35
Generation of Comprehensive Surrogate Kinetic Models and Validation Databases for Simulating Large Molecular Weight Hydrocarbon Fuels Principal Investigator: Frederick L. Dryer Other Co-Investigators and Institutions: Thomas A. Litzinger Penn State University (PSU) Robert J. Santoro Penn State University (PSU) Kenneth Brezinsky University of Illinois at Chicago (UIC) Chih-Jen Sung University of Connecticut (UCONN) Yiguang Ju Princeton University (PU) Yiguang Ju Princeton University (PU) Visiting Researcher: Henry J. Curran (NUI Galway) Princeton University (PU) Summary of the AFOSR 2007 MURI Topic #12 Science-Based Design of Fuel-flexible Chemical Propulsion/Energy Conversion Systems July 1, 2007 – June 30, 2012 MULTI AGENCY COORDINATION COMMITTEE FOR COMBUSTION RESEARCH (MACCCR) 5 th Annual Fuels Research Review Combustion Research Facility (CRF), Sandia National Laboratory Livermore ,California 17 20 S t b 2012 17-20 September 2012 Approved for public release; distribution is unlimited © Copyright Princeton University 2012

Generation of Comprehensive Surrogate Kinetic … · Amy Mensch The Energy Institute, The Pennsylvania State University, ... O2 CO CO2 H2O POSF 4658 1st Gen. Surrogate 2nd Gen

Embed Size (px)

Citation preview

Generation of Comprehensive Surrogate Kinetic Models and Validation Databases for Simulating Large Molecular Weight Hydrocarbon Fuelsg g g y

Principal Investigator: Frederick L. DryerOther Co-Investigators and Institutions:

Thomas A. Litzinger Penn State University (PSU)Robert J. Santoro Penn State University (PSU)Kenneth Brezinsky University of Illinois at Chicago (UIC)Chih-Jen Sung University of Connecticut (UCONN)Yiguang Ju Princeton University (PU)Yiguang Ju Princeton University (PU)

Visiting Researcher:Henry J. Curran (NUI Galway) Princeton University (PU)

Summary of the AFOSR 2007 MURI Topic #12Science-Based Design of Fuel-flexible Chemical Propulsion/Energy Conversion Systems

July 1, 2007 – June 30, 2012

MULTI AGENCY COORDINATION COMMITTEE FOR COMBUSTION RESEARCH (MACCCR)5th Annual Fuels Research Review

Combustion Research Facility (CRF), Sandia National Laboratory Livermore ,California17 20 S t b 201217-20 September 2012

Approved for public release; distribution is unlimited© Copyright Princeton University 2012

This work was supported by the Air Force Office of Scientific Research under the 2007 MURI Grant

AcknowledgementsNo. FA9550-07-1-0515 (at PU, UCONN, PSU, and UIC) and under Grant No. FA9550-07-1-0114 (at RPI): Dr. Julian Tishkoff (Program Manager, retired); Dr. Chiping Li (Program Manager)

MURI ResearchersFred Dryer and Yiguang Ju; Professional Researchers: Marcos Chaos Henry Curran Stephen Dooley Pascal DievartFred Dryer and Yiguang Ju; Professional Researchers: Marcos Chaos, Henry Curran, Stephen Dooley, Pascal, Dievart, Saeed Jahangirian, Sang Hee Won; Students: Wenting Sun, Francis Haas, Joshua Heyne, Wayne Metcalfe, Jennifer Shim, Amanda Ramcharan Peter Veloo; Staff: Timothy Bennett, John Grieb, Lisa Langelier-Marks, Joseph Sivo

Mechanical and Aerospace Engineering, Princeton University, Princeton, NJ

Chih-Jen Sung; Apurba K. Das, Gaurav Mittal, Kamal Kumar, Xin Hui School of Engineering, University of Connecticut, Storrs, CT

Robert J. Santoro and Thomas A. Litzinger; Michelle K. Christensen, Venkatesh Iyer, Suresh Iyer, Milton Linevsky, Amy Mensch

The Energy Institute, The Pennsylvania State University, University Park, PA

Kenneth Brezinsky; Alex Fridlyand, Soumya Gudiyella, Thomas MalewickiMechanical Engineering, University of Illinois Chicago, IL

Other CollaboratorsMatthew A. Oehlschlaeger; Haowei Wangg ; g

Mechanical, Aerospace, and Nuclear Engineering, Rensselaer Polytechnic Institute, Troy, NY

We also wish to thank: Dr. Meredith Colket (UTRC), Dr. Timothy Edwards (AFRL), Dr. John Farrell (Exxon-Mobil), Dr. Alessio Frassoldati and co-workers (Milano), Dr. Marco Mehl and co-workers (LLNL), Dr. Cliff Moses (LLC)

Advisory Board: Tim Edwards (AFRL), John Farrell (Exxon Mobil), Catalin Fotache (UTRC), Hukam Mongia y ( ), ( ), ( ), g(GE/Purdue), William Pitz (LLNL), Wing Tsang (NIST)

2

Improved Methods for Evaluating and Emulating Real Jet Fuel Properties on CombustionFuel Properties on Combustion

Enhanced efficacy in evaluating the effects of fuel property variations onproperty variations on existing propulsion system performance and emissions.

Improved paper design and development for advancing existing and developing new propulsion/combustion concepts Military F119‐100concepts.

In emulating multiphase combustion in real combustors, must all physical and chemical processes be represented to the same level of detail and accuracy to achieve satisfactory p p f y f ypredictions? Experimental evidence is needed that delineates the relative importance of physical and chemical kinetic properties on multi-phase combustion behavior at conditions

i f i

3

encompassing those found in real combustors.

