35
Gemini Observatory Gemini Observatory Results & Lessons Leaned Results & Lessons Leaned SPIE SPIE August 2002 August 2002 Matt Mountain Matt Mountain Jean-Rene Roy Jean-Rene Roy Phil Puxley Phil Puxley Eric Hansen Eric Hansen

Gemini Observatory Results & Lessons Leaned SPIE August 2002 Matt Mountain Jean-Rene Roy Phil Puxley Eric Hansen

Embed Size (px)

Citation preview

Gemini ObservatoryGemini ObservatoryResults & Lessons Results & Lessons

LeanedLeaned

SPIESPIE

August 2002August 2002

Matt MountainMatt MountainJean-Rene RoyJean-Rene RoyPhil PuxleyPhil PuxleyEric HansenEric Hansen

Defining Gemini:Defining Gemini: Top Level Top Level Performance RequirementsPerformance Requirements – (1991 – (1991

SRD)SRD)

• Image Quality of better than 0.1 Image Quality of better than 0.1 arcsec. arcsec. < 2.5 < 2.5 mm• Diffraction limited imaging with Adaptive Diffraction limited imaging with Adaptive

OpticsOptics

• IR Optimized configurationIR Optimized configuration

• Board wavelength coverage and high Board wavelength coverage and high throughputthroughput

• VersatilityVersatility• Exploit Queue SchedulingExploit Queue Scheduling

Early AO Science ResultsEarly AO Science Results

Trapezium, J,H & K Gemini South (Lucas 2002)

Potter et al 2001Potter et al 2001

Liu et al 2001

Close et al 2001

Jayawardhana &

Luhman, 2002

Potter et al 2001

Flu

x (p

hoto

ns/s

ec/µ

m/a

rcse

c2 )

Wavelength (µm)

1E+03

1E+04

1E+05

1E+06

1E+07

1E+08

1E+09

1E+10

1E+11

1E+12

1 10 100

Mauna Kea Sky

2% Emissive Telescope

OH

IR Optimization – energy IR Optimization – energy concentration concentration

& low emissivity& low emissivity

IR Optimization works:IR Optimization works:Gemini-South IR (4 micron) Gemini-South IR (4 micron) Commissioning Images of Galactic Commissioning Images of Galactic CenterCenter

•Gemini South + ABU + fast tip/tilt•Brackett •FWHM ~ 0.35”•1 minute integration

•Simons & Becklin 1992•IRTF (3.6m) - L’•16,000 images shift/add•An entire night….

Perlman, Sparks, et al.

Gemini North: M87 jet at 10 mm– Gemini North: M87 jet at 10 mm– Deepest image ever taken in the mid IRDeepest image ever taken in the mid IR

OSCIR, 10.8 m

HST/F300W, 0.3 m

Sensitivity (1, 1 h): 0.028 mJy/pix (pix scale = 0.089”) 0.1 mJy on point source

14 Jy/pixel after further IR Optimization

The Frederick C. Gillett Gemini Telescope

Mauna Kea, Hawaii

Gemini in the Optical – GMOS North Gemini in the Optical – GMOS North comes on-linecomes on-line

PMN2314+0201 Quasar at z=4.11 Gemini SV PI: Isobel Hook

60min – 60min – 140min 140min per filterper filter

Seeing Seeing (FWHM) (FWHM) 0.5 – 0.7 arcsec0.5 – 0.7 arcsec

5 sigma 5 sigma detection limits detection limits ::

g'=27.5 magg'=27.5 mag r'=27.2 magr'=27.2 mag i'=26.3 magi'=26.3 mag

GMOS on Gemini 5.5’ x 5.5’

GMOS Queue Observing GMOS Queue Observing 2002A2002A

Summary of the completion rates as fraction of programs==========================================================

Band Completion rate >90% >50% <50% -----------------------------------------

1 10/14=0.71 11/14=0.79 3/14=0.21 2 2/8 =0.25 3/8 =0.38 5/8 =0.63 3 2/8 =0.25 4/8 =0.50 4/8 =0.50 4 1/11=0.09 2/11 =0.18 9/11=0.82

Many observations in band 3 and 4 were taken in poor observing conditions,and the programs in these bands with significant data were programs thatcould tolerate CC=70% or worse, and seeing of 1arcsec or worse.

Gemini North reliability Gemini North reliability >90% >90% (<10% down time)(<10% down time)GMOS Observing efficiency GMOS Observing efficiency (shutter open/elapsed)(shutter open/elapsed) ~ 70% ~ 70%

GMOS: Evolution of ages and metalicity in GMOS: Evolution of ages and metalicity in clusters from z= 1 to present epoch (Inger clusters from z= 1 to present epoch (Inger

Jørgensen , Gemini Observatory)Jørgensen , Gemini Observatory)

Abel 851 z = 0.4

GMOS: Evolution of ages and metalicity in GMOS: Evolution of ages and metalicity in clusters from z= 1 to present epoch (Inger clusters from z= 1 to present epoch (Inger

Jørgensen , Gemini Observatory)Jørgensen , Gemini Observatory)

Abel 851 z = 0.4

There are 34 science targets in this mask.

