Gas–Liquid and Gas-liquid-solid Reactions

Embed Size (px)

Citation preview

  • 8/18/2019 Gas–Liquid and Gas-liquid-solid Reactions

    1/100

    Gas – Liquidand

    Gas- Liquid –Solid Reactions

    A. Gas –Liquid Systems

  • 8/18/2019 Gas–Liquid and Gas-liquid-solid Reactions

    2/100

    Proper Approach to Gas-LiquidProper Approach to Gas-LiquidReactionsReactions

    References• Mass Transfer theories• Gas-liquid reaction regimes• Multiphase reactors and selection criterion• Film model: Governing equations, problemcomplexities• xamples and !llustrative Results

    • "olution #lgorithm $computational concepts%

  • 8/18/2019 Gas–Liquid and Gas-liquid-solid Reactions

    3/100

    Transport E ects in Gas-LiquidTransport E ects in Gas-Liquid

    ReactionsReactions

    Two- lm theory &' ('G' (hitman, )hem' * Met' ng', + & . $& +/%' +' (' 0' 1e2is * (' G' (hitman, !nd' ng' )hem', &3, +&4$& + %'

    Penetration theory 5' 6' 7anc82erts, Trans' Farada9 "oc', 3 / $& 4 %' 5' 6' 7anc82erts, Trans' Farada9 "oc', . / $& 4&%' 5' 6' 7anc82erts, Gas-1iquid Reactions, McGra2-;ill,

  • 8/18/2019 Gas–Liquid and Gas-liquid-solid Reactions

    4/100

    Two- lm Theory AssumptionsTwo- lm Theory Assumptions

    !" A sta nant layer e#ists in $oth the as andthe liquid phases"

    %" The sta nant layers or lms ha&e ne li i$lecapacitance and hence a local steady-statee#ists"

    '" (oncentration radients in the lm are one-dimensional"

    )" Local equili$rium e#ists $etween the the asand liquid phases as the as-liquid interface

    *" Local concentration radients $eyond thelms are a$sent due to tur$ulence"

  • 8/18/2019 Gas–Liquid and Gas-liquid-solid Reactions

    5/100

    Two-Film Theory ConceptTwo-Film Theory Concept W.G. Whitman, Chem. & Met. Eng., 29 14 !192"#.W.G. Whitman, Chem. & Met. Eng., 29 14 !192"#.

    Bulk LiquidBulk Gas

    p A p Ai

    CAi

    CAb

    x = 0

    xx + x

    L

    Liquid FilmGas Film

    x = Lx = G

    p Ai = H A CAi

  • 8/18/2019 Gas–Liquid and Gas-liquid-solid Reactions

    6/100

    Two-Film TheoryTwo-Film Theory- $ingle %eaction in the i'(i) Film -- $ingle %eaction in the i'(i) Film -

    A (g) + b B (liq) P (liq)

    RA kg-moles A

    m 3liquid - s = - k mn C A

    m C Bn

    Closed form solutions only possible for linear kinetics or when linear appro imations are introduced

    ! " # are non$olatile

  • 8/18/2019 Gas–Liquid and Gas-liquid-solid Reactions

    7/100

    Film Theory Mo)el *or a $ingle +on olatileFilm Theory Mo)el *or a $ingle +on olatileGa - i'(i) %eactionGa - i'(i) %eaction

    2*

    2

    2

    2

    ( ) ( ) ( )

    0

    0 0

    A L

    B L

    A g bB l P l

    d A D r at x A A at x A A

    dx

    d B dB D br at x at x B Bdx dx

    δ

    δ

    + →

    = = = = =

    = = = = =

    % &iffusion - reaction equations for a sin'le reaction in the liquid film

    are(

    % )n dimensionless form* the equations become dependent on twodimensionless parameters* the +atta number +a and q , (

    ( )1/ 2

    1* **

    21

    m nmn

    m n D L B A mn L

    R A

    For r k A B

    t B D Ha D k A B q

    t m bA D

    =

    = =+>=

  • 8/18/2019 Gas–Liquid and Gas-liquid-solid Reactions

    8/100

    % &iffusion - reaction equations for a

    sin'le reaction in the liquid film are(

    A A A A R xC Dt C +∂∂

    =∂∂

    2

    2

    B B

    B B R

    xC D

    t C +∂∂=∂∂ 2

    2

    Penetration Theory +odelPenetration Theory +odel

  • 8/18/2019 Gas–Liquid and Gas-liquid-solid Reactions

    9/100

    Compari on etween TheorieCompari on etween Theorie

    • Film theory :– kL∝ D, δ - film thickness

    • /enetration theory :

    – kL∝ D1/2Higbie model t * - life of surface li uid

    element

    Danck!erts model s - a"erage rate of surface

    rene!al

    '

    * A

    L R D

    k C C δ

    =−>

    '

    * *2 A

    L

    R Dk

    C C t π =−

    >

    '

    * A

    L

    Rk Ds

    C C =−

    >

    =

    =

    =

  • 8/18/2019 Gas–Liquid and Gas-liquid-solid Reactions

    10/100

    Ga - i'(i) %eaction %egimeGa - i'(i) %eaction %egime

    Very l!"

    #apid pseud!$s% !r m%& !rder

    ' s%a %a e!us Fas% (m )

    Ge eral (m ) !r ' %ermedia%e l!" *i usi! al

    ' s%a %a e!us , ur a-e

  • 8/18/2019 Gas–Liquid and Gas-liquid-solid Reactions

    11/100

  • 8/18/2019 Gas–Liquid and Gas-liquid-solid Reactions

    12/100

    %eaction-0i**( ion %egime 0e*ine)%eaction-0i**( ion %egime 0e*ine)y Characteri tic Timey Characteri tic Time

    % Slow reaction re'ime %* //% # kL=k L0

    – Slow reaction-diffusion re'ime ( %* //% # //% .

