 1945; Strahler 1987) with a total length of 40 km

(Fig. 1). The San Marcos River runs with an SE–NW trend.

Its catchments are located in the western flanks of the

Pajarillo, Copacabana and Maza ranges and also in the

highest part of the Cuniputo ranges. The river discharges

into the Cruz del Eje reservoir lake, located in the North-

western part of the study area. The runoff reflects the

seasonal rainfall regimen of the mountain watersheds.

During the dry season (from March to September), base

flows mainly correspond to contributions from water storedin fractures and colluvium.

Climate in the study area is mountainous sub-humid to

semiarid. Mild temperatures, irregular rainfall concentrated

in one season (summer), and occasional snowfall in

autumn–winter are typical features. Annual average pre-

cipitation decreases from 700 mm on the eastern flanks of 

the ranges to 400 mm on the northwestern border of the

study region. The mean annual temperature in the area is

16C, increasing to 19C towards the northwestern border.

Fig. 1   Geological map of the study area and location of water sampling stations. The  inset  shows the extension of the Sierras Pampeanas region

and the relative location of the study area. The sector corresponding to the Sierras Pampeanas de Co rdoba is indicated in  blue pale

Environ Earth Sci (2012) 65:535–545 537

 1 3

8/11/2019 Garcia Et Al 2012

http://slidepdf.com/reader/full/garcia-et-al-2012 4/11

The climatic and geomorphologic characteristics of the

area define the conditions for a denudation regime of the

weathering-limited kind (Stallard and Edmond  1983),

where the transport processes removing weathered material

are potentially more rapid than the processes generating

mineral debris. Furthermore, Kirschbaum et al. (2005)

examined weathering profiles in granites of the nearby

Sierra Norte of Cordoba and reported that mineralogical,petrographic and geochemical information indicate incipi-

ent weathering for the region. Concordantly, Lecomte et al.

(2009) concluded that the geochemistry of dissolved ele-

ments in mountainous rivers from Sierras Pampeanas de

Cordoba, besides being affected by climatic characteristics

and lithology, are also indirectly controlled by the domi-

nant geomorphology, which affect the water residence time

in the catchments and hence, the extension of rock–water

contact.

Methodology

Geochemical sampling and analysis

Streams and groundwaters located in the mountainous area

of Sierras Pampeanas de Cordoba, at elevations from 1,100

to 600 m a.s.l. were sampled during March and May 2008,

and June 2009. The rivers Calabalumba, Seco, and the

Charbonier stream were sampled twice in March and May

2008. The location of surface and groundwater sampling

stations is shown in Fig. 1.

Field determinations consisted of pH, electrical con-

ductivity, temperature, alkalinity, and dissolved oxygen.

Determinations were performed using standardized solu-

tions (Hach Co.). All samples were filtered through

0.22-lm cellulose acetate membrane filters (Millipore

Corp.) and divided into two aliquots. Aliquots used for

trace elements and major cations (50 ml) were acidified to

pH\ 2 with ultrapure HNO3   (C99.999%, redistilled,

Aldrich Chemical) and stored in pre-cleaned polyethylene

bottles. The remaining 100-ml aliquot was stored in

polyethylene bottles, without acidifying, at 4C for the

determination of anions. The filtration equipment was

thoroughly rinsed with acidified distilled water before uti-

lization. The filtration glass funnel was repeatedly rinsed

with sample water prior filtration.

Anions (Cl-, NO3

-, NO2

-, SO4

2-, and F-) were

determined by chemically suppressed ion chromatography

with conductivity detection, and major, minor, and trace

elements by ICP-MS (Perkin Elmer Sciex Elan 6000—

quadrupole mass spectrometer). The validity of the results

for major, minor, and trace elements were checked with

NIST-1640 (Riverine Water Reference Materials for Trace

Metals certified by the National Research Council of 

Canada) and SRLS-4, carried out along with sample

analysis. For most of the analyzed stream waters, the

charge imbalance between cations and anions was\5%.

Health sampling and analysis

Clinical studies were performed in 7–12-year-old children

from the Charbonier County, following the methodologyand ethical guidelines recommended by the WHO World

Health Organization (2004).

Dental fluorosis index was calculated using the tooth

surface index of fluorosis proposed by Horowitz et al.

(1984) that varies from 0 to 7, and classify dental surfaces

as: 0, without fluorosis; 1–3, mild forms of fluorosis (white

spots); 4–7, severe forms of this disease (yellow to brown

spots).

Total fluoride intake (mg/person per day) was deter-

mined through enquires and calculations proposed by

WHO World Health Organization (1985).

Results

Chemical composition of ground and surface water

and F- hydrochemistry

The major chemical composition of surface and ground-

waters from the study area is mostly controlled by litho-

logy, geomorphology, and rainfall distribution. Human

perturbations mostly affect shallow groundwaters through

the leakage of domiciliary wastes, while surface waters are

almost not affected.

Table 1   shows pH values, electrical conductivity, and

major ions concentrations measured in the sampled waters.

Saturation index (SI) calculated for calcite using the

PHREEQC 2.15 code (Parkhurst and Appelo 1999) is also

included in the table. The pH ranges between  *7.2 and

*8.4, the groundwater samples being slightly more acidic

than river waters (mean groundwater pH: 7.45 ±  0.19;

mean surface water pH: 7.99  ±  0.28). Electrical conduc-

tivity (EC) varies between 160 and 860 lS/cm, and as

expected, it increases downflow in the basin. Oxidizing

conditions predominate in the basin, with dissolved oxygen

values[4.8 mg l-1. According to Piper (1944) classifica-

tion, ground- and stream waters are predominantly of the

Ca-HCO3  type.

