Generalized Hopf Bifurcation in Delay Differential Equations

Embed Size (px)

DESCRIPTION

df

Citation preview

  • : Guo S J, Wu J H. Generalized Hopf bifurcation in delay dierential equations (in Chinese). Sci Sin Math, 2012,42(2): 91{105, doi: 10.1360/012010-1047

    : 2012 42 2 : 91 105www.springerlink.com math.scichina.com

    Hopf , , 410082; Department of Mathematics and Statistics, York University, 4700 Keele Street, Toronto, ON, Canada M3J 1P3

    E-mail: [email protected], [email protected]

    : 2010-12-31; : 2011-12-23; * (: 10971057) (: 10JJ1001) NSERC

    Lyapunov-Schmidt , , k , , , van der Pol.

    Lyapunov-Schmidt Hopf van der Pol MSC (2000) 34K18, 92B20

    1

    > 0, C = C([; 0);Rn) [; 0] Rn , 2 C kk = sup660 j()j, C = C([; 0);Rn) Banach . , t0 2 R, > 0, x : [t0 ; t0 + ]! Rn , t 2 [t0; t0 + ], xt 2 C xt() = x(t+ ), 2 [; 0].

    _x(t) = L()xt + f(; xt); (1.1)

    2 R, xt 2 C . , L() : C ! Rn 2 R , f 2Cl(RC ;Rn) l , f(; 0) = 0, 0 (1.1), f(; )

    Frechet = 0 Df(; 0) . , ,.,

    = 0 . Hopf,,. 1942, Hopf [1] Hopf. Hopf Chafee [2] 1971 . 1977 , Chow Mallet-Paret [3] Hopf. Hopf ( [4, 5]), Hopf : , ; ,

    , ; , ,

  • : Hopf

    , . , , . Hopf , . , 2 . ,

    , 2 . . , Faria Magalhaes [6], Liu [7] . ,

    . , Wu [8] Hopf . , Guo [9],Guo Lamb [10] Hopf , .

    ,, van der Pol,, Hopf . ,

    Hopf Hopf. , Lyapunov-Schmidt Hopf S1- ().

    , Hopf . , , 1 k. Hopf . [11{16], , . , , , Hopf, [17,18]. Caprino [19] Vanderbauwhede [20] , Lyapunov-Schmidt Hopf , , . , ., van der Pol .

    : 2 ; 3 Banach Lyapunov-Schmidt ; 4 Hopf ; van der Pol .

    2

    , (1.1) :

    _x(t) = L()xt: (2.1)

    2 C , x(;; ) (2.1) x0(;; ) = , T(t) :C ! C xt(;; ) = T(t). L() T(t) . Hale Verduyn Lunel [4] , n n (; ) : [; 0]! Rn2 ,

    L()' =

    Z 0

    d(; )'(); ' 2 C .

    92

  • : 42 2

    fT(t) : t > 0g , A : C ! C

    A = _; 2 Dom(A) = f 2 C : _ 2 C ; _(0) = L()g:

    A , (A) = f 2 C : (; )v = 0 v 2 Cn n f0g g,

    (; ) = Idn Z 0

    ed(; ).

    , Idm (m ) m ; IdC C ; j(; ) (j ) (; ) j- ; (; ) (; ) . ,0(; ) = (; ).

    (1.1) Hopf :(NS) A0 i!, k > 1 dimCKer((A0i!Id)j) = min(j; k) j 2 N . , A0 i! .

    (NS) i! 1, k. , k = 1 , i! , Hopf . k > 1 , k Ker((A0 i!Id)k). ,

    Cn; = Ker((A0 i!Id)k) Ran((A0 i!Id)k):

    , Ker((A0i!Id)k) A0Ker((A0i!Id)k) Ker((A0i!Id)k). f'1; : : : ; 'kg Ker((A0i!Id)k) , j = 2; 3; : : : ; k

    (A0 i!Id)'1 = 0; (A0 i!Id)'j = 'j1: (2.2)

    , : 2.1 'j(t) =Pj1s=0 1s! tsujsei!t, j = 1; 2; : : : ; k, uj 2 Cn (j = 1; 2; : : : ; k)

    j1Xs=0

    1

    s!s(0; i!)ujs = 0; (2.3)

    s(; ) (; ) s , 0(; ) = (; ). (A0 i!Id)'1 = 0, '1(t) = ei!tu1, u1 2 Cn (0; i!)u1 = 0.

    j = 2; 3; : : : ;m (m 6 k) 2.1 . (A0 i!Id)'m+1 = 'm , 'm+1

    _'(t) i!'(t) = 'm(t): (2.4)

    L(0)' i!'(0) = 'm(0): (2.5) (2.4) '(t) = 'm+1(t), um+1 2 Cn. (2.5)

    0 =mXs=0

    1

    s!