    – Slow reaction kinetic re'ime ( %* //% . //% #

    % ast reaction re'ime ( %* %# kL=1 A k L0 k L0

    – )nstantaneous reaction re'ime( kL

    = 1A

    kL

    0

  • 8/18/2019 Gas–Liquid and Gas-liquid-solid Reactions

    13/100

  • 8/18/2019 Gas–Liquid and Gas-liquid-solid Reactions

    14/100

    Gas Abs!rp%i! A--!mpa ied by #ea-%i! i %&e Liquid

    Assume 3 - nd order rate

    Ha%%a 4umber 3

    1i 4umber3

    1 &a -eme % Fa-%!r3

    H k k K g L L

    111 +=

    2$

  • 8/18/2019 Gas–Liquid and Gas-liquid-solid Reactions

    15/10025

  • 8/18/2019 Gas–Liquid and Gas-liquid-solid Reactions

    16/10022

  • 8/18/2019 Gas–Liquid and Gas-liquid-solid Reactions

    17/100

    1ig&% (A 6 H) regimes -a be dis%i guis&ed3

    A7 ' s%a %a e!us rea-%i! !--urs i %&e liquid ilm

    B7 ' s%a %a e!us rea-%i! !--urs a% gas8liquid i %er a-e

    % Hig& gas8liquid i %er a-ial area desired% 4! 8is!%&ermal e e-%s likely

    29

  • 8/18/2019 Gas–Liquid and Gas-liquid-solid Reactions

    18/100

    C7 #apid se-! d !rder rea-%i! i %&e ilm7 4! u rea-%ed A pe e%ra%es i %!bulk liquid

    *7 Pseud! irs% !rder rea-%i! i ilm: same Ha umber ra ge as C7

    Abs!rp%i! ra%e pr!p!r%i! al %! gas8liquid area7 4! 8is!%&ermal e e-%s s%illp!ssible7

    2;

  • 8/18/2019 Gas–Liquid and Gas-liquid-solid Reactions

    19/1002<

  • 8/18/2019 Gas–Liquid and Gas-liquid-solid Reactions

    20/100

    .aximum %empera%ure di ere -e a-r!ss ilm de el!ps a% -!mple%e mass%ra s er limi%a%i! s

    >empera%ure di ere -e !r liquid ilm "i%& rea-%i!

    >rial a d err!r required7 4! is!%&ermali%y se ere !r as% rea-%i! s7

    e7g7 C&l!ri a%i! ! %!lue e

    2?

  • 8/18/2019 Gas–Liquid and Gas-liquid-solid Reactions

    21/100

    - $(mmary -- $(mmary -imiting %eaction-0i**( ion %egimeimiting %eaction-0i**( ion %egime

    "lo2 reaction 8inetic regime• Rate proportional to liquid holdup and reaction rate and in?uenced b9

    the overall concentration driving force• Rate independent of 8 la @and overall concentration driving force

    "lo2 reaction-diAusion regime• Rate proportional to 8 la @and overall concentration driving force• Rate independent of liquid holdup and often of reaction rate

    Fast reaction regime• Rate proportional to a @,square root of reaction rate and driving force to

    the po2er $nB&%C+ $nth order reaction%• Rate independent of 8 l and liquid holdup

    !nstantaneous reaction regime• Rate proportional to 8 1 and a @• Rate independent of liquid holdup, reaction rate and is a 2ee8 function

    of the solubilit9 of the gas reactant

  • 8/18/2019 Gas–Liquid and Gas-liquid-solid Reactions

    22/100

  • 8/18/2019 Gas–Liquid and Gas-liquid-solid Reactions

    23/100

    Gas- liquid – solid systems

  • 8/18/2019 Gas–Liquid and Gas-liquid-solid Reactions

    24/100

    9;

    G Li id S lid C l / d R i A0'12!0l13#0l1

  • 8/18/2019 Gas–Liquid and Gas-liquid-solid Reactions

    25/100

    Gas Limi%i g #ea-%a % (C!mple%ely e%%ed Ca%alys%)

    ( )( )

    ( ) ( )( )

    ( )( )

    ( )( )

    ( )

    ( ) pv B p s Bl

    A

    g

    H

    g Bvo A

    sl p

    a

    g B

    s B pv

    Av

    k ak a K

    H A A

    k R

    sreact mmol

    A Aa

    A H

    Aa

    sreact mmol

    sreact mmol Ak

    scat mmol Ak

    A

    η ε

    ε η

    ε η

    −++=−=

    Ω=

    1111

    1

    :.RATE(APPARENT)OVERALL

    k :solid-Liquid-

    :liquid-!"s-

    lu#$%$"& o% ou i $%

    .RATETRAN+PORT

    lu#$%$"& o% ou i $%

    .1 :,ATAL +TNRATE

    olu#$&" "l s u i $%

    .:RATENET ,

    0

    s

    11

    0

    0

    0

    5$

    Gas – Liquid Solid Cataly/ed Reaction A0'12!0l13#0l1

    *epe de e ! Appare % #a%e C! s%a % ( k ) !

  • 8/18/2019 Gas–Liquid and Gas-liquid-solid Reactions

    26/100

    *epe de -e ! Appare % #a%e C! s%a % ( k app ) !>ra sp!r% ( k ls , p ) a d i e%i- Parame%ers ( k v )

    ( ) ( ) ( )

    ( )

    ( )( )

    ( ) ( ) sreact mmol a B Bk

    sreact mmol Bk

    scat mmol Bk

    l P l B g A

    p sl ls

    B s pv

    v

    .:lu#$)%$"& o% ou i( $%

    %" $T%" s o%

    .1:lu#$)%$"& o% ou i( $%

    &" "l siR" $

    .:olu#$)&" "l s u i( $%

    %" $i $ i&&" "l s$ $d&o# l$ $lo ,"s$-l$)( o ol" i%$"& "li#i i 3Liquid

    :R$"& io

    0

    0

    0

    =+

    ε η

    ( )( )

    ( ) Bv p pls

    L Lapp Bv p

    k ak

    B Bk Bk

    sreact mmol

    ε η

    ε η

    −+

    =−−

    111

    1

    .%"'$(" "%$ ')O $%"ll

    1

    Liquid limiting reactant (nonvolatile) 4 Case of completely wetted catalyst

  • 8/18/2019 Gas–Liquid and Gas-liquid-solid Reactions

    27/100

    Clearly is determined by transport limitations and byreactor type and flow re'ime.

