51
GAS TURBINE COMBUSTION

GAS TURBINE COMBUSTION - fluid.wme.pwr.wroc.pl

  • Upload
    others

  • View
    9

  • Download
    4

Embed Size (px)

Citation preview

Page 1: GAS TURBINE COMBUSTION - fluid.wme.pwr.wroc.pl

GAS TURBINE COMBUSTION

Page 2: GAS TURBINE COMBUSTION - fluid.wme.pwr.wroc.pl

Scheme of gas turbine

Gas turbine (GT) is composed with turbine (4), compressor (1) and combustion chamber (2) (combustor)

fuel

flue gasair

Page 3: GAS TURBINE COMBUSTION - fluid.wme.pwr.wroc.pl

Principle of GT operation

Kinetic energy of flowing flue gas is converted into the turbinerotor, which shaft has a compressor supplying the combustor withair.

Page 4: GAS TURBINE COMBUSTION - fluid.wme.pwr.wroc.pl

Gas turbines

Rotor of turbine and air compressor on a common shaft.

Page 5: GAS TURBINE COMBUSTION - fluid.wme.pwr.wroc.pl

Types of GT combustors

There are two basic types of combustors:

� annular

� tubular.

Page 6: GAS TURBINE COMBUSTION - fluid.wme.pwr.wroc.pl

ANNULAR COMBUSTION CHAMBERS

Page 7: GAS TURBINE COMBUSTION - fluid.wme.pwr.wroc.pl

Annular chambers

Gas turbines may have from 7 to 16 annular combustion chambers mounted concentrically. Each of combustor has his fuel supply and injection system.

There are three systems of annular combustors: individual, sectional, annular.

Types of combustors: 1 −individual, 2 − sectional, 3 −annular.

Page 8: GAS TURBINE COMBUSTION - fluid.wme.pwr.wroc.pl

Example of GT with annular combustors

Page 9: GAS TURBINE COMBUSTION - fluid.wme.pwr.wroc.pl

Scheme of GT with annular combustors

Temperature at the inlet of GT 1500 C

No. of combustors 16

Page 10: GAS TURBINE COMBUSTION - fluid.wme.pwr.wroc.pl

Annular combustion chambers of GT

Page 11: GAS TURBINE COMBUSTION - fluid.wme.pwr.wroc.pl

Annular combustion chambers in GT

Page 12: GAS TURBINE COMBUSTION - fluid.wme.pwr.wroc.pl

Combustor of annular system of combustion of GT

Low-NOx hybrid burner of V94.3 GT (Siemens)

Page 13: GAS TURBINE COMBUSTION - fluid.wme.pwr.wroc.pl

Scheme of GT combustion chamber

Single combustion chamber

Fuel nozzle primary zone secondary zone dilution zone

Nozzle Swirler Air-slots

Page 14: GAS TURBINE COMBUSTION - fluid.wme.pwr.wroc.pl

Furnace tubes (flame tubes)

Flame tube

Page 15: GAS TURBINE COMBUSTION - fluid.wme.pwr.wroc.pl

Sequential combustion system of GT26(ABB)

Page 16: GAS TURBINE COMBUSTION - fluid.wme.pwr.wroc.pl

TUBULAR COMBUSTION CHAMBERS

Page 17: GAS TURBINE COMBUSTION - fluid.wme.pwr.wroc.pl

TG with tubular combustor

Page 18: GAS TURBINE COMBUSTION - fluid.wme.pwr.wroc.pl

Parallel-flow tubular

combustor

Page 19: GAS TURBINE COMBUSTION - fluid.wme.pwr.wroc.pl

Tubular combustion chamber

Oposite-flow tubular combustor

Page 20: GAS TURBINE COMBUSTION - fluid.wme.pwr.wroc.pl

Details of tubular combustor

Burners

Furnace tube

Jacket

Air channel

Page 21: GAS TURBINE COMBUSTION - fluid.wme.pwr.wroc.pl

Single EV burner (ABB)

Page 22: GAS TURBINE COMBUSTION - fluid.wme.pwr.wroc.pl

Scheme of EV burner (ABB)

Page 23: GAS TURBINE COMBUSTION - fluid.wme.pwr.wroc.pl

EV burner (ABB)

Page 24: GAS TURBINE COMBUSTION - fluid.wme.pwr.wroc.pl

ORGANIZATION OF COMBUSTION PROCESS IN TG

Page 25: GAS TURBINE COMBUSTION - fluid.wme.pwr.wroc.pl

Flame stabilization in GT

Page 26: GAS TURBINE COMBUSTION - fluid.wme.pwr.wroc.pl

Combustion of lean fuels with preliminary evaporation and mixing - LPP

(lean, premixed, prevaporised)

a) The principle is complete evaporation of fuel and mixing with air, because of:

� avoid of droplets,

� Temperature of lean mixture flame is low.

Combustion systems LPP should co-operate with the systems of variable geometry, tu avoid danger of extinction due to LEL for small load.