    Z 0

    (t+ )sd(0; )um+1sei! i!tsum+1s

    m1Xs=0

    1

    s!tsums

    = (0; i!)um+1 +m1Xs=0

    Z 0

    (t+ )s+1

    (s+ 1)!d(0; )umsei! i! t

    s+1

    (s+ 1)!ums t

    s

    s!ums

    93

  • : Hopf

    = (0; i!)um+1 m1Xs=0

    s+1Xl=0

    tl

    (s+ 1 l)!l!s+1l(0; i!)ums

    = mXs=0

    1

    s!s(0; i!)um+1s

    m1Xs=0

    sXl=0

    tl+1

    (s l)!l!sl(0; i!)ums

    = mXs=0

    1

    s!s(0; i!)um+1s

    m1Xl=0

    tl+1

    l!

    m1Xs=l

    1

    (s l)!sl(0; i!)ums

    = mXs=0

    1

    s!s(0; i!)um+1s

    m1Xl=0

    tl+1

    l!

    ml1Xs=0

    1

    s!s(0; i!)umls

    = mXs=0

    1

    s!s(0; i!)um+1s:

    , ., :

    ( ;') = T(0)'(0)

    Z 0

    Z 0

    T( )d(0; )'()d;

    2 Cn; def= C([0; ];Cn), ' 2 Cn; . , Cn . A0 A0

    (A )() =

    8>:d ()=d; 2 (0; ] ;Z 0

    dT(0; ) (); = 0 :

    , Ker((A0 + i!Id)k) f 1; : : : ; kg

    (A0 + i!Id) k = 0; (A0 + i!Id) j = j+1; (2.6)

    j = 1; 2; : : : ; k 1. 2.1, : 2.2 j(t) =Pkjs=0 1s! (t)svj+sei!t, j = 1; 2; : : : ; k, vj 2 Cn (j = 1; 2; : : : ; k)

    kjXs=0

    1

    s!vTj+ss(0;i!) = 0: (2.7)

    'k =2 Ran(A0 i!Id) k 2 Ran(A0 + i!Id), ( k; 'k) = 6= 0. , ( j ; 's) = 0 j 6= s , ( j ; 'j) = j = 1; 2; : : : ; k . ,

    =k1Xs=0

    vT1+s

    (t)ss!

    Idn +

    Z 0

    (t)s+1 (t+ )s+1(s+ 1)!

    d(0; )ei!u1

    =

    k1Xs=0

    vT1+s

    (t)ss!

    Idn sX

    m=0

    (t)mm!(s+ 1m)!

    Z 0

    s+1md(0; )ei!u1

    =

    k1Xs=0

    sXm=0

    (t)mm!(s+ 1m)!v

    T1+ss+1m(0; i!)u1

    =k1Xm=0

    k1Xs=m

    (t)mm!(s+ 1m)!v

    T1+ss+1m(0; i!)u1

    94

  • : 42 2

    =

    k1Xm=0

    (t)mm!

    k1Xs=m

    1

    (s+ 1m)!vT1+ss+1m(0; i!)u1

    =

    k1Xm=0

    (t)mm!

    kmXs=1

    1

    s!vTm+ss(0; i!)u1

    =kX

    s=1

    1

    s!vTs s(0; i!)u1 +

    k1Xm=1

    (t)mm!

    kmXs=1

    1

    s!vTm+ss(0; i!)u1

    =kX

    s=1

    1

    s!vTs s(0; i!)u1

    k1Xm=1

    (t)mm!

    vTm(0; i!)u1

    =kX

    s=1

    1

    s!vTs s(0; i!)u1:

    3 Lyapunov-Schmidt

    , (1.1) Lyapunov-Schmidt 2! ., 2 (1; 1), x(t) = u((1 + )t), (1.1) :

    (1 + ) _u(t) = L()ut; + f(; ut;);

    ut;() = u (t+ (1 + )), 2 [; 0]. , C(R;Rn) Banach C! ( C1!), () 2! - . , C! S1

    Banach , :

    u(t) = u(t+ ); 2 S1:

    , = expfig 2 S1 , . C! h; i : C! C! ! R, :

    hv; ui = !2

    Z 2=!0

    vT(t)u(t)dt; (3.1)

    u; v 2 C!. F : C1! R2 ! C!