Turbine Fuel Aviation Kerosene Type Specification(MIL-DTL-83133)

ASTM D1319  Standard Test Method for Hydrocarbon Types in Liquid Petroleum Products by Fluorescent Indicator Adsorption

( )

(Aromatic, olefin, saturate fractions)

ASTM D6379 Standard Test Method for Determination of Aromatic Hydrocarbon Types in Aviation Fuels and Petroleum Distillates—High Performance Liquid Chromatography Method with RefractiveChromatography Method with Refractive Index ASTM D3343 Standard Test Method for Estimation of Hydrogen Content of Aviation Fuels

(Correlation method based on petroleum data)

ASTM D976 Standard Test Method for 

( p )

ASTM D1322 – Standard test method for smoke point of kerosene and aviation turbine fuel

Determining Cetane Index,  reported only, no specification

(Correlation method based on petroleum data)

Fuels that meet fit‐for‐use specifications can have significantly different molecular  (chemical) compositions and  physical properties.   4

“JP-8”, “Jet A”, “CnHm”: Sufficient Definition for Research?

Fraction of delivered JP-8 fuels with specified properties

800

1000

PQIS je t fuel database 2006-2008

200

400

600

Num

ber o

f sam

ples

http://www.desc.dla.mil/DCM/Files/2009PQISreport.pdf

00 1 2 3 4 5 6 7 8

Viscosity at -20 C, cSt

Certification information aimed at fit-for-use qualification. Typical fuel property variabilities are significant Petroleum Quality Information SystemTypical fuel property variabilities are significant. Physical/chemical fuel properties need more precise characterization when attempting

to relate fuel properties and gas turbine combustion. 5

Alternative Fuel Resources and Processing Options

Cellulose 

C16:1

Triglycerides (fats,  plant oils)

“Bio synthetics”

C18:0Coal 

Natural Gas

Lignin Gasification

Bio synthetics

Pyrolysis

“Thermo‐chemical processing”

Fischer‐TropschHydrotreating 

CO + H2

“HRJ’s”

Catalysis

“BTL, CTL, GTL”

“Di t f t ti ”

“Bio refining”& “SPK’s, IPK’s”

Hydrotreating 

Transportation fuel (components)

Sugars “Direct fermentation”

6

Emulating Fully Prevaporized Combustion of a Specific Jet FuelWhat are the critical (fuel) combustion property targets that manifest in important

Component Molecular Formula Structure NTC

n-Heptane C7H18 Yes

What are the critical (fuel) combustion property targets that manifest in important practical combustion behavior of each, individual real fuel, including:

Adiabatic flame temperature Local air fuel stoichiometry

n-Decane

C10H22

Yes

n-Dodecane

C12H26 Yes

Local air fuel stoichiometry Enthalpy of combustion Flame velocity Overall active radical production Iso-Octane

(2,2,4 Trimethylpentane)

C8H18 Sml

Iso-Cetane (Heptamethylnonane)

C16H34

No

Overall active radical productionPremixed sooting Non-premixed sooting

Methylcyclohexane

C7H14 Yes

Toluene

C7H8

No

n-Propyl Benzene C9H12 ? Emulate the real fuel with a select mixture of a

Fuel vapor diffusive transport properties Autoignition/global kinetics

1,3,5 Tri Methyl Benzene

C9H12

?

1-methyl naphthalene

C11H10 No

few pure “surrogate” components. Which ones? How many components are needed?How many critical property targets are needed?Each property target for the real fuel surrogateEach property target for the real fuel, surrogate

components and their mixtures need to be easily determined experimentally.

7

Several models available, more refinements, substantial validation.Several models available, more validations emerging.Fewer validation data, or models especially for aromatics. Are weakly branched alkanes needed as components?

What are the critical (fuel) combustion property targets that manifest in important

Emulating Fully Prevaporized Combustion of a Specific Jet FuelWhat are the critical (fuel) combustion property targets that manifest in important practical combustion behavior of each, individual real fuel, including:

Adiabatic flame temperature Local air fuel stoichiometryLocal air fuel stoichiometry Enthalpy of combustion Flame velocity Overall active radical production

Ratio of Hydrogen to Carbon (H/C)

Overall active radical productionPremixed sooting Non-premixed sooting Threshold Soot Index (TSI),

By standardizing smoke point measurement

E h b ti t t t f th l f l d t i t b d t i d

Fuel vapor diffusive transport properties Autoignition/global kinetics

Average Molecular Weight (MWavg)Derived Cetane Number (DCN)Correlative for macro ignition measure

Each combustion property target for the real fuel and surrogate mixture can be determined experimentally.Selected surrogate components DO NOT necessarily need to include a representative molecular

species for each of the molecular classes found in the real fuel of interest.Instead, the surrogate component mixture must reasonably replicate the interaction and composition

of the distinct chemical functionality in the mixture that are manifested in the real fuel!8

1 Characterize the specific real fuel:

Surrogate Mixture Formulation and Evaluation1. Characterize the specific real fuel: Determine MWavg (Literature correlation methods=> more direct method needed). Determine empirical formula for CnHm using CHN analysis data (ASTM D5291) & MWavg. Determine DCN of fuel using Ignition Quality Testing (ASTM D6890). Determine TSI from smoke point measurement (ASTM D1322) and MWavg.

All above tests require, only small sample volumes, short analytical times, and no detailed species characterization of the sample, not even quantitative

2. Characterize chosen surrogate components and their mixtures: Develop experimental self-consistent library of TSI values for surrogate components and

p f p , qspecies/class identification.

Develop experimental self consistent library of TSI values for surrogate components and mixtures.

Develop experimental self-consistent DCN database for surrogate component mixtures composed of a base n-alkane to which other components that are added yield 30 <DCN<65 (ASTM D6890)(ASTM D6890).

3. Emulate the H/C, DCN, TSI, and average molecular weight of specific fuel by choice of surrogate components and their mixture fractions.

4 Compare gas phase experimental observations for specific fuel and the apriori4. Compare gas phase experimental observations for specific fuel and the aprioriformulated surrogate mixture:

9

MwAve Method Feasibility DemonstrationNew Experimental Method. (Provisional Patent Disclosure filed Feb. 2012).New Experimental Method. (Provisional Patent Disclosure filed Feb. 2012).

Not available for our prior published work. Requires less than 50 ml sample and takes about 30 minutes.Applicable to real gas turbine fuel, surrogate components, and mixtures.Determines MWave of the sample to generally less than ±1 unit.