Dissolved F- and other trace element concentrations are

compiled in Table 2. Dissolved F- concentration ranges

from 0.96 to 2.87 mg l-1 with one outlier value of 

8.00 mg l-1. About 70% of the river water samples exceed

the 1.5 mg l-1 guideline value for F- in potable water set

by the WHO World Health Organization (2004) and the

Argentine standard requirements (Codigo Alimentario

538 Environ Earth Sci (2012) 65:535–545

 1 3

8/11/2019 Garcia Et Al 2012

http://slidepdf.com/reader/full/garcia-et-al-2012 5/11

Argentino 1994), while the 100% of groundwater samples

exceed this value. Surface waters show a higher variability

of the F- concentrations (mean F- concentration 1.84 ±

0.62) than groundwaters, where concentrations remainalmost constant (mean F- concentration 2.23 ±  0.33).

The spatial distribution of the F- contents is shown in

Fig. 2. According to this figure, the higher F- concentra-

tions are located in two sectors of the basin, one encom-

passed between the Calabalumba and Charbonier streams,

in the Charbonier depression, and the other in the lower

San Marcos basin. In these parts of the basin, F- concen-

trations in both ground- and surface waters always exceed

2 mg l-1. Concentrations lower than 1.7 mg l-1 are typi-

cally found at the basin’s catchments.

Fluoride intake and dental fluorosis assessment

The fluoride intake in the study area is 3.90 ±  0.20 mg

day-1 (n  =  16), which is almost twice the estimated

maximum fluoride dose for 7–11 years old children

(1.68 mg day-1) in fluoridated areas (Harrison 2005).

Dental fluorosis index varies from 0 to 7, and classify

dental surfaces as: 0 without fluorosis, 1–3 mild forms of 

fluorosis (white spots), 4–7 severe forms of this disease

(yellow to brown spots) (Horowitz et al. 1984). From the

analysis of the dental fluorosis index, it was found that

mild and severe fluorosis (Fig. 3) reach an incidence of 

86.7% (total teeth surface =   636 teeth) among the chil-

dren population. Most severe forms of dental fluorosiswere found in 11–12 years old children with an incidence

of 28.5%, while in younger children (7–10 years old) this

incidence only reaches 15%. These results could be

explained by structural defects of enamel, which become

more evident with time as a result of prolonged exposure

to high levels of fluoride during amelogenesis. About

20% of severe forms of dental fluorosis affect axillary

anterior teeth, with a consequently negative aesthetic

implication.

Sources of dissolved fluoride

Devonian–carboniferous granitoids with a typical A-type

signature that were emplaced in the Eastern Sierras

Pampeanas region (Dahlquist et al.  2010) are considered

the most likely source of F- in natural waters from the

study area. A-type or anorogenic granites are characterized

by their relatively elevated F contents (0.05–1.7%) (Eby

1990). Experimental data show that A-type magmas con-

tain dissolved OH–F-bearing fluids (Bonin 2007).

Table 1   Major ionic composition and physico-chemical parameters of sampled waters

Sample pH Conductivity

(lS cm-1)

D.O.

(mg l-1)

NO3

-

(mg l-1)

Na?

(mg l-1)

Mg?2

(mg l-1)

K ?

(mg l-1)

Ca?2

(mg l-1)

Cl-

(mg l-1)

SO4

-2

(mg l-1)

HCO3

-

(mg l-1)

SI

calcite

March 2008

1CLB-1 8.24 240 10.0 n.d. 12.90 5.19 2.62 60.80 3.86 8.32 228.09 0.92

1ACH-2 7.60 660 9.5 n.d. 72.66 7.58 3.82 56.80 8.57 35.87 343.43 0.99

1CH-3 8.08 560 8.8 n.d. 41.57 5.42 4.86 71.20 7.22 38.57 292.80 0.511PSM-4 7.70 600 10.8 3.02 35.00 6.89 3.80 64.80 34.98 49.62 201.30 0.34

1RS-5 7.72 480 10.0 n.d. 35.00 6.45 4.34 63.20 4.96 21.13 282.20 0.51

May 2008

2LTRS-6 8.35 350 10.3 n.d. 11.60 5.04 2.53 65.60 2.46 3.87 246.56 1.09

2LTRN-7 8.38 320 10.1 n.d. 20.90 6.16 3.00 72.80 5.31 8.93 238.51 1.13

2PQL-8 7.61 650 8.4 1.5 n.d. 8.83 4.52 n.d. 9.20 86.00 270.84 0.11

2CLB-9 8.30 160 10.2 4.04 19.80 7.06 3.19 60.80 5.14 18.18 241.20 0.99

2PSI-10 7.18 860 8.5 32.47 268.92 14.20 5.71 64.00 275.72 92.40 387.96 n.d.

2ACH-11 7.80 690 7.5 n.d. 89.78 9.10 4.40 55.20 9.75 36.16 389.18 0.63

2RS-12 7.71 530 9.7 n.d. 41.18 7.42 4.25 66.40 19.99 27.46 279.38 n.d.