    F (u; ; ) = (1 + ) _u(t) + L()ut; + f(; ut;): (3.2)

    , (1.1) ! ! . , F (u; ; )=0 (1.1) 2!(1+) -. F S1- , 2S1

    F (u; ; ) = F ( u; ; ):

    L F , , Lu = _u + L(0)ut. , KerL _u = L(0)ut u(t) = u(t+ 2! ) . L :

    Lu = _u+Z 0

    dT(0; )u(t );

    95

  • : Hopf

    , u; v 2 C1!, hv;Lui = hLv; ui. (NS)

    KerL = fRe(z'1); z 2 Cg; KerL = fRe(z k); z 2 Cg:

    2 C!, P Q

    P = 2Refhv1ei!t; i'1g; Q = 2Refhvkei!t; i'kg:

    , P Q S1- , KerL = RanP , RanL = KerQ. F (u; ; ) = 0 :8

  • : 42 2

    (IQ)F ((z; ; ); ; ) 0 (4.2)

    . z = 0 (4.1) (4.2) hv1ei!t; z(0; ; )i = 1

    (IQ)Fu(0; ; ) z(0; ; ) = 0: (4.3)

    , z(0; 0; 0) = '1. (3.6) zh(jzj2; ; ) = h k; F ((z; ; ); ; )i. z = 0

    h(0; ; ) = h k; Fu(0; ; ) z(0; ; )i: (4.4)

    . 4.1 h(0; 0; 0) = vTk(0; i!)u1, h(0; 0; ) = (i!)k +O(jjk+1). (4.4) h(0; 0; 0) = 0. = 0 (4.4)

    h(0; 0; 0) = h k; Fu(0; 0; 0) z(0; 0; 0)i

    = vTk

    Z 0

    d(0; )'1()

    = vTk(0; i!)u1:

    (4.3) , = 0 vjei!t ,

    0 = hvjei!t; Fu(0; 0; ) z(0; 0; )i

    =

    (1 + )i!vje

    i!t +

    Z 0

    dT(0; )vjei!(t); z(0; 0; )

    =

    (1 + )i!vje

    i!t +1Xs=0

    (i!)ss!

    Z 0

    sdT(0; )vjei!(t); z(0; 0; )

    = k1X

    s=0

    (i!)ss!

    Ts (0;i!)vjei!t; z(0; 0; )+O(jjk):

    hT(0;i!)vjei!t; z(0; 0; )i = k1X

    s=1

    (i!)ss!

    Ts (0;i!)vjei!t; z(0; 0; )+O(jjk): (4.5)

    , (4.4)

    h(0; 0; ) = kX

    s=1

    (i!)ss!

    Ts (0;i!)vkei!t; z(0; 0; )+O(jjk+1):

    (4.5) k1Xl=1

    (i!)lT (0;i!)vklei!t; z(0; 0; )

    97

  • : Hopf

    = k1X

    l=1

    k1Xs=1

    (i!)l+ss!

    Ts (0;i!)vklei!t; z(0; 0; )

    = k1X

    s=1

    k1+sXm=s+1

    (i!)ms!

    Ts (0;i!)vkm+sei!t; z(0; 0; )

    = k1X

    s=1

    kXm=s+1

    (i!)ms!

    Ts (0;i!)vkm+sei!t; z(0; 0; )+O(jjk+1)

    = kX

    m=2

    m1Xs=1

    (i!)ms!

    Ts (0;i!)vkm+sei!t; z(0; 0; )+O(jjk+1)

    = kX

    l=2

    l1Xs=1

    (i!)ls!

    Ts (0;i!)vkl+sei!t; z(0; 0; )+O(jjk+1):

    , (2.7)

    h(0; 0; ) =

    k1Xl=1

    l1Xs=0

    (i!)ls!

    Ts (0;i!)vkl+sei!t; z(0; 0; )+O(jjk+1)

    =

    k1Xl=2

    l1Xs=1

    (i!)ls!

    Ts (0;i!)vkl+sei!t; z(0; 0; )

    +

    k1Xl=1

    (i!)lT (0;i!)vklei!t; z(0; 0; )+O(jjk+1)

    =

    k1Xl=2

    l1Xs=1

    (i!)ls!