250

mol

] hexadecane (nC16)

150

200

wei

ght [

g/m

n-decane (nC10)

n-dodecane (nC12)

100

d m

olec

ular

acetonen heptane(nC7)

Sample 4000 designedmixture of C7~C16

50

Mea

sure

d n-heptane (nC7)

real jet fuel Diesel fuel

00 50 100 150 200 250

Known molecular weight [g/mol]10Dooley, Won and Dryer, Princeton University, 2012

Ignition Quality Testing and Ignition Delay Correlations

Single Characterization: It’s just a rapid standardized method to yield relative ignition delays!

R² = 0.9973

60

80

100

120

ON

g Total fuel sample ~50 ml  15 “warm‐up” & 32 recorded injection/ignition 

events per test ~ 15 minutes Ignition delays derived using ASTM D‐6890 

method are reported as DCN’s by correlating data 

Another Example : RON and MON for gasolines 

60

80

100

120

MON

0

20

40

0 10 20 30 40 50RO

DCN

p y gwith that of Cetane reference fuels.

Procedure for Jet Surrogate Blends Tests: Choose base n‐alkane (n‐decane, dodecane). Define statistical experiments for blending components. Obtain DCN data for all blend options that produce

0

20

40

0 10 20 30 40 50

M

DCN

RON‐DCN and MON‐DCN correlations based on IQT Obtain DCN data for all blend options that produce  30>DCN>70.

Develop regression correlation to predict DCN as function of component composition.

Check regression predictions against new data.

Qexperimental data for TRF reference gasoline mixture data.Gray bands are ±3.5 and ±6.5 units from best fitpolynomials.Haas et al. (2012) WIP, 34th Int Symp on Combust, Warsaw Poland, July 30 Aug 3

11

July 30-Aug 3. A function developed from DCN measurements for 124 separate 2nd generation surrogate mixtures  relates the mixtures and the measured DCN’s within ± 0.98 DCN. A Matlab based tool will be available on our website in late 2012. 

MURI Surrogate Concepts Compared with a Real Jet A FuelMole Fraction DCN H/C MW / g mol-1 TSI

Target Real Fuel Jet Aviation Fuel, POSF 4658 47.1 1.95 142.1 21.4

1st GenerationSurrogate Fuel

n-decane iso-octane toluene47.1 2.01 120.7 14.1

0.423 0.33 0.24

2nd Generation n-dodecane iso-octane 135TMB nPB48 5 1 95 138 7 20 4

1200 1000 800 600 Temperature / K

Variable Pressure Flow Reactor, Reflected Shock (ST) and Rapid Compression Machine (RCM) Ignition, Strained Diffusive Extinction Comparisons of 1st and 2nd Gen POSF 4658 Surrogate Mixtures with Real Jet A POSF 4658

Surrogate Fuel 48.5 1.95 138.7 20.40.40 0.29 0.07 0.23

on x

103 /

ppm

4

5

10000

100000 ST RCM

POSF 4658 1st Gen. POSF 4658 Surrogate 2nd Gen. POSF 4658 Surrogate

me,

/ s

1200 1000 800 600

300

400 POSF 4658 1st Gen. POSF 4658 Surrogate 2nd Gen. POSF 4658 Surrogate

ate,

aE

/ s-1

O2 CO CO2 H2O POSF 4658

1st Gen. Surrogate

2nd Gen. Surrogate

Spe

cies

con

cent

ratio

1

2

3

100

1000

Igni

tion

dela

y tim

100

200

Ext

inct

ion

stra

in ra

500 600 700 800 900 1000

S

Temperature / K0.8 1.0 1.2 1.4 1.6

40

1000K / T

Flow reactor oxidation data for conditions of12.5 atm, 0.3% carbon, φ= 1.0 and t =1.8s, forPOSF 4658 1st generation POSF 4658 and 2nd

Ignition delay times, φ= 1.0 in air at~20 atm for POSF 4658, 1st generationPOSF 4658 surrogate and 2nd generation

1.0 1.5 2.0 2.5

[Fuel] x Hc x (MWfuel/ MWnitrogen)-1/2 / cal cm-3

Strain rates of extinction for counter flowdiffusion flames at 1 atm, for 1st and 2nd

generation POSF 4658 s rrogate f els 4658POSF 4658, 1st generation POSF 4658 and 2nd

generation POSF 4658 surrogate.POSF 4658 surrogate and 2nd generationPOSF 4658.

generation POSF 4658 surrogate fuels v. 4658surrogate fuels v. Transport Weighted Enthalpy(*TWE) for each fuel.

Dooley et al. Combust Flame 159:1444 1466 (2012) *Won et al. Combust Flame,159:541-551(2012) 12

1000

1250

O2 COCO2

30

40

CH4

150

C2H4C2H6

MURI Surrogate Concepts Compared with a Real Jet A Fuel

250

500

750

CO2

Spe

cies

con

cent

ratio

n / p

pm

10

20

30

Spec

ies

conc

entra

tion

/ ppm

50

100

C2H2

Spe

cies

con

cent

ratio

n / p

pm

800 1000 1200 1400 1600 1800

0

Temperature / K

800 1000 1200 1400 1600 1800

0

Temperature / K800 1000 1200 1400 1600 1800

0

Temperature / K

30

40

C3H6C3H4-p (propyne)C3H4-a (allyne)

m

20C4H8 (iso- and 1-butenes)1,3 butadiene1 butene-3-yne

m

1.5

2.0 1-hexeneC5H10 (iso- and 1- pentenes)

m

0

10

20

Spe

cies

con

cent

ratio

n / p

pm

5

10

15

Spec

ies

conc

entra

tion

/ ppm

0 0

0.5

1.0

Spe

cies

con

cent

ratio

n / p

pm

800 1000 1200 1400 1600 1800

Temperature / K800 1000 1200 1400 1600 1800

0

Temperature / K

800 1000 1200 1400 1600 1800

0.0

Temperature / K

4

6

Toluene Benzene

ppm

hollow symbols Jet-A POSF 4658solid symbols 2nd generation POSF 4658 surrogate

Single Pulse Shock Tube (SPST) Speciation

Oxidation Speciation of 0.0808/0.158/0.1187 mole % mixtures ofC/H/O2 in argon at reaction times of 1.23-3.53 ms, 18-29 atm0

