24
Universit¨ at Hamburg MIN-Fakult¨ at Fachbereich Informatik GA’s in Robotics Genetic Algorithms in Robotics Julius Mayer Universit¨ at Hamburg Fakult¨ at f¨ ur Mathematik, Informatik und Naturwissenschaften Fachbereich Informatik Technische Aspekte Multimodaler Systeme October 31, 2016 J. Mayer 1

Genetic Algorithms in Robotics - uni-hamburg.de

  • Upload
    others

  • View
    0

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Genetic Algorithms in Robotics - uni-hamburg.de

Universitat Hamburg

MIN-FakultatFachbereich Informatik

GA’s in Robotics

Genetic Algorithms in Robotics

Julius Mayer

Universitat HamburgFakultat fur Mathematik, Informatik und NaturwissenschaftenFachbereich Informatik

Technische Aspekte Multimodaler Systeme

October 31, 2016

J. Mayer 1

Page 2: Genetic Algorithms in Robotics - uni-hamburg.de

Universitat Hamburg

MIN-FakultatFachbereich Informatik

GA’s in Robotics

Outline

1. IntroductionMotivationClassification

2. AlgorithmOverviewPhases

3. ApplicationGA’s in RoboticsNeuroevolution

4. DiscussionEvaluationConclusion

J. Mayer 2

Page 3: Genetic Algorithms in Robotics - uni-hamburg.de

Universitat Hamburg

MIN-FakultatFachbereich Informatik

Introduction - Motivation GA’s in Robotics

Motivation

Problems that are hard to solve with classical optimizationbecause of

I too many parameters (intractability),I large search space,I non-differentiable objective functions,I varying numbers of variables within the optimization process,I a lacking mathematical function specification.

[1]

J. Mayer 3

Page 4: Genetic Algorithms in Robotics - uni-hamburg.de

Universitat Hamburg

MIN-FakultatFachbereich Informatik

Introduction - Classification GA’s in Robotics

Classification

Biologic: Theory of evolution

I Adaptation of population to theenvironment

I Gradual, hereditary change inthe individuals of a species

I Information storage and transferthrough genomes

I Optimizing population fitness byreproduction [3]

J. Mayer 4

Page 5: Genetic Algorithms in Robotics - uni-hamburg.de

Universitat Hamburg

MIN-FakultatFachbereich Informatik

Introduction - Classification GA’s in Robotics

Classification

Biologic: Theory of evolution

I Adaptation of population to theenvironment

I Gradual, hereditary change inthe individuals of a species

I Information storage and transferthrough genomes

I Optimizing population fitness byreproduction

[5]

J. Mayer 5

Page 6: Genetic Algorithms in Robotics - uni-hamburg.de

Universitat Hamburg

MIN-FakultatFachbereich Informatik

Introduction - Classification GA’s in Robotics

Classification

Algorithmic: Stochastic optimization

I Can ’solve’ NP-hard problems

I Solution approximation

I Computational complexity asprohibiting factor

I e.g. ant colony & particle swarmoptimization

[7]

J. Mayer 6

Page 7: Genetic Algorithms in Robotics - uni-hamburg.de

Universitat Hamburg

MIN-FakultatFachbereich Informatik

Algorithm - Overview GA’s in Robotics

Algorithm

1. Initialization

2. Evaluation

3. Selection

4. Mutation

5. Terminate

J. Mayer 7

Page 8: Genetic Algorithms in Robotics - uni-hamburg.de

Universitat Hamburg

MIN-FakultatFachbereich Informatik

Algorithm - Phases GA’s in Robotics

Phase 1. Initialization

Initialize random population

I Choose appropriaterepresentation

I Individuals as encodedproblem solutions

I e.g. real values or binarystrings

1,67 2,34 1,04 5,83 2,10

101010011011010010101 [12]

J. Mayer 8

Page 9: Genetic Algorithms in Robotics - uni-hamburg.de

Universitat Hamburg

MIN-FakultatFachbereich Informatik

Algorithm - Phases GA’s in Robotics

Phase 2. Evaluation

I Choose objective function

I Decode & evaluatechromosome

I Find minima in objectivefunction

I Survival of the fittest

[9]

J. Mayer 9

Page 10: Genetic Algorithms in Robotics - uni-hamburg.de

Universitat Hamburg

MIN-FakultatFachbereich Informatik

Algorithm - Phases GA’s in Robotics

Phase 3. Selection

I Probabilistic selection

I Roulette wheel selection

I Tournament Selection

I Balance exploration &exploitation dilemma

J. Mayer 10

Page 11: Genetic Algorithms in Robotics - uni-hamburg.de

Universitat Hamburg

MIN-FakultatFachbereich Informatik

Algorithm - Phases GA’s in Robotics

Phase 4. Mutation

I Assign mutation rateI Mutate

I BitflipsI Normal distribution

mutation

I RecombinationI CrossoverI Permutation

I Mutation drives change

[12]

J. Mayer 11

Page 12: Genetic Algorithms in Robotics - uni-hamburg.de

Universitat Hamburg

MIN-FakultatFachbereich Informatik

Algorithm - Phases GA’s in Robotics

Phase 4. Mutation

I Assign mutation rateI Mutate

I BitflipsI Normal distribution

mutation

I RecombinationI CrossoverI Permutation

I Mutation drives change

[12]

J. Mayer 12

Page 13: Genetic Algorithms in Robotics - uni-hamburg.de

Universitat Hamburg

MIN-FakultatFachbereich Informatik

Algorithm - Phases GA’s in Robotics

Phase 5. Termination

I If solution is sufficiently closeI Performance is satisfyingI Change is stagnant