June 2009

3RD-13 8.10 613 8.4 2.30 70.00 10.60 4.50 51.40 16.10 9.00 365.30 0.88

3AET-14 7.77 640 8.3   \0.5 62.30 16.50 6.30 61.60 18.30 17.00 382.58 0.65

3PCT-15 7.31 510 4.8 3.60 48.70 9.40 4.80 45.20 18.00 40.00 232.23   -0.13

3PVS-16 7.47 570 6.7 3.80 54.30 10.70 5.10 48.50 21.90 54.00 239.17 0.06

3PVN-17 7.42 570 5.6 3.50 54.20 10.50 5.10 47.60 22.00 54.00 234.98 0.00

3RSM-18 7.80 550 10.9 3.70 55.50 10.00 4.50 49.10 23.20 59.00 232.07 1.25

n.d.   not determined,  DO   dissolved oxygen,  SI   saturation index

Environ Earth Sci (2012) 65:535–545 539

 1 3

8/11/2019 Garcia Et Al 2012

http://slidepdf.com/reader/full/garcia-et-al-2012 6/11

      T    a      b      l    e      2

    F   -

   a   n    d    t   r   a   c   e   e    l   e   m   e   n    t   c   o   n

   c   e   n    t   r   a    t    i   o   n   s   m   e   a   s   u   r   e    d    i   n   s   a   m   p    l   e    d   w   a    t   e   r   s

    S   a   m   p    l   e

    F   -

    (   m   g    l   -

           1    )

    S    i

    (   m   g    l   -

           1    )

    A    l

    (     l   g    l   -

           1    )

    V (     l   g    l   -

           1    )

    C   r

    (     l   g    l   -

           1    )

    M   n

    (     l   g    l   -

           1

    )

    F   e

    (     l   g    l   -

           1    )

    C   o

    (     l   g    l   -

           1    )

    N    i

    (     l   g    l   -

           1    )

    C   u

    (     l   g    l   -

           1    )

    Z   n

    (     l   g    l   -

           1    )

    A   s

    (     l   g    l   -

           1    )

    S   e

    (     l   g    l   -

           1    )

    L    i

    (     l   g    l

   -           1    )

    M   o

    (     l   g    l   -

           1    )

    U (     l   g    l   -

           1    )