Tilted slits used for some galaxies in order to be able to measure rotation curves.

Seeing during the observations was 0.7-1.0arcsec

Abel 851 z = 0.4

GMOS: Evolution of ages and metalicity GMOS: Evolution of ages and metalicity in Clusters from z= 1 to present epoch in Clusters from z= 1 to present epoch

((JørgensenJørgensen 2002) 2002)The S/N needed for this type of work is 20-40 per Angstrom in the restframe of the cluster

GMOS can deliver this.

wavelength

5.5 hrs sky subtracted

GMOS “Deep Deep GMOS “Deep Deep Survey”Survey”

84 objects 2 tiers with150 l/mm grating

GDDS Team: Bob Abraham & Ray Carlberg (Toronto), Karl Glazebrook & Sandra Savaglio (JHU), Pat McCarthy (OCIW), David Crampton (DAO), Isobel Hook (Oxford), Inger Jørgensen & Kathy Roth (Gemini)

Goal: Deep 100,000 sec MOS exposures on Las Campanas IR Survey fields to get redshifts of a complete K<20.5 sample to z=2

Access ‘redshift desert’ 1.2<z<2 FORMATION OF THE HUBBLE SEQUENCE

This requires getting redshifts to I=24.5 1 mag fainter than Keck Lyman Break Galaxies.

This requires good through-put, good image quality and

“nod & shuffle”The GDDS teamThe GDDS team

GMOS “Deep Deep GMOS “Deep Deep Survey”Survey”

84 objects 2 tiers with150 l/mm grating

The GDDS teamThe GDDS teamGDDS SV data: 14 hours in 0.5'' seeing (Aug 02)GDDS SV data: 14 hours in 0.5'' seeing (Aug 02)

GDDS Nod & ShuffleGDDS Nod & Shuffle

2 arcsec slit2 arcsec slit

Shuffled imageShuffled imageof slitof slit

Shifted andShifted andsubtractedsubtracted

The GDDS teamThe GDDS team

I=23.8 z=1.07

Example object: N&S Example object: N&S subtractedsubtracted

[OII] 3727at 7700Å

The GDDS teamThe GDDS team

GDDS: ultra-super-preliminary GDDS: ultra-super-preliminary resultsresults These are just These are just

thethe‘easy’ ones so ‘easy’ ones so far!far!

Full 100,000 secswill pound on z=1.5old red galaxies

N&S works! Ultimate ‘sky null’ technique.

Could reach I=27 in 106 secs on 30m

The GDDS teamThe GDDS team

Gemini South IR Performance Gemini South IR Performance and some resultsand some results

4.7m R=100,000Rogers et al (in prep.)

Flamingos / Gemini-S

Preliminary ResultsPreliminary Results

J,H,K Luminosity Functions J,H,K Luminosity Functions show the expected peak near show the expected peak near 0.3 M(solar)0.3 M(solar)a slow decline or plateau in the a slow decline or plateau in the brown dwarf regime (J~14.5 - brown dwarf regime (J~14.5 - 17.5 mag) for unreddened 17.5 mag) for unreddened objectsobjects

A more rapid decline below the A more rapid decline below the deuterium-burning limit and deuterium-burning limit and indications of a cut-off at a few indications of a cut-off at a few M(Jupiter)M(Jupiter)

Observations are complete to Observations are complete to well below K=19mag.well below K=19mag.

J Luminosity Function

0

5

10

15

20

25

30

8 13 18 23

J-mag

Nu

mb

er

H Luminosity Function

0

5

10

15

20

25

30

7 12 17 22

H-mag

Nu

mb

er

K Luminosity Function

05

1015

2025

30

6 11 16 21

K-mag

Nu

mb

er

Flamingos on Gemini-SFlamingos on Gemini-S

Deep J,H,K images in 1 Deep J,H,K images in 1 field field

south of the Orion Core south of the Orion Core

Total of 4hr integration Total of 4hr integration

- 0.4 arcsec images- 0.4 arcsec images

Lucas et al

3 - D data cube

500 x 0.2” dispersed cells

Integral Field Unit’s (IFU’s)Integral Field Unit’s (IFU’s)enables “imaging spectroscopy” on enables “imaging spectroscopy” on

GeminiGemini

x

y

HST galaxy, z = 0.6 (Lilly 1995)