J. Mayer 13

Page 14: Genetic Algorithms in Robotics - uni-hamburg.de

Universitat Hamburg

MIN-FakultatFachbereich Informatik

Application - GA’s in Robotics GA’s in Robotics

GA’s in Robotics

I Evolutionary robotics

I Path planing

I Multivariate parameteroptimization

I Evolving artificial networkarchitectures & optimizingconnection weights (learning)

[6]

J. Mayer 14

Page 15: Genetic Algorithms in Robotics - uni-hamburg.de

Universitat Hamburg

MIN-FakultatFachbereich Informatik

Application - Neuroevolution GA’s in Robotics

Neuroevolution of augmenting topologies (NEAT)

I Uses crossover

I Uses speciation to protectstructures

I Increment growth fromminimal structures

[10]

J. Mayer 15

Page 16: Genetic Algorithms in Robotics - uni-hamburg.de

Universitat Hamburg

MIN-FakultatFachbereich Informatik

Application - Neuroevolution GA’s in Robotics

NEAT: Mutation

I Connection weights

I Network structure

I Add new connection(random weight)

I Add new node (splitconnection)

[10]

J. Mayer 16

Page 17: Genetic Algorithms in Robotics - uni-hamburg.de

Universitat Hamburg

MIN-FakultatFachbereich Informatik

Application - Neuroevolution GA’s in Robotics

NEAT: Crossover

I Genes are lined up accordingto innovation number

I Matching Genes are randomlychosen

I Disjoint / excess are takenfrom fitter parent

[10]

J. Mayer 17

Page 18: Genetic Algorithms in Robotics - uni-hamburg.de

Universitat Hamburg

MIN-FakultatFachbereich Informatik

Application - Neuroevolution GA’s in Robotics

NEAT for RoboCup Soccer

Keepaway (robot soccersubtask)I Large state space (unable to

explore exhaustively)I Only partial state

information for each agentI Continuous action spaceI Multiple teammates need to

learn simultaneously[4]

J. Mayer 18

Page 19: Genetic Algorithms in Robotics - uni-hamburg.de

Universitat Hamburg

MIN-FakultatFachbereich Informatik

Application - Neuroevolution GA’s in Robotics

NEAT vs. Temporal Difference Methods

[11]

J. Mayer 19

Page 20: Genetic Algorithms in Robotics - uni-hamburg.de

Universitat Hamburg

MIN-FakultatFachbereich Informatik

Application - Neuroevolution GA’s in Robotics

NEAT vs. Temporal Difference Methods

[11]

J. Mayer 20

Page 21: Genetic Algorithms in Robotics - uni-hamburg.de

Universitat Hamburg

MIN-FakultatFachbereich Informatik

Discussion - Evaluation GA’s in Robotics

Evaluation

Challenges

I Get GA’s parameters right

I Solution encodingI Exploration vs. exploitation

I Premature convergence(local minima)

I slow convergenceI big search space

I Find representative fitnessfunction

Drawbacks

I Approximation instead ofexact solution

I Computational complexity asprohibiting factor

I No guaranteed convergenceto global optimum

I Non-exhaustive coverage ofthe complete solution space

J. Mayer 21

Page 22: Genetic Algorithms in Robotics - uni-hamburg.de

Universitat Hamburg

MIN-FakultatFachbereich Informatik

Discussion - Conclusion GA’s in Robotics

Conclusion

I Inspired by biological evolution

I Stochastic optimization

I Population containing encodedproblem solutions (parameters)

I Different applications in robotics

I e.g. evolving ANN (NEAT) forRoboCup Soccer

I No guarantee for convergence toglobal optimum

[2]

J. Mayer 22

Page 23: Genetic Algorithms in Robotics - uni-hamburg.de

Universitat Hamburg

MIN-FakultatFachbereich Informatik

Discussion - Conclusion GA’s in Robotics

References

[1] http://rednuht.org/genetic walkers/, 2016.

[2] https://cdn.meme.am/instances/41036988.jpg.2016.

[3] https://i.ytimg.com/vi/3ZJNyScv8to/maxresdefault.jpg, 2016.

[4] https://i.ytimg.com/vi/HHlN0TDgllE/maxresdefault.jpg.2016.

[5] http://www.hanskottke.de/wordpress/wp-content/uploads/2012/09/evolutions hip hop.jpg.2016.

[6] http://www.orocos.org.2016.

[7] http://www.turingfinance.com/wp-content/uploads/2014/10/Self-Organizing-Feature-Map-3.png.2016.

[8] John H Holland.Adaptation in natural and artificial systems: an introductory analysis with applications to biology, control, andartificial intelligence.U Michigan Press, 1975.

[9] Melanie Mitchell.Complexity: A Guided Tour.In Oxford, volume 1, chapter Cellular A, pages 145–159. Oxford University Press, Inc, New York, 2009.

J. Mayer 23

Page 24: Genetic Algorithms in Robotics - uni-hamburg.de

Universitat Hamburg

MIN-FakultatFachbereich Informatik

Discussion - Conclusion GA’s in Robotics

References (cont.)

[10] Kenneth O Stanley and Risto Miikkulainen.Evolving neural networks through augmenting topologies.Evolutionary computation, 10(2):99–127, 2002.

[11] Matthew E Taylor.Comparing Evolutionary and Temporal Difference Methods in a Reinforcement Learning Domain.pages 1321–1328.

[12] Mattias Wahde.Biologically Inspired Optimization Methods: An introduction.WIT Press, Boston, MA, 2008.

J. Mayer 24