2

Spe

cies

con

cent

ratio

n / p

2 gpressure.800 1000 1200 1400 1600 1800

Temperature / K

1313Dooley et al. Combust Flame 159:1444 1466 (2012)

S-8 POSF 4734 vs S-8 SurrogateMole Fraction DCN H/C MW / g mol-112% n 61% mono methyl; 25% Mole Fraction DCN H/C MW / g mol 1

S‐8 POSF 4734 58.7±0.3 2.14‐2.19 163.4±15n‐dodecane iso‐octane

0.519 0.481 58.7 2.19 143.4

Variable Pressure Flow Reactor Reflected Shock (ST) Ignition Strained Diffusive Extinction Comparisons of POSF

12% n‐, 61% mono‐methyl; 25% di‐methyl, 2% cyclo‐alkane synthetic fuel from natural gas

450

/s-1

Jet-A POSF 4658

S-8 POSF 4734

S 8 POSF 4734 tx103 5

20

30

40

50 T

T

/ K

80000 JetA POSF 4658 S-8 POSF 4734S-8 POSF 4734 Surrogate

1400 1200 1000 800 600 Temperature / K

Variable Pressure Flow Reactor, Reflected Shock (ST) Ignition, Strained Diffusive Extinction Comparisons of POSF 4734 Surrogate Mixtures with POSF 4734 Synthetic S-8

250

350

tion

stra

in ra

te, a

E/ S-8 POSF 4734 surrogate

S-8 4734 S-8 SurrogateCO CO2

mol

e fra

ctio

n / p

pm x

2

3

4

500 600 700 800 900 10000

10

Temperature / K

1000

10000S 8 POSF 4734 Surrogate

on d

elay

tim

e,

/ s

RiS8 sur = 0.86

Ri4658 sur = 0.80

50

150

0.5 1 1.5 2 2.5

Extin

ct

[Fuel] Hc (MWfuel/MWnitrogen)-1/2 /cal cm-3500 600 700 800 900 1000

O2

Spec

ies

Temperature / K

1

0.8 1.0 1.2 1.4 1.630

100Igni

tio

1000K / T

W kl b h d lk b h i b i d ll i h ll i kl b h d

Flow reactor oxidation data for conditions of12.5 atm, 0.3% carbon, φ= 1.0 and t =1.8s for S-8 POSF 4734 (symbols) and S-8 POSF 4734Surrogate (Iines), Inset; ΔT.

Strain rates of extinction v TWE for counter flow diffusion flames at 1 atm, Jet-A POSF 4658, S-8 POSF-4734 and S-8 POSF 4734 Surrogate.

Reflected Shock ignition delay times, φ= 1.0in air at ~20 atm for S-8 POSF 4734, S-8POSF 4734 Surrogate.

Weakly branched alkane behavior can be approximated well without actually using weakly branched surrogate components.

Dooley et al. (2012) 50th AIAA Aerospace Sciences Meeting, 2012. AIAA-2012-619-419Dooley et al. Combust Flame (2012)159: 3014 3020 14

MURI Strategy to Emulating Real Fuel Prevaporized Combustion

Molecular structure correlations can yield the distinct chemical functional information for a real fuelinformation for a real fuel if chemical composition is known (or perhaps from NMR spectral analysis)…. But, experimental (fuel)

combustion property targets used here

l idapparently provide sufficient constraints with much less effort! There is considerable There is considerable

flexibility in choosing appropriate surrogate components.

Initial fuel molecular structural issues might become more relevant at low and NTC oxidation conditions (ROOH and QOOH isomerization reactions).

15Dooley et al.Combust Flame 159::444 1466 (2012)Dooley et al. Combust Flame 159:3014 3020 (2012)

MURI Strategy to Emulating Real Fuel Prevaporized Combustion

Group additivity type analysis performedon 1st and 2nd generation surrogate fuelsshows high degree of Commonality ofChemical Groups on a mass basis.

1st Gen. Surrogate

2nd

Gen Surrogate

CH2 CH3 Benzyl-type

42.7/33.0/24.3%, nC10/iC8/toluene

40.4/29.5/7.3/22.8% , nC12/iC8/135TMB/nPB Example: n-propylbenzene =>

one Benzyl+ one CH2+ one CH3

Surr

ogat

e

2 Gen. Surrogate

#2

#3

Benzyl

CH2

CH3

40.4/29.5/7.3/22.8% , nC12/iC8/135TMB/nPB

39.3/31.6/13.8/15.3

40.1/31.3/27.7/0.7

Each Molecular structure may containl f h d h h e

2nd G

ener

atio

n S

#4

#5

2

35.4/33.2/0.0/31.4

36.1/33.3/1.6/28.9

several of the same groups and thus themolecules themselves do not representlinearly independent parameters.

0 20 40 60 80 100

Alte

rnat

ive

#6

#7

39.6/30.3/14.5/15.6

28.9/31.3/12.0/17.7

Molecular group mass comparisons for 1st Gen (n-decane/iso-octane/toluene 42.7/33.0/24.3 mole %), 2nd gen (n-dodecane/iso-octane/1,3,5 trimethylbenzene/n-propylbenzene 40.41/29.48/7.28/22.83 mole %) and six ~equally possible alternative 2nd gen POSF4658 surrogate fuel mixtures.

Mass %

Surrogate mixture compositions with equivalent property targets yield sameSurrogate mixture compositions with ~ equivalent property targets yield ~same functional group compositions with different surrogate components and even with different mixtures of the same components!

16Dooley et al. Combust Flame 159, 1444 1466 (2012)

MURI Strategy to Emulating Real Fuel Prevaporized Combustion

Group additivity type analysis performedon 1st and 2nd generation surrogate fuelsshows high degree of Commonality ofChemical Groups on a mass basis.