10 arcseconds

Commissioning GMOS Integral Commissioning GMOS Integral Field Unit Field Unit

Gemini South + Flamingos Image Quality DistributionOctober 2001

0

20

40

60

80

100

120

140

160

180

200

0.05 0.15 0.25 0.35 0.45 0.55 0.65 0.75 0.85

FWHM arcsec

nu

mb

er o

f fr

ames

J H K

NGC 1068 GMOS IFU – [O III] 5007

1500 simultaneousspectra

Interpretation courtesy Gerald CecilInterpretation courtesy Gerald Cecil

3C324 3C324 3-D data 3-D data

cubecubeat z = at z =

1.21.2

[OII]3727 structure has two velocity components at +/-400km/s

Wavelen

gth/velocity

Bunker et al (2002) Bunker et al (2002)

X (7 arcsec)

Y (

5 a

rcs

ec

)

GMOS-IFU

GEMINI-SOUTH

GEMINI-NORTH

10-15 June 2002

4-9 August 2002

Cambridge IR Panoramic Survey SpectrographCambridge IR Panoramic Survey Spectrograph

CIRPASS early resultsCIRPASS early results – first use – first use of aof a

near-IR IFU on an 8m-class telescope.near-IR IFU on an 8m-class telescope.The example from the z=1.2 The example from the z=1.2 radio galaxy 3C324. radio galaxy 3C324. Dispersion runs horizontally, Dispersion runs horizontally, spatial direction is vertical; spatial direction is vertical; each of the 500 IFU lenslets each of the 500 IFU lenslets produces a spectrum 2 pixels produces a spectrum 2 pixels high.high.

The preliminary processing The preliminary processing (basic sky subtraction and (basic sky subtraction and cosmic ray rejection) of this cosmic ray rejection) of this single 20 minute exposure single 20 minute exposure shows a very clear detection of shows a very clear detection of the redshifted [OIII] 500.7nm the redshifted [OIII] 500.7nm emission line (centre of the emission line (centre of the frame).frame).

http://www.gemini.edu/sciops/instruments/cirpass/cirpassDemoScience.html

GMOS – IFU now available on Gemini NorthGMOS – IFU now available on Gemini North

CIRPASS – IR IFU will be available on Gemini SouthCIRPASS – IR IFU will be available on Gemini South in Service Mode in 2003A in Service Mode in 2003A

ChallengesChallenges

• Instruments, instruments, Instruments, instruments, instruments……instruments……• Gemini South will be without Gemini South will be without

facility instrumentsfacility instruments until mid until mid 2003 from the user perspective2003 from the user perspective

• And instrument delivery And instrument delivery schedules constrain science schedules constrain science availability of Gemini availability of Gemini TelescopesTelescopes

Gemini-North Time Gemini-North Time DistributionDistribution

Gemini-North

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

2002A 2002B 2003A 2003B 2004A 2004B 2005A 2005B

Semester

% o

f T

ota

l Tim

e

Telescope Eng.

H-L S/W

Instrument

Science

NIR

I -

GP

OL

GM

OS

- N

&S

, G

PO

L

ALTA

IR

MIC

HELLE

Hoku

pa’a

-S

NIF

S

ALTA

IR L

GS

MIC

HELLE

New Instrument Mode Tests

Queue ObservingQueue Observing

Gem

ini’

s q

ueu

e s

up

port

thre

sh

old

Ab

ove

50

%C

lass

ical

tim

e a

llocate

d

Gemini-South Time Gemini-South Time DistributionDistribution

Gemini-South

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

2002A 2002B 2003A 2003B 2004A 2004B 2005A 2005B

Semester

% o

f T

ota

l Tim

e

Telescope Eng.

H-L S/W

Instrument

Science

T-R

eC

S

GM

OS

-S

GM

OS

-S (

con

t.)

bH

RO

S

GN

IRS NICI

NIC

I (c

on

t.)

GS

AO

I

GS

AO

FLA

MIN

GO

S-2

PHOENIXFLAMINGOS

New InstrumentMode Tests

Queue ObservingQueue Observing

Gem

ini’

s q

ueu

e s

up

port

thre

sh

old

Future ChallengesFuture Challenges

Exploring the Gemini Exploring the Gemini contextcontext

2000 2010

NGST ALMA SIM VLA-upgrade

Keck-Inter. ESO-VLTI

Keck I&II

UT1,UT2,UT3,UT4 Magellan 1&2 HET LBT OWL

CELT and maybeGSMT…

LSST

The decade of adaptive optics The era of the “giants”

SOFIA

SIRTF

VISTA

SUBARU

2000 2010

2012 2015Gemini N

Gemini S ?