    )mpro$in' only impro$es if we are not already transport

    4ur task in catalytic reactor selection* scale-up and desi'n is toeither ma imi/e $olumetric producti$ity* selecti$ity or product

    concentration or an ob5ecti$e function of all of the abo$e. 6he keyto our success is the catalyst. or each reactor type consideredwe can plot feasible operatin' points on a plot of $olumetricproducti$ity $ersus catalyst concentration.

    vm

    aS vm

    #"5vm

    #"5 x x #"5 x#"5vm

    aS

    io&o &$ %"&" "l s

    "& i is $&i i&

    0 =

    =

    reactor mcat kg

    x

    cat kg P kg

    S a

    2?

  • 8/18/2019 Gas–Liquid and Gas-liquid-solid Reactions

    28/100

  • 8/18/2019 Gas–Liquid and Gas-liquid-solid Reactions

    29/100

    ey M(ltipha e %eactorey M(ltipha e %eactor

  • 8/18/2019 Gas–Liquid and Gas-liquid-solid Reactions

    30/100

    ( le Col(mn in )i**erent mo)e( le Col(mn in )i**erent mo)e

  • 8/18/2019 Gas–Liquid and Gas-liquid-solid Reactions

    31/100

    ey M(ltipha e %eactor /arameterey M(ltipha e %eactor /arameter

    Tram$ou,e P" et al" .(hemical Reactors / 0rom1esi n to 2peration3 Technip pu$lications 4%55)6

  • 8/18/2019 Gas–Liquid and Gas-liquid-solid Reactions

    32/100

    2@

  • 8/18/2019 Gas–Liquid and Gas-liquid-solid Reactions

    33/100

    58$0908$00

    $08$00$08;090008$0 9

    $;08?00

    90

  • 8/18/2019 Gas–Liquid and Gas-liquid-solid Reactions

    34/100

    9$

  • 8/18/2019 Gas–Liquid and Gas-liquid-solid Reactions

    35/100

    .ul%ip&ase #ea-%!r >ypes !r C&emi-alpe-ial%y a d Pe%r!leum Pr!-esses

    95

  • 8/18/2019 Gas–Liquid and Gas-liquid-solid Reactions

    36/100

    3. Basic Design Equations forMultiphase Reactors

    5'#' Ramachandran, 5' 1' Mills and M' 5'7udu8ovic

    rama>2ustl'edu D dudu>2ustl'edu

    (hemical Reaction En ineerin

    Multiphase Reaction Engineering:Multiphase Reaction Engineering:

    mailto:[email protected]:[email protected]

  • 8/18/2019 Gas–Liquid and Gas-liquid-solid Reactions

    37/100

  • 8/18/2019 Gas–Liquid and Gas-liquid-solid Reactions

    38/100

    >ypes ! .ul%ip&ase #ea-%i! s

    Gas8liquid "i%&!u% -a%alys%

    Gas8liquid "i%& s!luble -a%alys%

    Gas8liquid "i%& s!lid -a%alys% Gas8liquid8liquid "i%& s!luble

    or s!lid -a%alys%

    Gas8liquid8liquid "i%& s!luble

    or s!lid -a%alys% 0two liquid phases1

    %raig&% !r"ard

    C!mplex

    #ea-%i! >ype *egree ! *i i-ul%y

  • 8/18/2019 Gas–Liquid and Gas-liquid-solid Reactions

    39/100

    Hierar-&y ! .ul%ip&ase #ea-%!r .!dels

    1mpiri-al

    'deal Fl!" Pa%%er s

    P&e !me !l!gi-al

    V!lume8A eragedC! ser a%i! La"s

    P!i %8"ise C! ser a%i!La"s

    %raig&% !r"ard

    'mpleme %a%i! ' sig&%

    Very li%%le

    Very *i i-ul%!r 'mp!ssible

    ig i i-a %

    .!del >ype

  • 8/18/2019 Gas–Liquid and Gas-liquid-solid Reactions

    40/100

    !asic Reactor 6ypes for Systems 7ith SolidCatalyst 0 three or four phase systems1

    %Systems with mo$in' catalysts- stirred tank slurry systems- slurry bubble columns- loop slurry reactors- three phase fluidi/ed beds 0ebulated beds1

    %Systems with sta'nant catalysts-packed beds with two phase flow( down flow*up flow* counter-current flow- monoliths and structured packin'

    - rotatin' packed beds

    P& ! A %i l # %! P !

  • 8/18/2019 Gas–Liquid and Gas-liquid-solid Reactions

    41/100

    P&e !me a A e-%i g lurry #ea-%!r Per !rma -e

    Fl!" dy ami-s ! %&e mul%i8p&ase dispersi!8 Fluid &!ldups , &!ldup dis%ribu%i!8 Fluid a d par%i-le spe-i i- i %er a-ial areas8 Bubble siDe , -a%alys% siDe dis%ribu%i! s

    Fluid ma-r!8mixi g8 P*FEs ! #>*s !r %&e ari!us p&ases

    Fluid mi-r!8mixi g8 Bubble -!ales-e -e , breakage8 Ca%alys% par%i-le aggl!mera%i! , a%%ri%i!

    Hea% %ra s er p&e !me a8 Liquid e ap!ra%i! , -! de sa%i!8 Fluid8%!8"all luid8%!8i %er al -!ils e%-7

    1 ergy dissipa%i!8 P!"er i pu% r!m ari!us s!ur-es

    (e.g 7 s%irrers luid8 luid i %era-%i! s )

    #ea-%!r .!del

    P&e !me a A e-%i g Fixed8Bed #ea-%!r Per !rma -e

  • 8/18/2019 Gas–Liquid and Gas-liquid-solid Reactions

    42/100

    Fluid dy ami-s ! %&e mul%i8p&ase l!"s

    8 Fl!" regimes , pressure dr!p8 Fluid &!ldups , &!ldup dis%ribu%i!8 Fluid8 luid , luid8par%i-le spe-i i- i %er a-ial areas8 Fluid dis%ribu%i!