    Ts (0;i!)vkl+sei!t; z(0; 0; )

    kX

    l=2

    l1Xs=1

    (i!)ls!

    Ts (0;i!)vkl+sei!t; z(0; 0; )+O(jjk+1)

    = (i!)k k1X

    s=1

    1

    s!Ts (0;i!)vsei!t; z(0; 0; )

    +O(jjk+1)

    = (i!)k +O(jjk+1):

    h1(0; 0; 0) h(u; ; ) (u; ; ) = (0; 0; 0) u . h1(0; 0; 0), (1.1) f(;') = 0 ' Taylor ,

    f(0; ') =1

    2B(';') + 1

    6E(';'; ') + o(k'k3); (4.6)

    ' 2 Cn; , B(; ) C(; ; ) f(0; ) , 2- 3- . ,

    h1(0; 0; 0) =@3

    @z2@zg(0; 0; 0):

    [21] , h1(0; 0; 0) = h k; E('1; '1; '1)i+ 2h k;B('1;W11)i+ h k;B('1;W20)i; (4.7)

    W11 W20 (z; 0; 0) Taylor zz z22 . (4.2) W20 = L1(IQ)B('1; '1); W11 = L1(IQ)B('1; '1):

    98

  • : 42 2

    B('1; '1), B('1; '1) 2 RanL, (IQ) B('1; '1) B('1; '1) . ,

    LW20 + B('1; '1) = 0; LW11 + B('1; '1) = 0:, RanW KerP ,

    hv1ei!t;W20i = 0; hv1ei!t;W11i = 0:

    ,W20 =

    1(0; 2i!)B('1; '1); W11 = 1(0; 0)B('1; '1): (4.8) (4.7) 4 , h(r2; ; ) = 0 :

    (i!)k vTk(0; i!)u1+ r2h1(0; 0; 0) + h:o:t: = 0:

    6= 0,

    k A+Br2 + h:o:t: = 0; (4.9)

    A =

    vTk(0; i!)u1(i!)k ; B =

    h1(0; 0; 0)

    (i!)k : (4.10)

    (4.9) ,

    k RefAg+ r2RefBg+ h:o:t: = 0 (4.11)

    ImfAg+ r2ImfBg+ h:o:t: = 0: (4.12) ImfAg 6= 0,

    ImfikvTk(0; i!)u1g 6= 0; (4.13), (4.12) :

    = (r2; ) :=ImfBgImfAg r

    2 +O(r4; ): (4.14)

    (4.11) ,

    k = 0r2 +O(r4; ); (4.15)

    0 =

    Im(BA)

    Im(A): (4.16)

    = " kpr2, (4.15) "kr2 = 0r2 +O(r4; "),

    "k = 0 +O(r2; "): (4.17)

    k 0 6= 0, r = 0 , (4.17) " = kp0. , r 0, . , " = "(r) (4.17) "(0) = kp0 .

    99

  • : Hopf

    (r) = kpr2"(r), (r) = (r2; (r)), (r2; ) (4.14) , h(r2; ; ) = 0 , (r; (r); (r)), r = 0 (0; 0; 0), r > 0 .

    k 0 < 0, r = 0, (4.17), jrj,. , k 0 > 0, r = 0, (4.17) " = kp0, r 0

    , . , " = "(r), ": [0;1) ! R , "(0) = kp0. (r) =

    pr2"(r), (r) = (r2; (r)), (r2; ) (4.14) , h(r2; ; ) = 0 , (r; (r); (r)), r = 0 (0; 0; 0), r > 0 . , .

    4.1 A, B 0 (4.10) (4.16) , (NS) (4.13) , :(i) k 0 6= 0, (0; 0; 0) (u; ; ), (1.1) 2(1+)! - , ImfAgImfBg > 0 ( ImfAgImfBg < 0), > 0 ( < 0) , .

    (ii) k 0 < 0, (0; 0; 0) (u; ; ), (1.1) 2

    (1+)! - .(iii) k 0 > 0, (0; 0; 0) (u; ; ), (1.1)

    2(1+)! - , ImfAgImfBg > 0 ( ImfAgImfBg < 0), > 0 ( < 0) , .

    k = 1 (NS) , A () () (0) = i!, C1- u() u(0) = u1, (; ())u() 0

    .