    M   a   r   c    h    2    0    0    8

    1    C    L    B  -    1

    1 .    3

    2

    9 .    2

    0

    1    6

 .    0    0

    2 .    7

    0

    0 .    9

    0

    1    0

 .    9    0

    1    0

 .    0    0

    0 .    0

    8

    1 .    8

    0

    2 .    9

    0

    1     5

 .    1    0

    0 .    8

    9

    b    d    l

    6 .    0    0

    0 .    9

    0

    2 .    7

    9

    1    A    C    H  -    2

    2 .    3

    2

    1    9

 .    6    0

    3    8

 .    0    0

    3    0

 .    6    0

    4 .    7

    0

    2    9

 .    2    0

    2    0

 .    0    0

    0 .    1

    3

    2 .    3

    0

    0 .     5

    0

    1    1

 .    4    0

    8 .    8

    7

    1 .    1

    0

    4    8 .    0    0

    8 .    7

    0

    1     5

 .    8    0

    1    C    H  -    3

    2 .    0

    0

    1    4

 .    1    0

    4    0

 .    0    0

    1    8

 .    1    0

    4 .    3

    0

    2 .    1

    0

     5    0

 .    0    0

    0 .    0

     5

    1 .    8

    0

    0 .    9

    0

    9 .    8

    0

    6 .    8

    2

    1 .    1

    0

    3    9 .    0    0

    9 .    1

    0

    4 .    2

     5

    1    P    S    M  -    4

    2 .    1

     5

    1    4

 .    8    0

     5 .    0

    0

    1    7

 .    6    0

    4 .    3

    0

    1 .    4

    0

    3    0

 .    0    0

    0 .    0

     5

    1 .    4

    0

     5 .    8

    0

    1     5    6

 .    0    0

    4 .    9

    4

    1 .    8

    0

    3    0 .    0    0

    4 .    6

    0

    8    7

 .    6    0

    1    R    S  -     5

    2 .    6

    3

    1    6

 .    4    0

    1    6

 .    0    0

    1     5

 .    7    0

    3 .     5

    0

     5 .    4

    0

    4    0

 .    0    0

    0 .    0

    7

    1 .    3

    0

    2 .    6

    0

    1    9

 .    1    0

    2 .    7

    0

    1 .    0

    0

    2    2 .    0    0

     5 .    0

    0

    3    8

 .    7

    M   a   y    2    0    0    8

    2    L    T    R    S  -    6

    1 .    4

    4

    9 .    7

    0

    2    1

 .    0    0

     5 .    9

    0

    3 .    3

    0

    3    0

 .    4    0

    4    0

 .    0    0

    0 .    1

    0

    1 .    0

    0

     5 .    9

    0

    1    8

 .    8    0

    1 .    3

     5

    0 .    7

    0

    8 .    0    0

    0 .    7

    0

    2 .    2

    4

    2    L    T    R    N  -    7

    1 .     5

    3

    1    0

 .    1    0

    6 .    0

    0

    6 .    4

    0

    2 .    6

    0

    4 .    8

    0

    4    0

 .    0    0

    0 .    0

    3

    0 .    6

    0

    0 .    7

    0

    8 .    7

    0

    1 .    3

     5

    0 .    9

    0

    2    1 .    0    0

    0 .    8

    0

    3 .    2

    6

    2    P    Q    L  -    8

    2 .    8

    7

    2    0

 .    4    0

    2    0

 .    0    0

    2    2

 .    8    0

    2 .    9

    0

    1 .    1

    0

    3    0

 .    0    0

    0 .    0

    3

    0 .    9

    0

    1 .     5

    0

    1    7

 .    8    0

     5 .    8

    3

    1 .    6

    0

    4    3 .    0    0

    9 .     5

    0

    9    7

 .    1    0

    2    C    L    B  -    9

    1 .    6

    1

    9 .    8

    0

    1    0

 .    0    0

    6 .    6

    0

    2 .    2

    0

    1    0

 .    8    0

    3    0

 .    0    0

    0 .    0

    6

    0 .    7

    0

    1 .    6

    0

    1    1

 .    4    0

    1 .    9

    4

    1 .    2

    0

    9 .    0    0

    1 .    7

    0

     5 .    6

     5

    2    P    S    I  -    1    0

    2 .    2

    7

    2    2

 .    3    0

    1    1

 .    0    0

    2    1

 .    7    0

    2 .    8

    0

    1 .    2

    0

    4    0

 .    0    0

    0 .    1

    3

    0 .    8

    0

    9 .    3

    0

    1     5    2

 .    0    0

    4 .    1

    3

    1 .    9

    0

     5    9 .    0    0

    7 .    2

    0

    1    1    4

 .    0    0

    2    A    C    H  -    1

    1

    2 .     5

     5

    2    2

 .    2    0

    1     5

 .    0    0

    3    3

 .    7    0

    2 .    3

    0

    7 .    9

    0

    3    0

 .    0    0

    0 .    0

     5

    0 .    9

    0

    1 .    0

    0

    1    2

 .     5    0

    9 .    7

    8

    1 .    1

    0

     5    8 .    0    0

    1    0

 .    4    0

    1    6

 .    0    0

    2    R    S  -    1

    2

    8 .    0

    0

    1    7

 .    0    0

    1    8

 .    0    0

    1    4

 .     5    0

    2 .    3

    0

    2 .    6

    0

    3    0

 .    0    0

    0 .    3

    8

    0 .    8

    0

    1 .    4

    0

    1    9

 .    3    0

    2 .    4

    3

    0 .    9

    0

    2     5 .    0    0

     5 .    0

    0

    3    7

 .    2    0

    J   u   n   e    2    0    0    9

    3    R    D  -    1

    3

    1 .    2

    6

    1    1

 .    8    0

    1    7

 .    0    0

    1    2

 .    4    0

    1 .    7

    0

    4 .    1

    0

    b    d    l

    0 .    0

    3

    0 .    3

    0

    0 .    7

    0

    6 .     5

    0

    3 .    1

    6

    0 .    2

    0

    1    1 .    0    0

    2 .    2

    0

    6 .     5

    9

    3    A    E    T  -    1

    4

    0 .    9

    6

    1     5

 .    3    0

    1    3

 .    0    0

    7 .    0

    0

    1 .    3

    0

    2 .    4

    0

    b    d    l

    0 .    0

    4

    0 .    8

    0

     5 .    8

    0

    1     5

 .    3    0

    2 .    0

    7

    b    d    l

    1    2 .    0    0

    2 .    0

    0

     5 .    9

    3

    3    P    C    T  -    1

     5

    2 .    0

    0

    1    2

 .    1    0

    1    6

 .    0    0

    8 .    6

    0

    1 .    0

    0

    2 .    0

    0

    b    d    l

    0 .    0

     5

    b    d    l

    3 .     5

    0

    1    1

 .    2    0

    2 .     5

    0

    0 .     5

    0

    3    6 .    0    0

    3 .    2

    0

    1    3

 .    0    0

    3    P    V    S  -    1

    6

    2 .    1

    0

    1    0

 .    3    0

    1    0

 .    0    0

    1    0

 .    1    0

    0 .    9

    0

    1 .     5

    0

    b    d    l

    0 .    0

    4

    b    d    l

    2 .    0

    0

    1    0

 .     5    0

    4 .    7

     5

    b    d    l

    4    3 .    0    0

    4 .    1

    0

    1    6

 .    8    0

    3    P    V    N  -    1

    7

    1 .    9

    9

    9 .    9

    0

    7 .    0

    0

    1    0

 .    9    0

    0 .    8

    0

    0 .    9

    0

    b    d    l

    0 .    0

    4

    0 .    4

    0

    1 .    4

    0

    6 .    8

    0

     5 .    3

    6

    b    d    l

    4    6 .    0    0

    4 .    9

    0

    1    7

 .    7    0

    3    R    S    M  -    1

    8

    2 .    6

    7

    1    0

 .    4    0

    8    1

 .    0    0

    1    0

 .    4    0

    0 .    7

    0

    2 .    9

    0

    6    0

 .    0    0

    0 .    0

    6

    1 .    1

    0

    1 .    3

    0

    1    0

 .     5    0

    4 .    3

    8

    b    d    l

    6    4 .    0    0

     5 .    1

    0

    2    2

 .    0    0

       b       l       d

    b   e    l   o   w    d   e    t   e   c    t    i   o   n    l    i   m    i    t

540 Environ Earth Sci (2012) 65:535–545

 1 3

8/11/2019 Garcia Et Al 2012

http://slidepdf.com/reader/full/garcia-et-al-2012 7/11

One important geochemical characteristic of the Devo-

nian–Carboniferous granites and their enclaves in the

Sierras Pampeanas region is the F-rich nature of the apatites

and biotites (Dorais et al. 1997). Although fluorite is a rare

accessory mineral in the granite, veins of economic interests

are often located close to the contacts with the metamorphic

host rock. In a recent study, Dahlquist et al. (2010) con-

cluded that biotites found in the granites near the study area

have distinctive compositions with variable contents of F,Cl and high FeO/MgO ratios. Concordantly, Colombo et al.