    Fluid ma-r!8mixi g8 P*FEs ! #>*s !r %&e ari!us p&ases

    Hea% %ra s er p&e !me a8 Liquid e ap!ra%i! , -! de sa%i!

    8 Fluid8%!8"all luid8%!8i %er al -!ils e%-7

    1 ergy dissipa%i!8 Pressure dr!p

    (e.g 7 s%irrers luid8 luid i %era-%i! s )

    #ea-%!r .!del

    P&e !me a A e-%i g Fixed8Bed #ea-%!r Per !rma -e

    8l t f th R t 9 d l

  • 8/18/2019 Gas–Liquid and Gas-liquid-solid Reactions

    43/100

    8lements of the Reactor 9odel

    .i-r! !r L!-al A alysis .a-r! !r Gl!bal A alysis

    Gas 8 liquid mass %ra s er

    Liquid 8 s!lid mass %ra s er

    ' %erpar%i-le a d i %er8p&ase mass %ra s er

    ' %rapar%i-le a d i %ra8p&ase di usi!

    ' %rapar%i-le a d i %ra8p&ase &ea% %ra s er

    Ca%alys% par%i-le "e%%i g

    Fl!" pa%%er s !r %&e gas liquid a d s!lids

    *y ami-s ! gas liquida d s!lids l!"s

    .a-r! dis%ribu%i! s !%&e gas liquid a d

    s!lids Hea% ex-&a ge

    %&er %ypes ! %ra sp!r%

    p&e !me a

  • 8/18/2019 Gas–Liquid and Gas-liquid-solid Reactions

    44/100

    #ea-%!r *esig Variables

    #ea-%!r Pr!-ess #ea-%i! Fl!" =

    Per !rma -e Variables #a%es Pa%%er s

    C! ersi! Fl!" ra%es i e%i-s .a-r!

    ele-%i i%y ' le% C , > >ra sp!r% .i-r!

    A-%i i%y Hea% ex-&a ge

    Feed #ea-%!r i

    > iC i

    Pr!du-%!u%

    > !u%C !u%

    d l d d l l

  • 8/18/2019 Gas–Liquid and Gas-liquid-solid Reactions

    45/100

    'dealiDed .ixi g .!dels !r .ul%i8p&ase ( >&ree P&ase) #ea-%!rs

    .!del Gas8P&ase Liquid P&ase !lid8P&ase #ea-%!r >ype

    $ Plug8 l!" Plug8 l!" Fixed >ri-kle8Bed

    Fl!!ded8Bed

    5 Ba-k mixed Ba-k mixed Ba-k mixed .e-&a i-ally agi%a%ed

    2 Plug8Fl!" Ba-k mixed Ba-k mixed Bubble -!lum 1bulla%ed 8 bed Gas8Li % , L!!p

    'deal Fl!" Pa%%er s i ul%ip&ase #ea %!rs

  • 8/18/2019 Gas–Liquid and Gas-liquid-solid Reactions

    46/100

    deal Fl! Pa%%er s i .ul%ip&ase #ea-%!rs1xample3 .e-&a i-ally Agi%a%ed #ea-%!rs

    t

    XG(t)

    0

    δ (t)

    t

    XL(t)

    0

    δ (t)

    t

    EG(t)

    0

    δ (t- g )

    τ g

    t

    EL(t)

    - t / Leτ L

    0

    H

    QL

    QG

    QL

    QG

    τ ε ε

    L

    r ! L

    L

    "

    #= − −( )1τ ε ! r !

    !

    "

    #=

    V R = v G + V L + V C 1 = ε G + ε L + ε C

    or

    i t Ab l t 9 t f th

  • 8/18/2019 Gas–Liquid and Gas-liquid-solid Reactions

    47/100

    irst Absolute 9oment of the6racer Response for 9ulti-phase Systems

    For a single mobile phase in contact with p stagnant phases:

    µ1 =V1 + K 1j V j

    j = 2

    p

    ∑Q 1

    For p mobile phases in contact with p - 1 mobile phases:

    µ1 =V1 + K 1j V j

    j = 2

    p

    ∑Q1 + K 1j Q j

    j = 2

    p

    K1j =C jC1

    equil.is %&e par%i%i! -!e i-ie % ! %&e %ra-er

    be%"ee p&ase $ a d I

    R l ti ' th #& f th 6 ) l

  • 8/18/2019 Gas–Liquid and Gas-liquid-solid Reactions

    48/100

    Relatin' the #& of the 6racer )mpulseResponse to Reactor #erformance

    JF!r a y sys%em "&ere %&e -! aria -e ! s!I!ur %imes is Der!(i.e., "&e %&e %ra-er lea es a d re8e %ers %&e l!"i g s%ream a%%&e same spa%ial p!si%i! ) %&e P*F ! s!I!ur %imes i %&e rea-%i!e ir! me % -a be !b%ai ed r!m %&e exi%8age P*F !r a

    ! 8ads!rbi g %ra-er %&a% remai s -! i ed %! %&e l!"i g p&ase

    ex%er al %! !%&er p&ases prese % i %&e sys%em7K

    F!r a irs%8!rder pr!-ess3

    ∫ ∞

    0

    H-A

    p

    e = X - dt1t08: e tt10kc

    ∫ ∞

    0

    (-e = dt1t08 e tt1;

  • 8/18/2019 Gas–Liquid and Gas-liquid-solid Reactions

    49/100

    )llustrations of )deal-9i in' 9odelsfor 9ultiphase Reactors

    D

    G L Plug8 l!" ! gas Ba-kmixed liquid , -a%alys%

    Ba%-& -a%alys% Ca%alys% is ully "e%%ed

    D

    G L Plug8 l!" ! gas Plug8 l!" ! liquid

    Fixed8bed ! -a%alys% Ca%alys% is ully "e%%ed

    %irred %a k

    Bubble C!lum>ri-kle 8 Bed

    Fl!!ded 8 Bed

    Li iti ' f ) t i i R ti R t

  • 8/18/2019 Gas–Liquid and Gas-liquid-solid Reactions

    50/100

    Limitin' orms of )ntrinsic Reaction Rates

    Reaction SchemeD A 4 6 &8 4l6 (4l6

    G Li i%i # % % d Pl 8Fl!" ! Li id

  • 8/18/2019 Gas–Liquid and Gas-liquid-solid Reactions

    51/100

    D

    G L

    Gas Limi%i g #ea-%a % a d Plug8Fl!" ! Liquid

    $7 Gase!us rea-%a % is limi%i g

    57 Firs%8!rder rea-%i! "r% diss!l ed gas

    27 C! s%a % gas8p&ase -! -e %ra%i!

    97 Plug8 l!" ! liquid

    ;7 's!%&ermal !pera%i!