1st Gen. Surrogate

2nd

Gen Surrogate

CH2 CH3 Benzyl-type

42.7/33.0/24.3%, nC10/iC8/toluene

40.4/29.5/7.3/22.8% , nC12/iC8/135TMB/nPB

Ri = 0.78

0 79 Example: n-propylbenzene =>

one Benzyl+ one CH2+ one CH3

Benzyl

CH2

CH3

Surr

ogat

e

2 Gen. Surrogate

#2

#3

40.4/29.5/7.3/22.8% , nC12/iC8/135TMB/nPB

39.3/31.6/13.8/15.3

40.1/31.3/27.7/0.7

0.79

0.77

0.72

Each Molecular structure may containl f h d h h

2

e 2nd

Gen

erat

ion

S

#4

#5

35.4/33.2/0.0/31.4

36.1/33.3/1.6/28.9

0.80

0.79

several of the same groups and thus themolecules themselves do not representlinearly independent parameters.

0 20 40 60 80 100

Alte

rnat

ive

#6

#7

39.6/30.3/14.5/15.6

28.9/31.3/12.0/17.7

0.76

0.77

Radical index (Ri) = is also defined by the 2nd ti i t iti !

Surrogate mixture compositions with equivalent property targets yield same

Mass % 2nd generation mixture composition!Molecular group mass comparisons for 1st Gen (n-decane/iso-octane/toluene 42.7/33.0/24.3 mole %), 2nd gen (n-dodecane/iso-octane/1,3,5 trimethylbenzene/n-propylbenzene 40.41/29.48/7.28/22.83 mole %) and six ~equally possible alternative 2nd gen POSF4658 surrogate fuel mixtures.

Surrogate mixture compositions with ~ equivalent property targets yield ~same functional group compositions with different surrogate components and even with different mixtures of the same components!

17Dooley et al.Combust Flame 159,:444 1466 (2012)

Proofing Surrogate Mixture Emulation of Fully Prevaporized Global Combustion Behaviors of a Real Fuel

Combustion 

SpecificPetroleum‐derived

and Alternative Jet FuelEmpirical Small Scale 

TestsMURI  2nd Gen 

Surrogate Components

PropertyTargets

DCN, TSI, H/C, MW,

Others can be added 

Iso‐octane

(?)

n‐propylbenzene

n‐dodecane

Experimental Comparisons

in the future… … (?)1,3,5‐trimethyl‐

benzenemethylcyclo‐hexane

Others?

Experimental Comparisons(Flow Reactor, Shock Tube,

RCM, Counter Flow Burner, Comb. Bomb)

• Ignition delay (RCM, shock tube)• Strained premixed ignition/extinction

S i d diff i i i i / i i

The procedure developed by the MURI set a foundation to which

The MURI approach is the first to characterize surrogate performance for• Strained diffusive ignition/extinction

• Reactivity• Species time history• Laminar flame speed• Soot volume fraction

foundation to which additional property targets and surrogate functional groups can 

performance for specific fuels experimentally across a wide range of global 

18

More global properties can be considered in the future

be considered as necessary

combustion observations.

Proofing Surrogate Mixture Emulation of Fully Prevaporized Global Combustion Behaviors of a Real Fuel

Combustion 

SpecificPetroleum‐derived

and Alternative Jet FuelEmpirical Small Scale 

TestsMURI  2nd Gen 

Surrogate Components

PropertyTargets

DCN, TSI, H/C, MW,

Others can be added 

Iso‐octane

(?)

n‐propylbenzene

n‐dodecane

in the future…

Experimental ComparisonsIf t f l h th

… (?)1,3,5‐trimethyl‐

benzenemethylcyclo‐hexane

Others?

• Ignition delay (RCM, shock tube)• Strained premixed ignition/extinction• Strained diffusive ignition/extinction

Experimental Comparisons(Flow Reactor, Shock Tube,

RCM, Counter Flow Burner, Comb. Bomb)

If two fuels have the same property targets, they will have the same fully 

Two fuels with the same property targets => Kinetic/transportModels based on 2nd Gen• Strained diffusive ignition/extinction

• Reactivity• Species time history• Laminar flame speed• Soot volume fraction

More global properties can

yprevaporized global combustion properties =>Solvent Surrogate Mixtures!

Models based on 2 Gen pure component surrogate mixture should apply for emulating both 

More global properties can be considered in the future to further proof the technique

19

Surrogate Mixtures!  fuels.

Surrogate Mixtures of Solvent Cuts for a Real Jet A & JP-8

+Jahangirian et al (2011) Fall Eastern States Section of the Combustion Institute, UCONN, Storrs, CT Oct. 9‐12. ++Iyer et al (2011), Fall Eastern States Section of the Combustion Institute, UCONN, Storrs, CT Oct. 9‐12. JET A POSF4658 vs. JP-8 POSF 5699

JP-8 POSF5699 vs. POSF 5699 Solvent Cut Surrogate Mixture (D-95/A100/IPK) JET A POSF 4658 vs. POSF 4658 Exxon Nor Par Solvent Cut Surrogate Mixture

Jahangirian et al. Eastern States Section of the Combustion Institute , Storrs, CT Oct. 9-12, 2012Jahangirian et al. (2012), Fuel, to be SubmittedIyer et al 50th AIAA Aerospace Sciences Meeting, 2012. AIAA-2012-621-917

(VPFR) Reactivity and Heat Release Data Comparisons: 12.5 atm pressure, 1.8 s residence time, 0.3 % (molar) carbon, φ .=1 .

20

Deriving Other Surrogate Component Mixtures from the MURI 2nd Generation Surrogate Mixture

Combustion 

MURI 2nd GenSurrogate Components

SpecificPetroleum‐derived

and Alternative Jet FuelEmpirical Small Scale 

Tests

g

PropertyTargets

DCN, TSI, H/C, MW,

Iso‐octane

(?)

n‐propylbenzene

n‐dodecane

… … (?)

1,3,5‐trimethyl‐benzene

methylcyclo‐hexane

Functional GroupDistribution Analysis Predicting other surrogateDistribution Analysis

?