(2010) described F-rich micas in pegmatites and host

A-type carboniferous granites from the northern Sierras

Pampeanas region. Table 3   shows the mean major oxide

composition and F content found in micas from A-type

granites and pegmatites emplaced in the region (i.e.

Colombo 2001; Colombo et al. 2010; Dahlquist et al. 2010).

Fluoride and chloride may substitute OH- ions in the

biotite lattice (Bailey 1984), and therefore, these ions are

Fig. 2   Map showing the spatial

variation of F-

concentrations

in natural waters from the study

area. The circle diameter is

proportional to F- concentration

in water

Fig. 3  Examples of severe and

mild cases of dental fluorosis in

school children from

Charbonier Department

Table 3   Mean major oxide composition and F contents of micas

from A-type granites and pegmatites

Major composition Mean (n  =  19)a (%)

SiO2   36.55

Al2O3   18.06

TiO2   2.10

FeO 24.83

MnO 0.52MgO 3.02

Li2Ocalc   1.24

CaO 0.04

Na2O 0.13

K 2O 9.47

F 2.40

Cl 0.20

H2Ocalc   2.15

a Dahlquist et al. (2010), Colombo et al. (2010), and Colombo (2001)

Environ Earth Sci (2012) 65:535–545 541

 1 3

8/11/2019 Garcia Et Al 2012

http://slidepdf.com/reader/full/garcia-et-al-2012 8/11

released during weathering, along with K ?, Mg2?, Fe2?,

and H4SiO4  as indicated in Eq. 1.

2KMg2:5Fe2þ0:5AlSi3O10   OHð Þ1:75F0:25

þ 13:5 Hþ þ 1:5H2O   ¼   Al2Si2O5   OHð Þ4þ  2K þ

þ   5Mg2þ þ   4Si OHð Þ4þ 0:5F þ   Fe2þ ð1Þ

The dissolution of biotite is pH dependent, as it dissolvesmore rapidly under acidic conditions (Malmstrom and

Banwart   1997). In natural pristine waters, acidity mainly

originates from the dissolution of atmospheric CO2   or is

generated by the decay of organic matter or by root

respiration. The last two processes are responsible for the

high levels of CO2  often found in groundwater reservoirs

(Appelo and Postma 1999).

Regarding Eq. 1, a positive linear correlation between

the product solutes and the F- content should be observed in

the studied waters. The dispersion diagram between F- and

H4SiO4   concentrations is shown in Fig. 4a. In general,

points follow a clear positive trend that runs almost parallelto the estoichiometric line corresponding to the biotite

dissolution, but all points are displaced towards the right,

indicating that there is likely another source of F- in the

region. When considering this fact, the estoichiometric line

corresponding to the dissolution of phlogopite (KMg3Al-

Si3O10F(OH)) has also been included in the graph. This

mica has also been identified in the region and contains

higher concentrations of F in its composition (4.53% against

1.10% in biotite). As seen in the figure, sample points plot

between these two lines, suggesting that micas in the study

area have intermediate contents of F. Points corresponding

to stream water samples running through A-type granitesthat outcrop in central and southern border of the Sierras

Pampeanas de Cordoba (Garcıa et al. 2006; Lecomte 2006)

also follow the same trend, but F- concentrations in these

cases are much lower. The slope of the third dashed line in

the figure corresponds to the average molar ratio between Si

and F contents measured in micas from different outcrops in

the Sierras Pampeanas ranges (Table 3). A similar trend is

observed in the dispersion diagram showing the relation

between F- and (Mg2??  Fe2? ?  K ?) (Fig. 4b), which

reinforces the hypothesis of F-rich micas as the main source

of dissolved F- in the study area.

Good correlations between F- and other trace elementssuch as Li (r 

2: 0.97), As (r 2: 0.97), and V (r 

2: 0.98) are also

found, but only in ground and stream waters collected in

the Charbonier depression reservoirs.

Fluoride dynamics

Several factors may control the mobility of F- in natural

waters. Many authors described the dissolution of fluorite

enhanced by calcite precipitation, as one important mech-

anism of F- release to waters in equilibrium with calcite

(i.e. Desbarats   2009; Genxu and Guodong   2001; Handa

1975; Nordstrom and Jenne   1977; Pickering  1985). The

dissolution of fluorite may also be enhanced by other

mechanisms that result in Ca2? scavenging, such as cationexchange or apatite precipitation. Owing to the scarce

occurrence of fluorite in the bedrocks of the study area, its

dissolution likely constitutes a minor source of F- in

waters. Although most water samples are saturated with

respect to calcite (Table 1), the dissolution of fluorite

enhanced by calcite precipitation is not likely to be a key

process in controlling the dynamics of F- in the study area.

It is well known that calcite precipitation occurs under

alkaline conditions; therefore, it should be expected

Fig. 4   Bivariate plots showing the variation of F-

against   a   Si and

b Mg2??  K ? ?   Fe concentrations measured in natural waters from

the study area and from other streams located in the southern parts of 

the Sierras de Cordoba.   Lines   represent the corresponding molar

ratios in biotite and phlogopite and in regional micas

542 Environ Earth Sci (2012) 65:535–545

 1 3

8/11/2019 Garcia Et Al 2012

http://slidepdf.com/reader/full/garcia-et-al-2012 9/11

increasing F- concentrations at increasing pH. However,

data show just the opposite trend: the lowest F- concen-

trations were measured in the more alkaline pH waters, as

shown in Fig. 5a.