    >l A B

    C C 1/ >>l L L A A B B

    C DC D ν

    Gas Reactant Limitin' and #lu' low of Liquid

  • 8/18/2019 Gas–Liquid and Gas-liquid-solid Reactions

    52/100

    Gas Reactant Limitin and #lu low of Liquid

    )onstant gas phaseconcentration valid for pure

    gas at high ?o2 rate

    ) o

    n c e n

    t r a

    t i o n o r #

    x i a l ; e

    i g h t

    Relative distance from catal9st particle

    ( ) ( ) 0d$% A A Aad$' k A A Aak A# A#r sl p sr l

    (

    Bl d$ $ l l $ l l −−+−

    +

    $

  • 8/18/2019 Gas–Liquid and Gas-liquid-solid Reactions

    53/100

  • 8/18/2019 Gas–Liquid and Gas-liquid-solid Reactions

    54/100

    Concept of Reactor 8fficiency

  • 8/18/2019 Gas–Liquid and Gas-liquid-solid Reactions

    55/100

    Concept of Reactor 8fficiency=

    Rη Rate of r#n in the Entire Reactor with Transport E ects

    +a#imum Possi$le Rate

    )onversion of Reactant @

  • 8/18/2019 Gas–Liquid and Gas-liquid-solid Reactions

    56/100

    ) @$in terms of Reactor cienc9%

  • 8/18/2019 Gas–Liquid and Gas-liquid-solid Reactions

    57/100

    Gas #ea-%a % Limi%i g a d Ba-kmixed Liquid

    D

    G L

    $7 Gase!us rea-%a % is limi%i g

    57 Firs%8!rder rea-%i! "r% diss!l ed gas

    27 C! s%a % gas8p&ase -! -e %ra%i!

    97 Liquid a d -a%alys% are ba-kmixed

    ;7 's!%&ermal !pera%i!

    a k

    Bubble C!lum

    Key Assumptions

  • 8/18/2019 Gas–Liquid and Gas-liquid-solid Reactions

    58/100

    Gas Reactant Limitin and 8ac;mi#ed

  • 8/18/2019 Gas–Liquid and Gas-liquid-solid Reactions

    59/100

    LiquidA at the catalyst surfaceDA at the catalyst surfaceD

    0or Reactant 8D0or Reactant 8D$

  • 8/18/2019 Gas–Liquid and Gas-liquid-solid Reactions

    60/100

    LiquidSol&in the +odel Equations

    Fl!" Pa%%er C! -ep%s

  • 8/18/2019 Gas–Liquid and Gas-liquid-solid Reactions

    61/100

    Fl! Pa%%er C! ep%s!r Vari!us .ul%ip&ase ys%ems

    A BA 8 i gle plug l!" p&ase l!" !gas !r liquid "i%& ex-&a ge be%"ee%&e m!bile p&ase a d s%ag a % p&ase7

    Fixed beds, rickle-beds, packed

    bubble columnsB 8 i gle p&ase l!" ! gas !r

    liquid "i%& ex-&a ge be%"ee apar%ially ba-kmixed s%ag a % p&ase7

    !emi-batch slurries, "luidi#ed-beds,ebullated beds

    Fl!" Pa%%er C! -ep%s

  • 8/18/2019 Gas–Liquid and Gas-liquid-solid Reactions

    62/100

    p!r Vari!us .ul%ip&ase ys%ems

    C * 1C * 8 C! -urre % !r-!u %er-urre % %"!8p&asel!" (plug l!" !r dispersedl!") "i%& ex-&a ge

    be%"ee %&e p&ases a ds%ag a % p&ase7

    rickle-beds, packed orempty bubble columns

    1 8 1x-&a ge be%"ee %"!l!"i g p&ases ! e !

    "&i-& &as s%r! g i %er alre-ir-ula%i! 7$mpty bubble columns and"luidi#ed beds

    Strate ies for +ultiphase Reactor

  • 8/18/2019 Gas–Liquid and Gas-liquid-solid Reactions

    63/100

    Selection

    • Strate y le&el JD (atalyst desi n strate y

    gas-solid s9stems: catal9st particle siEe, shape, porousstructure, distribution of active materialgas-liquid s9stems: choice of gas-dispersed or liquid-disperseds9stems, ratio bet2een liquid-phase bul8 volume and liquid-phase diAusion la9er volume

    • Strate y le&el JJD JnKection and dispersion strate ies$a% reactant and energ9 inHection: batch, continuous, pulsed,staged, ?o2 reversal$b% state of mixedness of concentrations and temperature:2ell-mixed or plug ?o2$c% separation of product or energ9 in situ$d% contacting ?o2 pattern: co-, counter-, cross-current

    • Strate y le&el JJJD (hoice of hydrodynamic owre ime

    e'g', pac8ed bed, bubbl9 ?o2, churn-turbulent regime, dense-phase or dilute-phase riser transport

    Strate ies for +ultiphase Reactor

  • 8/18/2019 Gas–Liquid and Gas-liquid-solid Reactions

    64/100

    Selection

    R' 0rishna and "'T' "ie, ) ", , p' + $& %

    Two-0ilm TheoryD +ass and eatTwo-0ilm TheoryD +ass and eat

  • 8/18/2019 Gas–Liquid and Gas-liquid-solid Reactions

    65/100

    ) J ( T ), j ( C g g

    i 11

    Gas 0ilm Liquid 8ul;

    ) J ( T ), j ( C g g i ) J ( T ), j ( C L L

    i

    ) J ( T ), j ( C L L

    i 11

    Gas 8ul;

    ∑=

    ∆−= )R

    * R

    + *

    +

    H Rdx

    , d

    12

    2

    )(κ

    ∑=

    −= )R

    *

    + * *-

    + -

    - RdxC d

    D1

    2

    Liquid 0ilm

    (ell B th0 X

    f

    ) j ( ,i N

    1 X

    f

    ) j ( ,i N

    1 X f

    ) j ( ,i q0)(6 = .