    [(; ()) + 0()1(; ())]u() + (; ())u0() = 0:

    , [(0; i!) +

    0(0)1(0; i!)]u1 +(0; i!)u0(0) = 0:

    vT1(0; i0) = 0 vT11(0; i!)u1 = ( 1; '1) = , vT1(0; i!)u1+0(0) = 0. (4.10) A B:

    A =0(0)i!

    ; B =h1(0; 0; 0)

    i! :

    , (4.13) Ref0(0)g 6= 0

    sgnfImfAgImfBgg = sgnfRef0(0)gRefh1(0; 0; 0)gg:

    ,sgnf0g = sgnfRef0(0)gImf0(0)h1(0; 0; 0)gg:

    , 4.1 Hopf . 4.1 k = 1 (NS) , Ref0(0)g 6= 0, (1.1) , x = 0 , . ,

    (i) Ref0(0)gRefh1(0; 0; 0)g : Ref0(0)gRefh1(0; 0; 0)g < 0 ( > 0), > 0 ( < 0) , , , Ref0(0)gRefh1(0; 0; 0)g < 0 ( > 0) ,

    ();

    100

  • : 42 2

    (ii) Ref0(0)gImf0(0)h1(0; 0; 0)g: Ref0(0)gImf0(0)h1(0; 0; 0)g() , () 2! .

    5 van der Pol van der Pol , :

    x "(1 x2) _x+ x = 0; (5.1)

    x , " > 0 . Balthasar van der Pol [22] , van del Por

    x "(1 x2) _x+ x = f(x(t )) (5.2)

    , [23, 24]. , f(x(t )) x . Atay [23] " 1 , (5.2) ; Wei Jiang [24] (5.2) Hopf , 1 : 1 . , Hopf .

    , f : R! R C3- ,

    f(0) = f 00(0) = 0, f 0(0) = , f 000(0) = . (5.3)

    (5.2) x = 0 :

    2 "+ 1 = e : (5.4)

    , Hopf :

    H = f("; ; ) : 1 !2 = cos !; "! = sin !; ! 2 R n f0gg:

    H (5.2) 1 : 1 Hopf . (5.4) ,

    2 " = e : (5.5) = i! (! > 0) (5.4) (5.5) , 8>>>>>>>>>>:

    1 !2 = cos !;"! = sin !;

    " = cos !;

    2! = sin !:

    (5.7)

    101

  • : Hopf

    8>>>>>:" = 2;

    (1 !2) = ";! = ;

    (5.8)

    x = x = tanx . , (5.8) = p2 + 2, " = 2=p2 + 2, ! = =

    p2 + 2. fng1n=1 x = tanx ,

    "n =2p

    2 + 2n; n =

    p2 + 2n; n =

    2

    (2 + 2n) cos n; !n =

    np2 + 2n

    ; (5.9)

    n 2 N . . 5.1 ("; ; ) = ("n; n; n) , n 2 N, (5.4) i!n. van der Pol (5.2) :

    _x = y; _y = x+ f(x(t )) "(x2 1)y: (5.10)

    (5.10) :_x = y; _y = x+ x(t ) + "y (5.11)

    ("; ; ; ) =

    24 11 e "

    35 : ("0; 0; 0) 2 H n f("n; n; n)g1n=1, !0 > 0 8>>>>>:

    1 !20 = 0 cos 0!0;"0!0 = 0 sin !0;

    2i!0 "0 + 00ei!00 6= 0:(5.12)

    (5.4) i!0, det("0; 0; 0;i!0) = 0. u1 = (1; i!0)T v1 =(i!0 "0; 1)T ("0; 0; 0; i!0)u1 = 0 vT1("0; 0; 0; i!0) = 0, = vT11(0; i!0)u1 =2i!0 "0 + 00ei!00 6= 0. , (5.10) (1.1) (4.6) ,

    B('; ) =24 0

    0

    35 ; E('; ; ) =24 0C2('; ; )

    35 ;, ' = ('1; '2)T, = ( 1; 2)T, = (1; 2)T 2 C([0; 0];R2),

    C2('; ; ) = '1(0) 1(0)1(0) 2"0'1(0) 1(0)2(0)2"0'1(0)1(0) 2(0) 2"01(0) 1(0)'2(0):

    h1(0; 0; 0) = ei!002i!0"0. " ( , ), (; ) = (0; 0) ( ("; ) =("0; 0), ("; ) = ("0; 0)), 0("0) = i!0= ( 0(0) = i!00ei!00=, 0(0) = ei!00=),

    sgnfRe[0("0)]g = sgnf2 0"0g;