Page 27: GAS TURBINE COMBUSTION - fluid.wme.pwr.wroc.pl

Flame-holder operation

Principle of stabilization with flame-holder

Page 28: GAS TURBINE COMBUSTION - fluid.wme.pwr.wroc.pl

Influence of flameholder size on the lower limit of stability for different fuels

P = 100 kPa

T0 = 300 K

SMD = 60 µm

U = 30 m/s

Page 29: GAS TURBINE COMBUSTION - fluid.wme.pwr.wroc.pl

Influence of particle size on the lower limit of stability for different fuels

U=15 m/s, T0=300K, p = 100 kPa

Page 30: GAS TURBINE COMBUSTION - fluid.wme.pwr.wroc.pl

Counter-flow stabilisation effect

Recirculation induced stopping of flow

Page 31: GAS TURBINE COMBUSTION - fluid.wme.pwr.wroc.pl

Organisation of the 1-st zone of combustion

Stabilisation by jets collision (counter-flow)

Stabilisation by swirling

Stabilisation by combination of swirling and counter-flow

Page 32: GAS TURBINE COMBUSTION - fluid.wme.pwr.wroc.pl

Fuel staging – design example

Page 33: GAS TURBINE COMBUSTION - fluid.wme.pwr.wroc.pl

COOLING OF FLAME TUBE

Page 34: GAS TURBINE COMBUSTION - fluid.wme.pwr.wroc.pl

Methods of cooling of flame tube

A) Warstwowe

- polega na przenikaniu powietrza na stronę wewnętrznąpłomienicy przez rząd otworków o małej średnicy. Strugi powietrza tworzą kurtynę oddzielającą wewnętrzną stronępłomienicy od gorących spalin.

B) Konwekcyjno-warstwowe

- polega na przedłuŜeniu kanalików doprowadzających powietrze do wnętrza płomienicy. Dzięki temu poprawia się efektywnośćchłodzenia płomienicy, ale zwiększa się jej cięŜar.

C) Transpiracyjne (z porowatą ścianą)

- polega na przenikaniu powietrza przez porowatą ścianępłomienicy i tworząc kurtynę powietrzna od gorących spalin.

Page 35: GAS TURBINE COMBUSTION - fluid.wme.pwr.wroc.pl

Cooling of flame tube

Page 36: GAS TURBINE COMBUSTION - fluid.wme.pwr.wroc.pl

CATALITYC GAS TURBINES

Page 37: GAS TURBINE COMBUSTION - fluid.wme.pwr.wroc.pl

Conventional and catalytic GT

Page 38: GAS TURBINE COMBUSTION - fluid.wme.pwr.wroc.pl

Catalytic combustion chamber (combustor)

Catalytic combustion system applied to gas turbine

Page 39: GAS TURBINE COMBUSTION - fluid.wme.pwr.wroc.pl

Parts of catalytic combustion chamber

Catalysts

Page 40: GAS TURBINE COMBUSTION - fluid.wme.pwr.wroc.pl

HEAT RECOVERY STEAM

GENERATORS

Page 41: GAS TURBINE COMBUSTION - fluid.wme.pwr.wroc.pl

Combined cycle power plantGas turbine combined cycle CTCC

Page 42: GAS TURBINE COMBUSTION - fluid.wme.pwr.wroc.pl

Heat recovery steam generator

Page 43: GAS TURBINE COMBUSTION - fluid.wme.pwr.wroc.pl

Heat recovery steam generator

Page 44: GAS TURBINE COMBUSTION - fluid.wme.pwr.wroc.pl

Scheme of channel burner

Page 45: GAS TURBINE COMBUSTION - fluid.wme.pwr.wroc.pl

Channel burner operation

Page 46: GAS TURBINE COMBUSTION - fluid.wme.pwr.wroc.pl

Channel burners for HRSG’s

GT 100 MW

Page 47: GAS TURBINE COMBUSTION - fluid.wme.pwr.wroc.pl

GAS TURBINE FUELS

Page 48: GAS TURBINE COMBUSTION - fluid.wme.pwr.wroc.pl

GT fuels – general requirements

1. Low cost and easy excess.

2. Low risk of fire.

3. High HCV.

4. High thermal stability..

5. Low pressure of evaporation.

6. High specific heat.

Page 49: GAS TURBINE COMBUSTION - fluid.wme.pwr.wroc.pl

Types of gas turbine fuels

1. Gasoline

2. Kerosines

3. Diesel oil

4. Heating fuel oil

5. Natural gas

6. Syngas

7. Others (H2, NH3, C3H8, C4H10, alcohols,..)

Page 50: GAS TURBINE COMBUSTION - fluid.wme.pwr.wroc.pl

Selected parameters of GT fuels

0.82-0.88

2-4

339-367

253-273

42-43

0.1-0.8

0.793

1.4

311-344

228

42.8

0.01-0.1

Relative density at 311 K

Viscosity 311 K, cSt

Temperature of ignition (Flash point), K

Temperature of freezing (Pour point), K

LHV, MJ/kg

Sulfur, % mas.

KerosineGazolineParameter

Page 51: GAS TURBINE COMBUSTION - fluid.wme.pwr.wroc.pl

Non-conventional GT fuels