    + *-q

    mδ δ

    yyTransferTransfer

    eat0ilm

  • 8/18/2019 Gas–Liquid and Gas-liquid-solid Reactions

    66/100

    -Transfer

  • 8/18/2019 Gas–Liquid and Gas-liquid-solid Reactions

    67/100

    ∑=

    ∆−=

    )R

    * * *r

    +

    L R H d/ , d

    162

    2

    ))((λ

    8"("!

    8"("%

    ( )01

    600

    )()(====

    −∆−+−=−∑ /

    + -

    -

    )S

    - - s

    +

    $

    g

    o0t g /

    +

    L d/

    dC D H , ,

    d/

    d, λ

    ( )m

    + /

    L

    L

    /

    +

    Lm

    , ,

    d/

    d,

    δ δ λ λ δ

    δ −−−=− =

    =

    )(

    Gas-Liquid lm

    Transfer

    8u$$le (olumn +i#in (ell +odel8u$$le (olumn +i#in (ell +odel

  • 8/18/2019 Gas–Liquid and Gas-liquid-solid Reactions

    68/100

    8u$$le (olumn +i#in (ell +odel8u$$le (olumn i#in (ell odel

    - )ells arranged in diAerent modes to simulate the averaged ?o2

    patterns-

    (ells in seriesDG and L mi#ed ow

    (ells inseries-parallel

    com$ination

    E#chan e$etweenMpward anddownwardmo&in liquid

    Liquid Gas Liquid Gas

    (ell !

    (ell 9

    (ell K

    (ells in seriesDG plu ow L mi#ed ow

    Prototype cell

    +i#in (ell +odel for as-liquid+i#in (ell +odel for as-liquid

  • 8/18/2019 Gas–Liquid and Gas-liquid-solid Reactions

    69/100

    systemssystems9o&el features

  • 8/18/2019 Gas–Liquid and Gas-liquid-solid Reactions

    70/100

    9on-1imensionali,ed parameters

    7aria$les

    Reaction $ased

    re+ -

    +

    - + - g re+ -

    g

    - g - C C cand C C c 66==

    re+ - g

    re+ -re+ - H C C 666 /=%

    L%$

    L&$ll3L

    Au

    k "V=α %$ %$ 6ii ,,=ω

    re+ *

    re+ L

    m Lcell * R

    C #

    a" M

    )( δ ε −=re+

    a* *

    R,

    E =γ

    re+ L p L L DC Le ρ λ =

    %$ L

    L

    %$ 76% 7 T,

    ,89

    ρ∆

    −=%$ %$

    2#

    %$ 72

    7 ,:

    R 8"

    δ=

    -

    g re+ -m- M D

    k H B- 66

    δ =

    +ass transfer $ased

    re+ L

    re+ re+ *r

    *,

    C D H

    λ β

    )( 6∆−=

    L

    m g H B- λ

    δ =

    re+ L

    re+ ---S -S ,

    C D H

    λ β 666

    )( ∆−=

    re+ - g re+

    L

    re+ +- H 0

    0

    6=γ

    %$

    iis =

    g pm g

    Lcell gl g

    C m

    " aS

    6δ λ

    =m L p L

    Lcell gl L

    C m

    " aS

    δ λ

    6

    =

    eat transfer $ased

    odel

    m

    / δ ξ = g re+ g

    g

    ## + =

    re+

    L

    L

    , , =θ

    re+

    g

    g

    , , =θ

    +eat of reactionparameter

    !ulk reaction number +atta number Arrheniusnumber +eat of reactionparameter

    &amkohler number !iot number

    !iot number +eat of solutionparameter

    Liquid heattransfer number

    Gas heattransfer number

    Lewis number

    &iffusi$itiesratio

    8ffecti$e G

  • 8/18/2019 Gas–Liquid and Gas-liquid-solid Reactions

    71/100

    - 6as @hat R'7', van "2aaiH ('5'M', 0uipers, J'#'M', 6ersteeg,G'F', KMasstransfer 2ith complex chemical reaction in gas-liquid L, )hem' ng' "ci',

    4 , &+&-&/3, $& %

    - 6as @hat R'7', van "2aaiH ('5'M', 0uipers, J'#'M', 6ersteeg,G'F', KMasstransfer 2ith complex chemical reaction in gas-liquid L, )hem' ng' "ci',4 , &/.-& ., $& %

    - #l- baidi @';' and "elim M';' $& +%, K Role of 1iquid Reactant 6olatilit9in Gas #bsorption 2ith an xothermic ReactionL, #!)h J', /N, /3/-/.4,$& +%

    - @hattachar9a, #', Gholap, R'6', )haudhari, R'6', KGas absorption 2ithexothermic bimolecular $&,& order% reactionL, #!)h J', //$ %, &4 .-&4&/,$& N.%

    - Pan ar;ar 7"G" Sharma +"+ ', K)onsecutive reactions: Role of Mass Transfer factorsL, + , 43&-43 , $& . %

    - Pan ar;ar 7"G" Sharma +"+ ', K"imultaneous absorption and reactionof t2o gasesL, + , ++ .-+/ 3, $& . %

    Reactions

    Types of eat GenerationTypes of eat Generation

  • 8/18/2019 Gas–Liquid and Gas-liquid-solid Reactions

    72/100

    Types of eat GenerationTypes of eat Generation

    !" %eat of solution 4N s 6 which is enerated at the as-

    liquid interface due to the physical process of asdissolution

    % %eat of &apori'ation 4N &6 of &olatile reactants due toe&aporati&e coolin in o#idation reaction

    '" %eat of reaction 4N r 6 which is enerated in the lmnear the as-liquid interface 4for fast reactions6 or inthe $ul; liquid 4for slow reactions6"O Mncontrolled heat eneration can lead toD