    102

  • : 42 2

    sgnfRe[0(0)]g = sgnf"20 + 2!20 2g;sgnfRe[0(0)]g = sgnf0[020 "0(1 + !20)]g:

    sgnfRe[h1(0; 0; 0)]g = sgn

    0[0

    20 "0(1 + !20)] + 2"0!20(0"0 2)

    sgnfIm[0("0)h1(0; 0; 0)]g = sgnf0(1 !20)g;sgnfIm[0(0)h1(0; 0; 0)]g = sgnf0 + 2"20!20g;sgnfIm[0(0)h1(0; 0; 0)]g = sgnf0(1 !20)g:

    4.1 . 5.1 ("0; 0; 0) 2 H n f("n; n; n)g1n=1, !0 > 0 (5.12), :

    (1) (; ) = (0; 0), (1.1) x = 0 " .

    0[0

    20 "0(1 + !20)](2 0"0) 2"0!20(2 0"0)2 < 0

    ( > 0), " > "0 ( < "0) ; 0(1 !20)(2 0"0) > 0 ( < 0) , () 2!0 .

    (2) ("; ) = ("0; 0), (1.1) x = 0 .

    0[0

    20 "0(1 + !20)] + 2"0!20(0"0 2)

    ("20 + 2!

    20 2) < 0

    ( > 0), > 0 ( < 0) ; ("20 + 2!20 2)(0 + 2"20!20) < 0 ( > 0) , () 2!0 .

    (3) ("; ) = ("0; 0), (1.1) x = 0 .

    [020 "0(1 + !20)]2 + 2"0!200(0"0 2)[020 "0(1 + !20)] < 0

    ( > 0), > 0 ( < 0) ; (1 !20)[020 "0(1 + !20)] > 0 ( < 0) , () 2!0 .

    5.1 , det("n; n; n;i!n) = 0. , u1 = (1; i!n)T, v1 = (1; 0)T, v2 = (i!n "n; 1)T

    ("n; n; n; i!n)u1 = 0;

    vT2("n; n; n; i!n) = 0;

    vT1("n; n; n; i!n) = vT2("n; n; n; i!n):

    = in,

    vT2"("n; n; n; i!n)u1 = i!n;

    103

  • : Hopf

    vT2 ("n; n; n; i!n)u1 = i!nnein ;

    vT2("n; n; n; i!n)u1 = ein :

    , h1(0; 0; 0) = ein 2i!n"n. (4.10) B = (2!n"n + iein)=(n!2n),(1)nIm(B) > 0.

    ", , , (4.10) A A", A , A . ,

    A" =1n!n

    ; A ="n(1 in)

    2n; A =

    (n + i) cos nn!2n

    :

    , Im(A") = 0, Im(A ) < 0, (1)nIm(A) < 0. , 4.1 .

    , , (4.16) 0. ,

    sgnf0g = sgnIm(h1(0; 0; 0)v

    T2 ("n; n; n;i!n)u1)

    = sgnfIm[inein(ein 2i!n"n)]g= sgnfn + 2"2n!2ng:

    ,

    sgnf0g = (1)n1sgnIm(h1(0; 0; 0)v

    T2 ("n; n; n;i!n)u1)

    = (1)nsgnfIm[ein(ein 2i!n"n)]g= 1:

    4.1, . 5.2 n 2 N, (5.2) ("; ; ) = ("n; n; n) 1 : 1 Hopf . ,

    (i) ("; ) ("n; n) n , (5.2) x = 0, < 0 ( > 0), > n ( < n) .

    (ii) n + 2"2n!2n < 0, ("; ) ("n; n) n , (5.2) x = 0 .

    (iii) n + 2"2n!2n > 0, ("; ) ("n; n) n , (5.2) x = 0 , (1)n < 0 ( (1)n > 0), > n( < n) . .