Predicting other surrogate mixtures using the distribution found for a 2nd Gen Surrogate has bee This has been 

Alternative Surrogate  Component Formulation

demonstrated by predicting the 1st Gen composition from the 2nd group distribution for POSF 4658 More cases are

21

POSF 4658. More cases are presently being tested. Specific rules govern this method

Deriving Other Surrogate Component Mixtures from the MURI 2nd Generation Surrogate Mixture

Combustion 

MURI 2nd GenSurrogate Components

SpecificPetroleum‐derived

and Alternative Jet FuelEmpirical Small Scale 

Tests

g

PropertyTargets

DCN, TSI, H/C, MW,

Iso‐octane

(?)

n‐propylbenzene

n‐dodecane

… … (?)

1,3,5‐trimethyl‐benzene

methylcyclo‐hexane

Functional GroupDistribution AnalysisDistribution Analysis

?

Other alkane, iso‐alkane, alkyl aromatic carbon numbers  may be useful to modeling kinetics of the real fuel class distribution

Alternative Surrogate  Component Formulation

the real fuel class distribution across distillation curve (preferential vaporization (if needed) or shifting the MW 

22

range of the surrogate .

Reactivity Comparison of C7 – C16 n-Alkanes

2500

3000

)

n-Heptane/O2/N2

n-Decane/O2/N24000

5000

1500

2000

Frac

tion

(ppm

) 2 2

n-Dodecane/O2/N2n-Tetradecane/O2/N2

n-Hexadecane/O2/N23000

4000

ract

ion

(ppm

)

n-Heptane/O2/N2

n-Decane/O2/N2

500

1000

H2O

Mol

e F

1000

2000

O2 M

ole

F n-Dodecane/O2/N2n-Tetradecane/O2/N2

n-Hexadecane/O2/N2

500 600 700 800 900 10000

Temperature (K)

500 600 700 800 900 10000

Temperature (K)

VPFR Reactivity of n-Alkanes: =1.0, P=8 atm, t=1.0 s, 0.3 % Carbon ( l ) C t t(molar) Content

Few Data elsewhere comparing this wide of carbon numbers at a single condition.Activity in low temperature region scales with DCN (56=>100), even for phi=1.Activity differences result in more heat release in first stage as carbon number increases.

Veloo and Dryer, WIP Poster, 34th Int Symp on Combustion (2012)

y gReactivity above hot ignition is essentially the same for all of the alkane carbon numbers.

23

Model Comparisons with VPFR n-Dodecane Oxidation Data

on (P

PM) C12H24 CO

Mol

e Fr

actio

Spec

ies M

Time (s) Time (s)VPFR n-Dodecane oxidation: f =1.0, P=8 atm, Ti=881 K, 0.3 % Carbon (molar), no time shift

All of the models except Mze-Ahmed are too fast.

1. Ranzi et al. Ind. Eng. Chem. Res. 44 (2005) 5170-5183.2 i l l 22 (4) (2008) 22 8 2269

No time shifting can improve comparisons.R+O2 => olefins + HO2 remains important even at~900 K. (absent from Jet Surf 2.0). Detailed comparisons similar to those presented for n-decane oxidation are available.

2. Biet et al. Energy Fuels 22 (4) (2008) 2258–2269.3. Sarathy et al. Combust. Flame 158 (2011) 2338–2357.4. Mzé-Ahmed et al Energy Fuels, 10.1021/ef300588j.5. Wang, et al. JetSurF version 2.0, <ttp://melchior.usc.edu/JetSurF/JetSurF2.0>

Veloo and Dryer, WIP Poster, 34th Int Symp on Combustion (2012) 24

Detailed High Pressure Experimental and Modeling of Aromatics, Jet A, and Alkanes (UIC)

S. Klotz, K. Brezinsky, I. Glassman, “Modeling, the Combustion of Toluene-Butane Blends”, Proc. Combust Ins (1998) 27:337-344. Base Model for Toluene. AFOSR No. 91-0431.R. Sivaramakrishnan, R.S. Tranter 1, K. Brezinsky, “High-pressure, High-temperature Oxidation of

Toluene”, Combust Flame 139 (2004) 340–350. Base model for higher alkyl aromatics. DOE/BES , ( ) f g yDE-FG0298ER14897.S. Gudiyella, T. Malewicki, A. Comandini, K. Brezinsky, “High Pressure Study of m-Xylene

Oxidation”, Combust Flame 158 (2011) 687–704. Base model for higher alkyl aromatics. SERDP, PN WP1575PN WP1575.S. Gudiyella, K. Brezinsky, “High Pressure Study of n-Propylbenzene Oxidation”, Combust Flame

159 (2012) 940–958.S. Gudiyella, K. Brezinsky, High Pressure Study of 1,3,5-Trimethylbenzene Oxidation”, Combust

Flame (2012). http://dx.doi.org/10.1016/j.combustflame.2012.06.014S. Gudiyella, K. Brezinsky. The High Pressure Study of n-Propylbenzene Pyrolysis, Proc.

Combust.Inst. (2012) 34. http://dx.doi.org/10.1016/j.proci.2012.05.007T Malewicki K Brezinsky “Experimental and Modeling Study on the Pyrolysis and Oxidation of n-T. Malewicki, K. Brezinsky, Experimental and Modeling Study on the Pyrolysis and Oxidation of n-

Decane and n-Dodecane”, Proc Combust Ins (2012) 34. http://dx.doi.org/10.1016/j.proci.2012.06.156.T. Malewicki, A. Comandini, K. Brezinsky, “Experimental and Modeling Study on the Pyrolysis and

O id i f i O ” P C b I (2012) 34 h //d d i /10 1016/j i 2012 06 137Oxidation of iso-Octane”, Proc Combust Ins (2012) 34. http://dx.doi.org/10.1016/j.proci.2012.06.137T. Malewicki, S. Gudiyella, K. Brezinsky. Experimental and Modeling Study on the Oxidation of Jet

A and the 2nd Generation Surrogate Fuel, Combust Flame (In review). 25

n-C12/Iso-C8/n-PB/135-TmB Surrogate Modeling (UIC)

Jet A POSF 4658 Surrogate Composition, PNOM = 25 atm, t = 1.34-3.36 ms, Symbols - Data, Lines - Model 26Malewicki, et al Combust Flame 2012, (In review).

n-C12/Iso-C8/n-PB/135TmB Surrogate Modeling (UIC)

Jet A POSF 4658 Surrogate Composition, PNOM = 25 atm, t = 1.34-3.53 ms, Φ = 0.47 Symbols - Data, Lines - Model

27Malewicki, et al Combust Flame 2012, (In review).

n-Dodecane Shock Tube Speciation versus JetSurf 2.0

ɸ = 1.06, P = 42.8-58.0 atm, t = 1.15-2.29 ms, Symbols - Data, Lines - Model 28

Efforts for Modeling Combustion Targets (PU)S D l S H W M Ch J H Y J F L D K K C J S H W MS. Dooley , S.H. Won , M. Chaos, J. Heyne, Y. Ju, F. L. Dryer, K. Kumar, C-J. Sung, H. Wang, M.