2000 2010

NGST ALMA SIM VLA-upgrade

Keck-Inter. ESO-VLTI

Keck I&II

UT1,UT2,UT3,UT4 Magellan 1&2 HET LBT OWL

CELT and maybeGSMT…

LSST

The decade of adaptive optics The era of the “giants”

SOFIA

SIRTF

2000 2010

2012 2015Gemini N ALTAIR + LGS

Michelle NIFS

GM

OS

GAOS -> MCAO

GNIRS NICI Flam. 2

Gemini S

T-RECS

VISTA

SUBARU

?

Exploring the Gemini contextExploring the Gemini context- and responding using Science - and responding using Science

RequirementsRequirements

Defining the role of Gemini in the Defining the role of Gemini in the era era

of a 6.5m NGSTof a 6.5m NGSTAssuming a detected S/N of 10 for NGST on a point source, with 4x1000s integration

GE

MIN

I a

dv

an

tag

eN

GS

T a

dva

nta

ge

R = 30,000 R = 5,000 R = 1,000 R = 5

Timegain

102

104

1

?

2000 2010

NGST ALMA SIM VLA-upgrade

Keck-Inter. ESO-VLTI

Keck I&II

UT1,UT2,UT3,UT4 Magellan 1&2 HET LBT OWL

CELT and maybeGSMT…

LSST

The era of the “giants”

SOFIA

SIRTF

ALTAIR + LGS

Michelle NIFS

GM

OS

GAOS -> MCAO

GNIRS NICI Flam. 2T-RECS

VISTA

SUBARU

2000 2010

2012 2015Gemini N

Gemini S

Multi-IFU & MCAO++?

Extreme AO?

Mid-IR opportunity?

Seeing enhancedR=1,000,000

spectroscopy?

AspenAspen20032003

Gemini’s Gemini’s Environment,“Aspen 2003”Environment,“Aspen 2003”

& our window of opportunity& our window of opportunity

The decade of adaptive optics

?

2000 2010

NGST ALMA SIM VLA-upgrade

Keck-Inter. ESO-VLTI

Keck I&II

UT1,UT2,UT3,UT4 Magellan 1&2 HET LBT OWL

CELT and maybeGSMT…

LSST

SOFIA

SIRTF

ALTAIR + LGS

Michelle NIFS

GM

OS

GAOS -> MCAO

GNIRS NICI Flam. 2T-RECS

VISTA

SUBARU

2000 2010

2012 2015Gemini N

Gemini S

Multi-IFU & MCAO++?

Extreme AO?

Mid-IR opportunity?

AspenAspen20032003

Gemini’s Gemini’s Environment,“Aspen 2003”Environment,“Aspen 2003”

& our window of opportunity& our window of opportunity

In this evolving environment, timingas well as performance is key

The decade of adaptive optics The era of the “giants”

Seeing enhancedR=1,000,000

spectroscopy?

Comparison: Slip Factor

1.101.191.191.241.281.281.311.391.421.441.45

1.631.711.751.78

2.002.042.11

2.332.92

3.534.11

7.50

Instrument 1,8Instrument 2,6Instrument 2,9Instrument 2,5Instrument 5,1Instrument 4,1Instrument 2,7Instrument 3,1Instrument 2,4Instrument 2,3

Instrument 2,11Instrument 2,10Instrument 2,8Instrument 1,7Instrument 2,2Instrument 1,6

Instrument 2,12Instrument 2,1Instrument 1,5Instrument 1,4Instrument 1,3Instrument 1,2Instrument 1,1

Our communities have struggled to deliver 8m – 10m Our communities have struggled to deliver 8m – 10m class instruments class instruments

1.0

Slip Factor = original schedule + slip original schedule

Original Duration and Slip (Months)

0 20 40 60 80 100 120

Instrument 1,8

Instrument 2,9

Instrument 5,1

Instrument 2,7

Instrument 2,4

Instrument 2,11

Instrument 2,8

Instrument 2,2

Instrument 2,12

Instrument 1,5

Instrument 1,3

Instrument 1,1

Originalschedule

Slip

Thoughts so far….Thoughts so far….• This current generation of 8m –10m This current generation of 8m –10m

telescopes can be extremely effective and telescopes can be extremely effective and efficient efficient “science machines”“science machines”• Queue Scheduling can make very effective use Queue Scheduling can make very effective use

of these telescopesof these telescopes• Classical allocations are an essential ingredient Classical allocations are an essential ingredient

for innovationfor innovation – but requires significant time – but requires significant time allocationsallocations

• ““Point and click astronomyPoint and click astronomy” is here to stay ” is here to stay

• However, in this complex environment our However, in this complex environment our continuing competitiveness requires continuing competitiveness requires targeted, state-of-the-art instrumentation, targeted, state-of-the-art instrumentation, arriving at the telescope at the right timearriving at the telescope at the right time