    1 Hopf E. Abzweigung einer periodischen losung eines Dierential Systems. Berichen Math Phys Kl Sach Akad Wiss

    Leipzig, 1942, 94: 1{22

    2 Chafee N. A bifurcation problem for a functional dierential equation of nitely retarded type. J Math Anal Appl,

    1971, 35: 312{348

    104

  • : 42 2

    3 Chow S N, Mallet-Paret J. Integral averaging and bifurcation. J Di Equ, 1977, 26: 112{159

    4 Hale J K, Verduyn Lunel S M. Introduction to Functional Dierential Equations. New York: Springer-Verlag, 1993

    5 Hassard B D, Wan Y. Bifurcation formulae derived from center manifold theory. J Math Appl Math, 1978, 42: 297{260

    6 Faria T, Magalhaes L T. Normal forms for retarded functional dierential equations with parameters and applications

    to Hopf bifurcation. J Di Equ, 1995, 122: 181{200

    7 Liu Z, Magal P, Ruan S. Hopf bifurcation for non-densely dened Cauchy problems. Zeitschrift fur Angewandte

    Mathematik und Physik, 2011, 62: 191{222

    8 Wu J. Symmetric functional dierential equations and neural networks with memory. Trans Amer Math Soc, 1998,

    350: 4799{4838

    9 Guo S J. Equivariant Hopf bifurcation for functional dierential equations of mixed type. Appl Math Lett 2011, 24:

    724{730

    10 Guo S, Lamb J S W. Equivariant Hopf bifurcation for neutral functional dierential equations. Proc Amer Math Soc,

    2008, 136: 2031{2041

    11 Cushman R, Sanders J A. Nilpotent normal forms and representation theory of sl(2; R). In: Golubitski M, Gucken-

    heimer J, eds. Multiparameter Bifurcation Theory, Contemp Math, vol. 56. Providence RI: American Mathematical

    Society, 1986, 31{51

    12 Elphick C, Tirapequi E, Brachet M E, et al. A simple global characterization for normal forms of singular vector elds.

    Physica D, 1987, 29: 95{127

    13 van Gils S A, Krupa M, Langford W F. Hopf bifurcation with non-semisimple 1:1 resonance. Nonlinearity, 1990, 3:

    825{850

    14 Iooss G, Adelmeyer M. Topics in Bifurcation Theory and Applications. Singapore: World Scientic, 1992

    15 Namachchivaya N S, Doyle M M, Langford W F, et al. Normal form for generalized Hopf bifurcation with non-

    semisimple 1 : 1 resonance. Zeitschrift fur Angewandte Mathematik und Physik, 1994, 45: 312{324

    16 Govaerts W J F. Numerical Methods for Bifurcations of Dynamic Equilibria. Philadelphia: SIAM, 2000

    17 Campbell S A, Yuan Y. Zero singularities of codimension two and three in delay dierential equations. Nonlinearity,

    2008, 21: 2671{2691

    18 Stepan G, Haller G. Quasiperiodic oscillations in robot dynamics. Nonlinear Dynamics, 1995, 8: 513{528

    19 Caprino S, Maei C, Negrini P. Hopf bifurcation at 1 : 1 resonance. Nonlinear Anal Theo Meth Appl, 1984, 8:

    1011{1032

    20 Vanderbauwhede A. Hopf bifurcation at non-semisimple eigenvalues. In: Golubitsky M, Guckenheimer J, eds. Multi-

    parameter Bifurcation Theory, Contemp Math, vol. 56. Providence RI: American Mathematical Society, 1986, 343{353

    21 Golubitsky M, Schaeer D G. Singularities and Groups in Bifurcation Theory, vol. 1. New York: Springer-Verlag, 1985

    22 van der Pol B. A theory of the amplitude of free and forced triode vibrations. Radio Review, 1920, 1: 701{710; 754{762

    23 Atay F M. Van der Pol's oscillator under delayed feedback. J Sound Vibration, 1998, 218: 333{339

    24 Wei J, Jiang W. Stability and bifurcation analysis in van der Pol's oscillator with delayed feedback. J Sound Vibration,

    2005, 283: 801{819

    Generalized Hopf bifurcation in delay dierential equations

    GUO ShangJiang & WU JianHong

    Abstract Here we employ the Lyapunov-Schmidt procedure to investigate bifurcations in a general delaydierential equation when the innitesimal generator has, for a critical value of the parameter, a pair of non-

    semisimple purely imaginary eigenvalues with multiplicity k. We derive criteria, explicitly in terms of the system's

    parameter values, for the existence of bifurcating periodic solutions and for the description of the bifurcation

    direction. The general result is illustrated by a detailed case study of the van del Pole oscillator.

    Keywords delay dierential equation, Lyapunov-Schmidt reduction, Hopf bifurcation, van der Pol oscilla-

    tor

    MSC(2010) 34K18, 92B20

    doi: 10.1360/012010-1047

    105