The described trend with pH does not either explain the

removal/release of F- by adsorption/desorption, as F- is

preferentially attached to mineral surfaces (mainly Fe or Al

(hydr)oxides) under neutral to acidic conditions (i.e.,

Arnesen and Krogstad 1998; Hiemstra and Van Riemsdijk 

2000; Omueti and Jones 1977; Sparks 1995; Sposito 1989;

Tang et al.   2009). Therefore, the lower concentrations

should be observed in more acidic waters, which are not

seen in the studied waters.

Concentrations of F- tend to increase downflow in the

studied basin, and as indicated above, the removal of F-

from water appears to occur by neither fluorite precipi-

tation, nor by adsorption. In a simple way, F- in the study

watershed behaves as a conservative element that typi-

cally shows a positive trend with conductivity (Fig. 5b).

Besides, concentrations decrease at increasing water dis-

charges as observed in the Calabalumba and Seco Rivers

and in the Charbonier stream stations, where samples

were collected at two different water discharge stages

(arrows in Fig. 5b).

Conclusions

Mild and severe forms of dental fluorosis were detected

among the population of some small villages located in

the Sierras Pampeanas region, Argentina. The daily

fluoride intake determined in the community of Char-

bonier (Cordoba province) has been estimated in

3.90 mg  ±  0.20, which is almost twice the recommended

maximum fluoride dose for 7–11 years old children. This

disease is mainly caused by the consumption of F-rich

water.

Dissolved F- in natural waters from the study area is

mostly geogenic, as it originates in the weathering of F-bearing minerals that compose the dominant lithology in

the region. A great number of minerals containing F in

their compositions have been identified, fluorapatite, apa-

tite, fluorite, topaz, and micas being the most conspicuous

phases. The weathering of F-rich biotites has been con-

sidered the most important and representative source of 

dissolved F- in waters from the study area, based on the

high F contents determined in micas collected from dif-

ferent granitic and metamorphic outcrops in the region and

in their abundance in the bedrocks.

The extent of mineral weathering in the study area is

mostly determined by the residence time of water within

the aquatic reservoir. Longer residence times and a major

solid–water interaction lead to enhanced release of F-.

This explains the high concentrations found in all

groundwater samples and in surface waters from the

Charbonier depression and from the lower San Marcos

basin. In these parts of the basin base flow mainly corre-

sponds to water stored in fractures and colluvium for long

periods of time. The removal of F- from water does not

likely occur by either fluorite precipitation, nor by

adsorption, thus is its concentration’s variability mostly

controlled by water residence time and alternating periods

of maximum and minimum discharges.

Owing to the occurrence of similar lithology and

hydrological conditions all along the Sierras Pampeanas

region, it is expected that F-rich waters are present

anywhere in the region, and in consequence, a number

of people living in these rural and isolated zones could

be also suffering from dental fluorosis. Future studies

should be carried out to characterize this environmental

disease and the fluorine geochemistry in the whole

region.

Fig. 5 a  Bivariate plots showing the variation of F- concentrations

against pH and  b  conductivity in the study area. The arrows representthe chemical evolution from base flow to more humid conditions

Environ Earth Sci (2012) 65:535–545 543

 1 3

8/11/2019 Garcia Et Al 2012

http://slidepdf.com/reader/full/garcia-et-al-2012 10/11

Acknowledgments   This research was supported by Argentina’s

FONCYT, SECYT-UNC, and CONICET. M. Gabriela Garcıa, and

Karina L. Lecomte are members of CICyT in Argentina 0s CONICET.

References

Appelo CAJ, Postma D (1999) Geochemistry, groundwater and

pollution. Balkema, Rotterdam, p 535Arnesen AKM, Krogstad T (1998) Sorption and desorption of fluoride

in soil polluted from the aluminium smelter at A rdal in Western

Norway. Water Air Soil Pollut 103:357–373

Bailey SW (1984) Reviews in mineralogy: micas, vol 13. Minera-

logical Society of America. Book Crafters, Chelsea

Beltramone CA (2004) Caracterizacion morfoestructural del piede-

monte occidental de las sierras Chica y de Pajarillo–Copacabana

entre La Cumbre y Las Lajas–provincia de Cordoba. Revista de

la Asociacion Geol Argentina 59(3):423–432

Bonin B (2007) A-type granites and related rocks: evolution of a

concept, problems and prospects. Lithos 97(1–2):1–29

Browne D, Whelton H, O’Mullane (2005) Fluoride metabolism and

fluorosis. J Dent 33:177–186

Burt BA, Eklund SA (1992) Dentistry, dental practice and the

community, 4th edn. WB Saunders, Philadelphia, p 147CAA Codigo Alimentario Argentino (1994) Art. 1 Res. MS y AS

N8494. Ley 18284. Dec. Reglamentario 2126. Anexo I y II.

Marzocchi, Buenos Aires

Caffe P (1993) Petrologıa y estructura del area comprendida entre las

localidades de Pintos y Quilpo Sud, Departamentos de Punilla y

Cruz del Eje. Provincia de Cordoba. Trabajo Final (inedito).

Departamento de Geologıa Basica, Facultad de Ciencias Exacta,

Fısicas y Naturaless, UN Cordoba

Colombo F (2001) Geologıa y mineralogıa de pegmatitas y petrologıa

de las rocas encajonantes. Zona de El Pato, Departamento

Punilla, Cordoba, Argentina. Undergraduate thesis (unpub-

lished). Departamento de Geologıa Basica, Facultad de Ciencias

Exactas, Fısicas y Naturales, UN Cordoba

Colombo F, Lira R, Dorais MJ (2010) Mineralogy and crystal

chemistry of micas from the A-type El Portezuelo Granite and

related pegmatites, Catamarca (NW Argentina). J Geosci

55(1):43–56

Dahlquist JA, Pankhurst RJ, Rapela CW, Casquet C, Fanning CM,

Alasino P, Baez M (2006) The San Blas Pluton: an example of 

carboniferous plutonism in the Sierras Pampeanas, Argentina.