A. Oehlschlaeger, R.J., Santoro, T. A. Litzinger. A Jet Fuel Surrogate Formulated by Real Fuel Properties, Combust Flame (2010) 157:2333-2339.

S. Jahangirian, S. Dooley, F.M. Haas, F.L. Dryer. A Detailed Experimental and Kinetic ModelingSt d f D O id ti t El t d P C b t Fl (2012) 159 30 43Study of n-Decane Oxidation at Elevated Pressures, Combust Flame (2012) 159:30-43.

S.H. Won, S. S. Dooley, F.L. Dryer, Y. Ju. Kinetic Effect of Molecular Structure on Extinction Limit of Aromatic Diffusion Flames, Proc Combust Ins 33, 1163–1170 (2011).

S.H. Won, S. Dooley, F. L. Dryer, and Y. Ju, A Radical Index for the Determination of the ChemicalKi eti C t ib ti t Diff i Fl e E ti ti f L e H d b F el C b t FlKinetic Contribution to Diffusion Flame Extinction of Large Hydrocarbon Fuels, Combust Flame(2011) 159:541-551.

W. K. Metcalfe, S. Dooley, F. L. Dryer. “Comprehensive Detailed Chemical Kinetic ModelingStudy of Toluene Oxidation”, Energy Fuels (2011) 25:4915-4936.

X Hui K Kumar C J Sung S Dooley F L Dryer Laminar Flame Speeds and Extinction StretchX. Hui, K. Kumar, C. J. Sung, S. Dooley, F. L. Dryer. Laminar Flame Speeds and Extinction Stretch Rates of Selected Aromatic Hydrocarbons, Fuel (2012) 97:695–702.

S. Dooley, S.H. Won, J. Heyne, T.I. Farouk, Y. Ju, F.L. Dryer, K. Kumar, X. Hui, C-J. Sung, H. Wang, M. A. Oehlschlaeger, T.A. Litzinger, R.J. Santoro, T. Malewecki, K. Brezinsky. The Experimental Evaluation of a Methodology for Surrogate Fuel Formulation to Emulate Gas PhaseExperimental Evaluation of a Methodology for Surrogate Fuel Formulation to Emulate Gas Phase Combustion Kinetic Phenomena, Combust Flame (2012) 159: 1444-4466.

S. Dooley, S.H. Won, Y. Ju, F.L. Dryer, H. Wang, M. A. Oehlschlaeger. The Combustion Kineticsof a Synthetic Paraffinic Jet Aviation Fuel and a Fundamentally Formulated, ExperimentallyValidated Surrogate Fuel Combust Flame (2012) 159: 3014 3020Validated Surrogate Fuel, Combust Flame (2012) 159: 3014-3020.

S. Dooley, F.L. Dryer, T.I. Farouk, S.H. Won, “A Reduced Kinetic Model for the Combustion of Jet Propulsion Fuels”, 51st AIAA Aerospace Sciences Meeting, Grapevine, Texas. 7-10 January 2013. Abstract Accepted. 29

90(a) Toluene/Air Mixtures (a) Toluene/Air Mixtures, Tu=400 K

Laminar Premixed Predictions for Toluene, n-PB

60

70

80

90

me

Spee

d (c

m/s)

Tu=470 K

Tu=400 K400

600

800

retc

h R

ate

(s-1

)

[N2]/([N2]+[O2])=0.84

20

30

40

50

0 7 0 8 0 9 1 1 1 1 2 1 3 1 4

ExperimentMetcalfe DetailedMetcalfe Reduced

Lam

inar

Fla

m

0

200

400

0 8 0 9 1 1 1 1 2 1 3 1 4 1 5 1 6

ExperimentMetcalfe ReducedEx

tinct

ion

Str

0.7 0.8 0.9 1 1.1 1.2 1.3 1.4

Equivalence Ratio,

80

90

(cm

/s)

(b) n-PB/Air Mixtures

Tu=470 K

0.8 0.9 1 1.1 1.2 1.3 1.4 1.5 1.6Equivalence Ratio,

800

1000(b) n-PB/Oxidizer Mixtures, Tu=400 K

e (s

-1) [N2]/([N2]+[O2])=0.84

40

50

60

70

M t lf D t il d+W b PB

Experiment

nar F

lam

e Sp

eed

(

Tu=400 K

400

600

ctio

n St

retc

h R

ate

20

30

0.7 0.8 0.9 1 1.1 1.2 1.3 1.4

Metcalfe Detailed+Won sub n-PB

Metcalfe Reduced+Won sub n-PB

Equivalence Ratio,

Lam

in

0

200

0.8 0.9 1 1.1 1.2 1.3 1.4 1.5 1.6

ExperimentMetcalfe Reduced+Won sub n-PBEx

tinc

Equivalence Ratio,

C i f i l d d Comparison of experimental and computedComparison of experimental and computed laminar flame speeds for (a) toluene/air mixtures, and (b) n-PB/air mixtures.

Comparison of experimental and computed extinction stretch rates for (a) toluene/oxidizer mixtures, and (b) n-PB/oxidizer mixtures.