    !" Mndesired production of $y-products%" Thermally-induced product decomposition'" Jncreased rate of catalyst deacti&ation)" Local hot spots and e#cess &apor eneration*" Reactor runaway and unsafe operation

    O +odelin of simultaneous mass and heat transporte ects in the lm is necessary for accurate predictions

    w+ass Transfer Rates in Gas Liquid+ass Transfer Rates in Gas Liquid

  • 8/18/2019 Gas–Liquid and Gas-liquid-solid Reactions

    73/100

    +ass Transfer Rates in Gas-Liquid+ass Transfer Rates in Gas-LiquidReactionsReactions

    !" Physical transport and thermodynamicproperties of the reaction medium e#hi$it

    &arious de rees of temperature dependence

    %" >inetic parameters e#hi$it e#ponentialdependence on the local temperature

    '" Jnsta$ilities at the as-liquid reactioninterface that are dri&en $y surface tension

    e ects 4+aran oni e ect6 and density e ects

    Typical $y tem with +ota le 3eat E**ectTypical $y tem with +ota le 3eat E**ect

  • 8/18/2019 Gas–Liquid and Gas-liquid-solid Reactions

    74/100

    Typical $y tem with +ota le 3eat E ectTypical $y tem with +ota le 3eat E ect

    #hah $ %hattachar&ee, in'(ecent)d"ances +, 1 .

    /ropertie an) nter*acial Temperat(re/ropertie an) nter*acial Temperat(re

  • 8/18/2019 Gas–Liquid and Gas-liquid-solid Reactions

    75/100

    /ropertie an) nter acial Temperat(rep ) p (%i e *or $ome /ractical $y tem%i e *or $ome /ractical $y tem

    #hah $ %hattachar&ee, in '(ecent )d"ances in the 0ngineering )nal sisof ulti3hase (eacting # stems,+ 4ile 0astern, 1 .

    t % t *t % t *

  • 8/18/2019 Gas–Liquid and Gas-liquid-solid Reactions

    76/100

    a oratory %eactor *ora oratory %eactor *orGa - i'(i) %eaction ineticGa - i'(i) %eaction inetic

    (ase !D Sin le non-isothermal reaction(ase !D Sin le non-isothermal reaction

  • 8/18/2019 Gas–Liquid and Gas-liquid-solid Reactions

    77/100

    G1 second order reaction

    B Ak dx Ad

    D A 222

    =

    A D

    Bk Ha 02

    22 δ =

  • 8/18/2019 Gas–Liquid and Gas-liquid-solid Reactions

    78/100

    ! "# $ %

    & ' '$ ( % % 4Bi! F!"*6 ' % 4Bi! F56

    Temp'

    )onc'

    Reaction "cheme:# B v@ );a O & , q O ' 4, γ O ++,γ s O -.'4, γ vap O +,βsO ' &, βvap O - ' 4,@i;g O &

  • 8/18/2019 Gas–Liquid and Gas-liquid-solid Reactions

    79/100

    m g Hg B-

    δ κ

    =

    Bi Hg ↑ → Temp ↓

    A

    b B m ref

    D

    C k Ha

    22 δ

    =

    Ha ↑ → Rxn ↑ → Temp. ↑

  • 8/18/2019 Gas–Liquid and Gas-liquid-solid Reactions

    80/100

    Axial *ispersi! .!del ( i gle P&ase)

  • 8/18/2019 Gas–Liquid and Gas-liquid-solid Reactions

    81/100

    p ( g )@asis: 5lug ?o2 2ith

    superimposed KdiAusionalL orKedd9L transport in the

    direction of ?o2 R

    d$ C

    0 $

    C D

    t C

    ax +∂−

    ∂∂=

    ∂∂

    2

    2

    > E O $ C

    D0C C 0 ax ∂∂

    −=00> E O 1

    0=∂∂ $ C

    1et L $

    2 =ax

    ax D0L

    Pe =0 L

    3 =

    R3 2d C

    2C

    Pet C

    3 ax

    +∂−∂∂=

    ∂∂

    2

    21

    > η O 2

    C

    PeC C

    ax ∂

    ∂−=

    10 > η O & 0=

    2

    C

    Axial *ispersi! .!del

  • 8/18/2019 Gas–Liquid and Gas-liquid-solid Reactions

    82/100

    R3

    2d

    C

    2

    C

    Pet

    C 3

    ax

    +∂−∂∂=

    ∂∂

    2

    21

    > η O 2C

    PeC C

    ax ∂∂

    −=1

    0 > η O & 0=∂∂

    2C

    Axial *ispersi! .!del !r %&e Liquid "i%&C! s%a % Gas8P&ase C! e %ra%i! 8 $

  • 8/18/2019 Gas–Liquid and Gas-liquid-solid Reactions

    83/100

    C! s%a % Gas8P&ase C! -e %ra%i! 8 $+ass 8alance of A in the liquid phase

    $

  • 8/18/2019 Gas–Liquid and Gas-liquid-solid Reactions

    84/100

    C! s%a % Gas8P&ase C! -e %ra%i! 8 5

    Axial *ispersi! .!del !r %&e Liquid "i%&C! s%a % Gas8P&ase C! -e %ra%i! 8 2

  • 8/18/2019 Gas–Liquid and Gas-liquid-solid Reactions

    85/100

    C! s%a % Gas8P&ase C! -e %ra%i! 8 2

    A*. .!del3 B!u dary C! di%i! s

  • 8/18/2019 Gas–Liquid and Gas-liquid-solid Reactions

    86/100

  • 8/18/2019 Gas–Liquid and Gas-liquid-solid Reactions

    87/100

    Comments re'ardin' a ial dispersion model

  • 8/18/2019 Gas–Liquid and Gas-liquid-solid Reactions

    88/100

    Comments re ardin a ial dispersion model0A&91

    % 6he model is $ery popular because it has only a sin'leparameter* a ial dispersion coefficient* & a * the $alue ofwhich allows one to represent R6&s between that of astirred tank and of a plu' flow. 6he reactor model is usually

    written in dimensionless form where the #eclet number fora ial dispersion is defined as(

    'i#$&o $&'ios'i&&;"%"&'$%i

    'i#$dis $%sio"5i"ls'i&&;"%"&'$%i

    /

    //

    2

    ===5 L

    D L D L5 Pe axaxax

    #e a => plu' flow

    #e a =? complete back mi in'

    A&9 comments continued-:

  • 8/18/2019 Gas–Liquid and Gas-liquid-solid Reactions

    89/100

    % @se of A&9 was populari/ed by the work of&anckwerts* Le$enspiel* !ischoff* 5. Smith andmany others in the : B?s throu'h : ?s.