J S Am Earth Sci 20:341–350

Dahlquist JA, Alasino P, Eby N, Galindo C, Casquetet C (2010) Fault

controlled Carboniferous A-type magmatism in the proto-

Andean foreland (Sierras Pampeanas, Argentina): Geochemical

constraints and petrogenesis. Lithos 115:65–81

Dean HT, Arnold FA, Jay P, Knutson JW (1950) Studies on mass

control of dental caries through fluoridation of the public water

supply. Public Health Rep 65:1403–1408

Desbarats AJ (2009) On elevated fluoride and boron concentrations in

groundwaters associated with the Lake Saint-Martin impact

structure, Manitoba. Appl Geochem 24:915–927

Dorais MJ, Lira R, Chen Y, Tingey D (1997) Origin of biotite–

apatite-rich enclaves, Achala batholith, Argentina. Contrib Min

Petrol 130:31–46

Eby GN (1990) The A-type granitoids: a review of their occurrence

and chemical characteristics and speculations on their petrogen-

esis. Lithos 26(1–2):115–134

Faure G (1991) Principles and applications of inorganic geochemis-

try. Maxwell Macmillan International Editions, New York, p 600

Fejeskov O, Baelum V, Manji FM (1988) Dental fluorosis: a handbook 

for health workers. Munsksgaard, Copenhagen, pp 40–42

Fiorentino CE, Paoloni JD, Sequeira ME, Arosteguy P (2007) The

presence of vanadium in groundwater of southeastern extreme

the pampean region Argentina: Relationship with other chemical

elements. J Contam Hydrol 93(1–4):122–129

Garcıa MG, Lecomte KL, Martınez JO, Formica SM, Depetris PJ

(2006) Fluor en aguas de r ıos de las sierras de Cordoba,

Argentina. I Congreso Internacional sobre gestion y tratamiento

integral del agua. Cordoba, pp 120–127

Genxu W, Guodong C (2001) Fluoride distribution in water and

governing factors of environment in arid north-west China.

J Arid Environ 49:601–614

Gomez ML, Blarasin MT, Martınez DE (2009) Arsenic and fluoride

in a loess aquifer in the central area of Argentina. Environ Geol

57(1):143–155

Handa BK (1975) Geochemistry and genesis of fluoride-containing

ground waters in India. Ground Water 13:275–281

Harrison PTC (2005) Fluoride in water: a UK perspective. J Fluorine

Chem 126:1448–1456

Hiemstra T, Van Riemsdijk WH (2000) Fluoride adsorption on

goethite in relation to different types of surface sites. J Colloid

Interf Sci 225(1):94–104

Hockenreiner M, Sollner F, Miller H (2003) Dating the TIPA shear

zone: an early Devonian terrane boundary between the Fama-

tinian and Pampean systems (NW Argentina). J S Am Earth Sci

16:45–66

Horowitz HS, Driscoll WS, Meyers RJ, Heifetz SB, Kingman A

(1984) A new method for assessing the prevalence of dental

fluorosis the tooth surface index of fluorosis. JADA 109:37–41

Horton RE (1945) Erosional development of streams and their

drainage basins. Hydrophysical approach to quantitative mor-

phology. Geol Soc Am Bull (reprinted) 56:275–370

Kirschbaum A, Martınez E, Pettinari G, Herrero S (2005) Weathering

profiles in granites, Sierra Norte (Cordoba, Argentina). J S Am

Earth Sci 19:479–493

Kruse E, Ainsil J (2003) Fluoride variations in groundwater of an area

in Buenos Aires Province, Argentina. Environ Geol 44(1):86–89

Lecomte KL (2006) Control geomorfologico en la geoquımica de

Rıos de Montana, Sierras Pampeanas, provincia de Cordoba,

Republica Argentina. Doctoral Thesis (unpublished). Facultad de

Ciencias Exactas, Fısicas y Naturales, UN Cordoba

Lecomte KL, Garcıa MG, Formica SM, Depetris PJ (2009) Influence

of geomorphological variables on mountainous stream water

chemistry (Sierras Pampeanas, Cordoba, Argentina). Geomor-

phology 110(3–4):195–202

Lyons P, Skirrow RG, Stuart-Smith PG (1997) Geology and

Metallogeny of the Sierras Septentrionales de Cordoba.

1;250.000 map sheet, Province of Cordoba. Geoscientific

mapping of The Sierras Pampeanas Argentine-Australia Coop-

erative Project. Servicio Geologico Minero Argentino. Anales

27:1–131

Malmstrom M, Banwart S (1997) Biotite dissolution at 25C: the pH

dependence of dissolution rate and stoichiometry. Geochim

Cosmochim Acta 61(14):2779–2799

Mann J, Mahmoud M, Ernest M, Sgan-Cohen H, Shosshan N,Gedalia I (1990) Fluorosis and dental caries in 6–8 year-old

children in a 5 ppm fluoride area. Commun Dent Oral

Epidemiol 18:77–79

Massabie AC (1982) Geologıa de los alrededores de Capilla del

Monte y San Marcos, Provincia de Cordoba. Asociacion

Geologica Argentina, Revista. Tomo XXXVII, N82. Abril–Junio

Milsom KM, Woodward M, Haran D, Lennon Ma (1996) Enamel

defects in the permanent dentition of 8- and 9- year-old children

in fluoridated Cheshire, England. J Dent Res 75:1015–1018

Mutti D, Tourn S, Caccaglio O, Herrmann C, Geuna S, Di Marco A,

Gonzalez Chiozza S (2005) Evolucion metalogenetica de las

Sierras Pampeanas de Cordoba y sur de Santiago del Estero:

544 Environ Earth Sci (2012) 65:535–545

 1 3

8/11/2019 Garcia Et Al 2012

http://slidepdf.com/reader/full/garcia-et-al-2012 11/11

Ciclos famatiniano, gondwanico y andico. Revista de la

Asociacion Geol Argentina 60(3):467–485

Nagadu B, Koeberl C, Kurat G (2003) Petrography and geochemistry

of the Singo granite, Uganda, and implications for its origin.

J Afr Earth Sci 36:73–87

Nordstrom DK, Jenne EA (1977) Fluorite solubility equilibria in

selected geothermal waters. Geochim Cosmochim Acta

41:177–188

Omueti JAI, Jones RL (1977) Fluoride adsorption by Illinois soils.

J Soil Sci 28:564–572

Oruc N (2008) Occurrence and problems of high fluoride waters in

Turkey: an overview. Environ Geochem Health 30:315–323

Parkhurst DL, Appelo CAJ (1999) User’s guide to PHREEQC

(version 2). A computer program for speciation, bath reaction,

one-dimensional transport and inverse geochemical calculations.

Water Resources Investigations Report 99–4259. US Geological

Survey, Denver

Pastore F, Methol EJ (1953) Descripcion geologica de la Hoja 19 i,

Capilla del Monte. Direccion Nacional de Minerıa. Buenos

Aires. Boletın 79

Pickering WF (1985) The mobility of soluble fluoride in soils.

Environ Pollut Ser B Chem Phys 9(4):281–308

Piper AM (1944) A graphic procedure in the geochemical interpre-

tation of water analyses. Trans Am Geophys Union 25:914–923

Rapela CW, Pankhurst RJ, Casquet C, Baldo E, Saavedra J, Galindo

C, Fanning CM (1998) The Pampean Orogeny of the southern

proto-Andes: Cambrian continental collision in the Sierras de

Cordoba. In: Pankhurst RJ, Rapela CW (eds) The Proto-Andean

margin of Gondwana. Geological Society of London Special

Publication 142, pp 181–217

Saavedra J, Baldo E, Pankhurst RJ, Rapela CW, Murra J (1998) El

granito Capilla del Monte (Sierras Pampeanas de Cordoba,

Argentina): edad, geoquımica, genesis y especializacion metal-

ogenica. 10 Congreso Latinoamericano de Geologıa. Actas 2:372

(in Spanish)

Scaillet B, Macdonald R (2004) Fluorite stability in silicic magmas.

Contrib Min Petrol 147(3):319–329

Shitumbanuma V, Tembo F, Tembo JM, Chilala S, Van Ranst E

(2006) Dental fluorosis associated with drinking water from hot

springs in Choma district in southern province, Zambia. Environ

Geochem Health 29:51–58

Sparks DL (1995) Environmental soil chemistry. Academic Press,

New York 

Sposito G (1989) The chemistry of soils. Oxford University Press,

New York 

Stallard RF, Edmond JM (1983) Geochemistry of the Amazon 2: the

influence of geology and weathering environment on the

dissolved load. J Geophys Res 88(14):9671–9688

Strahler AN (1987) Quantitative geomorphology of drainage basins

and channel networks. Section 4-II of handbooks of applied

hydrology. McGraw-Hill, New York 

Tang Y, Guan X, Wang J, Gao N, McPhail MR, Chusuei CC (2009)

Fluoride adsorption onto granular ferric hydroxide: effects of 

ionic strength, pH, surface loading, and major co-existing anions.

J Hazard Mater 171(1–3):774–779

Taylor RP, Fallick AE (1997) The evolution of fluorine–rich felsic

magmas: source dichotomy, magmatic convergence and the

origins of Topaz granite. Terra Nova 9(3):105–108

Warren JJ, Levy SM, Kanellis MJ (2001) Prevalence of dental

fluorosis in the primary dentition. J Public Health Dent 61:87–91

WarrenCJ, Burgess W, Garcıa MG (2005)Hydrochemical associations

and depth profiles of arsenic and fluoride in quaternary loess

aquifers of northern Argentina. Mineral Mag 69(5):877–886

Weeks KJ, Milsom KM, Lennon MA (1993) Enamel defects in 4 to

5 year-old children in fluoridated parts of Cheshire, UK. Caries

Res 27:317–320

WHO World Health Organization (1985) Guideline for the study of 

dietary intake of chemical contaminants, vol 87. Geneva,

pp 20–22

WHO World Health Organization (2004) Guidelines for drinking—

water quality, 3rd edn, vol 1, recommendations, Geneva

Xiaolin X, Zhenhua Z (1998) Partitioning of F between aqueous fluids

and albite melt and its petrogenetic and metallogenetic signif-

icance. Chin J Geochem 17(4):303–310

Yadav JP, Lata S, Kataria SK, Kumar S (2009) Fluoride distribution

in groundwater and survey of dental fluorosis among school

children in the villages of the Jhajjar District of Haryana, India.

Environ Geochem Health 31:431–438

Environ Earth Sci (2012) 65:535–545 545

 1 3