Hui et al., Fuel (2012) 97:695–702 30

Model Performance: 135-TmB10000 70

1000

10000

time

[s]

40

50

60

70

peed

[cm

/s] Laminar flame speeds at 1 atm

Fuel/air premixture

100

Igni

tion

dela

y

Symbols: measurements from RPILines: model predictionClosed symbols and solid lines: at 20 atmO b l d d h d li t 10 t 10

20

30

40

min

ar fa

lme

s

Open symbols: from counterflow flame (USC for 353 K, Uconn for 400 and 470 K)Closed symbols: from outwardly propagating spherical flame (PU)Li d l di ti

100.65 0.7 0.75 0.8 0.85 0.9 0.95

I

1000/T [1/K]

Open symbols and dashed lines: at 10 atmBlack: = 0.5, Red: = 1.0, Blue: = 2.0

0

0

0.5 0.7 0.9 1.1 1.3 1.5 1.7

La

Equivalence ratio

Lines: model predictionBlack: To = 353 K, Red: To = 400 K, Blue: To = 470 K

14000

16000

m] 350/s] nPB

toluene

8000

10000

12000

14000

e fr

actio

n [p

pm

Reactivity profiles from VPFR (PU)135 TMB/air oxidation1151 ppm 135TMB, = 1, P = 12.5 atmresidence time () = 1.8 s.

Symbols: meausrementsLines: model prediction

250

rain

rate

aE

[1/ toluene

135TMBnPB, Won et altoluene, Metcalfe et al135TMB, Dievart et al

0

2000

4000

6000

Spec

ies

mol

e

135TMB x 5, ppmCO, ppmCO2, ppmO2, ppmH2O, ppm

Lines: model prediction

50

150

Extin

ctio

n st

0650 700 750 800 850 900 950

Temperature [K]

500.08 0.1 0.12 0.14 0.16 0.18 0.2

Fuel mole fraction Xf

31

2nd Generation Surrogate Modeling (PU)

VPFR Flow reactor oxidation data for conditions of 12.5 atm, 0 3 mole % carbon = 1 0 at 1 8 s residence time

Ignition delay , = 1.0, air, P= 17-22 atm. Simulations conducted at Pmean= 20 atm.0.3 mole % carbon, = 1.0 at 1.8 s residence time. conducted at Pmean 20 atm.

Jet A POSF 4658 2nd generation (n C /isoJet A POSF 4658 2 generation (n–C12/iso-C8/n-PB/135-TmB (40.41/29.48/7.28/22.83 mole %) surrogate mixture. Lines represent kinetic model and symbols represent experimental data. Refinements are continuing.

Laminar flame speed measurements at 1 atm pressure, 298 K 32

MURISpecific E i i l S ll S l

Surrogate Impacts on Model Development for Emulating Real Fuel Fully Prevaporized Combustion Behavior

Combustion PropertyTargets

Iso‐octane

MURISurrogate Components

n‐propylbenzene

pPetroleum‐derived

and Alternative Jet FuelEmpirical Small Scale 

Tests

Targets

DCN, TSI, H/C, MW,

… … (?)

n‐dodecane

1,3,5‐trimethyl‐benzene

methylcyclo‐hexane

Functional GroupDistribution Analysisand Prioritization

?Quantum Theory for h h i l d Having minimalthermochemical and Rate Properties directed toward specific distinct 

Having minimal number of surrogate 

components is important to detailed p

functionalities model development

33

Viscosity Variations for Jet Fuels

1000

PQIS jet fuel database 2006-2008

101

osity

, cen

tisto

kes

~DESQ JP-8 field statistics,

2008

600

800

er o

f sam

ples

100

Kin

emat

ic V

isco

From liquid T variation at the

atomizer

2008

0

200

400

0 1 2 3 4 5 6 7 8

Num

be

from Handbook of Aviation Fuel Properties—2004 Third Edition, CRC Report No. 635, CRC, Inc., Alpharetta, GA 30022.

T t d d i ti ll th f ll j t f l (J t A JP 8 d JP5)

-50 -30 -10 10 30 50 70 90 110 130 150 170

Temperature, oC

http://www.desc.dla.mil/DCM/Files/2009PQISreport.pdf

Petroleum Quality Information System

0 1 2 3 4 5 6 7 8

Viscosity at -20 C, cSt

Temperature dependence is essentially the same for all jet fuels (Jet A, JP-8, and JP5).Heat transfer coupling of combustion and atomizer region affects liquid temperature at

the atomizer.Variation of liquid temperature can cause property variations larger than those found as q p p p y g

field variations in reference viscosity.Fuels are used as heat transfer fluids in strategic aircraft!

Surrogate mixtures constructed by emulating combustion property targets of a specific real fuel is a i bl f d ti l l ti t f b th t l d i d d t l d i d

Summaryviable, foundational emulation concept for both petroleum‐derived and non‐petroleum derived (alternative) fuels.

The mix of distinct chemical functionalities present in fully prevaporized combustion of the real fuel is more relevant to mixture formulation than attempting to emulate detailed real fuel organic molecular structure distribution.

Including weakly branched alkanes as a discrete class in detailed kinetic surrogate models appears unnecessary at present.  Other functional groups can be added as necessary (e.g. cycloalkyl…)   

Testing surrogate fuel concepts by experimental comparisons of real fuel and surrogate candidateTesting surrogate fuel concepts by experimental comparisons of real fuel and surrogate candidate mixture results is far superior to comparing candidate surrogate mixture model predictions against real fuel data in testing concepts. (Current models reasonably replicate global behaviors, but not necessarily details).

Significant challenges remain in refining kineticmechanistic as well as kinetic rate thermochemical dataSignificant challenges remain in refining kinetic mechanistic as well as kinetic rate, thermochemical data, and transport data in order to achieve improved emulation of even alkane oxidation => speciated fuel destruction/oxidation data are essential for quantitative detailed kinetic model validation.

Minimizing the numbers and types of surrogate components is a critical determinant  to achieving well‐alidated models that ill be tractable for comp tational sim lationsvalidated models that will be tractable for computational simulations.

Finally: Surrogate mixtures for a real fuel can be formulated from hydrocarbon solvent cuts (or distillation fractions there‐from) that all have the same fully prevaporized combustion behaviors. Along with matching 2nd generation formulation, these mixtures can be utilized in g g g f ,fully prevaporized and multiphase experiments to evaluate the relative importance of physical and chemical kinetic fuel properties on real gas turbine combustion properties.

35