    % Since & a encompasses the effects of thecon$ecti$e flow pattern* eddy as well asmolecular diffusion* prediction of the A ial #ecletDumber with scale –up is e tremely difficult as atheoretical basis e ists only for laminar andturbulent sin'le phase flows in pipes.

    % 9oreo$er use of A&9 as a model for the reactoris only ad$isable for systems of #eclet lar'erthan E 0preferably :?1.

    A&9 comments continued

  • 8/18/2019 Gas–Liquid and Gas-liquid-solid Reactions

    90/100

    A&9 comments continued -

    % +owe$er* A&9 leads to the boundary $alueproblem for calculation of reactor performancewith inlet boundary conditions which are neededto preser$e the mass balance but unrealistic for

    actual systems. Since at lar'e #eclet numbersfor a ial dispersion the R6& is narrow* reactorperformance can be calculated more effecti$elyby a tanks in series model or se're'ated flowmodel.

  • 8/18/2019 Gas–Liquid and Gas-liquid-solid Reactions

    91/100

    i l C

  • 8/18/2019 Gas–Liquid and Gas-liquid-solid Reactions

    92/100

    inal Comments% 6o impro$e predictability of multiphase reactor

    models and reduce the risk of scale-up* theyshould be increasin'ly de$eloped based onproper physical description of hydrodynamics in

    these systems.% )mpro$ed reactor scale descriptions coupled withad$ances on molecular and sin'le eddy 0sin'leparticle1 scale will facilitate the implementation of

    no$el en$ironmentally beni'n technolo'ies byreducin' the risk of such implementations.

  • 8/18/2019 Gas–Liquid and Gas-liquid-solid Reactions

    93/100

    #ea-%i! ys%em

  • 8/18/2019 Gas–Liquid and Gas-liquid-solid Reactions

    94/100

    y

    9<

    *isad a %ages ! emi8Ba%-& lurry #ea-%!r

  • 8/18/2019 Gas–Liquid and Gas-liquid-solid Reactions

    95/100

    g y

    % Ba%-& a%ure 6 ariable pr!du-%

    % L!" !lume%ri- pr!du-%i i%y (due %! l!" -a%alys% l!adi ga d limi%ed pressure)

    % Pressure limi%a%i! (s&a % seal)

    % Hig& p!"er -! sump%i!% P!!r sele-%i i%y (due %! &ig& liquid %! -a%alys% !lume

    ra%i! a d u desirable &!m!ge e!us rea-%i! s)

    % Ca%alys% il%ra%i! %ime -! sumi g

    % Ca%alys% make8up required

    % xyge mass %ra s er limi%a%i! s

    9

    P!%e %ial Ad a %ages ! Fixed Bed ys%em

  • 8/18/2019 Gas–Liquid and Gas-liquid-solid Reactions

    96/100

    g y

    9?

    lurry s Fixed Bed% i%& ! d i ! % l % %i l k d8b d

  • 8/18/2019 Gas–Liquid and Gas-liquid-solid Reactions

    97/100

    % i%& pr!per desig ! -a%alys% par%i-les a pa-ked8bedrea-%!r "i%& -!8-urre % d!" 8 l!" ! gas a d liquid b!%&i par%ial "e%%i g regime a d i i du-ed pulsi g regime-a ar surpass %&e !lume%ri- pr!du-%i i%y a dsele-%i i%y ! %&e slurry sys%em ye% require a !rder !mag i%ude less ! %&e a-%i e -a%alys% -!mp! e %7

    % M desirable &!m!ge !us rea-%i! s are suppressed i%&e ixed bed rea-%!r due %! mu-& &ig&er -a%alys% %!liquid !lume ra%i!

    % Fa%&er ad a %age is a--!mplis&ed i ixed beds by!pera%i! a% &ig&er pressure ( ! m! i g s&a %s %! seal)7

    % Fixed bed !pera%i! requires l! g %erm -a%alys% s%abili%y!r ease ! i si%u rege era%i! 7

    9@

  • 8/18/2019 Gas–Liquid and Gas-liquid-solid Reactions

    98/100

    #e ere -es

  • 8/18/2019 Gas–Liquid and Gas-liquid-solid Reactions

    99/100

    :. &uduko$ic* 9.#.* Larachi* .* 9ills* #.L.* K9ultiphaseReactors – Re$isited * Chem. 8n'. Science* EM:* : E-: E 0: 1.

    . &uduko$ic* 9.#.* Larachi* .* 9ills* #.L.* K9ultiphaseCatalytic Reactors( A #erspecti$e on Current Nnowled'eand uture 6rends * Catalysis Re$iews* MM0::1* : F- MB

    0 ?? 1.F. Le$enspiel* 4cta$e* Chemical Reaction 8n'ineerin'* F rd

    8dition* 7iley* : .

    M. 6rambou/e* #.* 8u/en* H.#.* KChemical Reactors – rom

    &esi'n to 4peration * ) # #ublications* 8ditions 68C+D)#*#aris* rance 0 ?? 1.

    9;

    or any process chemistry in$ol$in' morethan one phase one should (

  • 8/18/2019 Gas–Liquid and Gas-liquid-solid Reactions

    100/100

    than one phase one should (

    % Select the best reactor flow pattern based on thekinetic scheme and mass and heat transferrequirements of the system*

    % Assess the ma'nitude of heat and mass transfereffects on the kinetic rate

    % Assess whether desi'n requirements can be metbased on ideal flow assumptions% &e$elop scale-up and scale-down relations% ;uantify flow field chan'es with scale if needed

    for proper assessment of reactor performance% Couple physically based flow and phasecontactin' model with kinetics