57
Key general genetic resources Regional genetics collaborative centers--Mountain States Genetic Collaborative Center for Texas and rocky mountain region (www.mostgene.org ); has many articles and resources on genetics Online Mendelian Inheritance in Man (www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=OMIM) Lists information on over 5000 Mendelian disorders, searchable by disease or symptoms Gene Tests (www.genetests.org). Lists availability of genetic/DNA testing and can be searched by disease Alliance of Genetics Support Groups (www.geneticalliance.org/). Lists parent group sites for various genetic and congenital diseases—excellent sources of genetic information and families for networking National Organization for Rare Disorders (www.rarediseases.org/) Succinct information summaries for genetic disorders, searchable by disease International Society of Nurses in Genetics (www.isong .org/) Genetics information and education opportunites for nurses (see detailed information from ISONG website below) Educational Resources Continuing Education resources listed on the ISONG website (www.isong.org) This site refers to the Nursing Ethics Continuing Education Web Site (www.nursingethicsce.com/)

genetic resource directory.doc

  • Upload
    pammy98

  • View
    3.841

  • Download
    1

Embed Size (px)

Citation preview

Page 1: genetic resource directory.doc

Key general genetic resources Regional genetics collaborative centers--Mountain States Genetic

Collaborative Center for Texas and rocky mountain region (www.mostgene.org); has many articles and resources on genetics

Online Mendelian Inheritance in Man (www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=OMIM) Lists information on over 5000 Mendelian disorders, searchable by disease or symptoms

Gene Tests (www.genetests.org). Lists availability of genetic/DNA testing and can be searched by disease

Alliance of Genetics Support Groups (www.geneticalliance.org/). Lists parent group sites for various genetic and congenital diseases—excellent sources of genetic information and families for networking

National Organization for Rare Disorders (www.rarediseases.org/) Succinct information summaries for genetic disorders, searchable by disease

International Society of Nurses in Genetics (www.isong.org/) Genetics information and education opportunites for nurses (see detailed information from ISONG website below)

Educational Resources

Continuing Education resources listed on the ISONG website (www.isong.org)

This site refers to the Nursing Ethics Continuing Education Web Site (www.nursingethicsce.com/)

Web-based continuing education program for practicing RNs offered by the New England Research Institutes, Watertown, MA.

The development of the program was funded by the National Institute of Nursing Research of the National Institutes of Health (Grant #R44 NR05355). The program was developed by Sharon L. Tennstedt, Ph.D., RN, and Sara T. Fry, Ph.D., RN, FAAN, Editor-in-Chief.

New England Research Institutes is an approved continuing education provider by the California Board of Registered Nursing, Provider # 13253 and by the Vermont State Nurses Association, Inc., which is accredited as an Approver of Continuing Education in Nursing by the American Nurses Association Credentialing Center's Commission on Accreditation.

Page 2: genetic resource directory.doc

Genetics Curriculum The Advocacy Role of the Nurse

A web-based, 8 course CE program, produced by New England Research Institutes and funded by NINR, NIH. There is currently no charge to participate in this course.

Genetics Interdisciplinary Faculty Training (GIFT) A genetics educational program for faculty teams from nurse practitioner, physician assistant, and nurse-midwifery programs. The goal of the program is to incorporate genetics into the graduate curricula for primary care providers in nursing. There is no cost to our participants. All cost is funded by a cooperative agreement with HRSA.

Genetics and Your Practice A curricilum developed for physicians and other health care professionals by Dr. Robert Fineman and the Genetics Services Division of Washington State Department of Health.

Hereditary Susceptibility To Breat and Ovarian Cancer An outline of the basic fundamental knowledge needed by all health care professionals established by: National Action Plan On Breast Cancer American Society Of Clinical Oncology.

A Practice-Based Genetics Curriculum for Nurse Educators The Practice-Based Genetics Curriculum for Nurse Educators is the result of a 3-year, ELSI-funded genetics educational research project. The curriculum contains a variety of genetic topics for nurse educators teaching in undergraduate and graduate nursing programs. A variety of teaching materials are included in the curriculum: 1) genetic family history screening tools, 2) case studies for discussion, 3) act sheets, 4) handouts, 5) evaluation methods (e.g. multiple choice questions and questions for research topics and critical thinking), 6) glossary, and 7) Power-Point sides that can be used in the classrom. Posted on the FBR Web site www.fbr.org are excerpts of the curricular modules.

Spina Bifida Curriculum Guidelines for the Management of Students with Genetic Disorders: A Manual for School Nurses, 2nd Ed. The Student with Myleodysplasia (Spina Bifida) produced by the New England Regional Genetics Group.

Last edited: 11/20/03

Course 4: Advocacy for Patients Considering Genetic Testing (2.2 contact hours)

OverviewPrior to the mapping of the human genome, begun in 1988, nurses in most practice

settings did not consider providing genetic health care as a routine aspect of nursing practice. However, during recent years, nurses have been asked increasingly to provide information about genetic testing and its implications. This is not surprising since nurses are the most easily accessible of health care providers for the majority of persons who seek health care information. Nurses are now expected to be aware of and/or provide information about genetic testing for various inherited disorders, as well as to recognize

2

Page 3: genetic resource directory.doc

the numerous concerns associated with genetic testing. In order to respond to patient and family requests for this information, nurses must integrate genetic knowledge into specific clinical practice areas as well as understand both the technical and psychosocial aspects of receiving genetic information. Nurses should think "genetically," that is, they should incorporate genetic knowledge and skills into the nursing process.

The purpose of this course is to describe and define the advocacy role of the non-specialist registered nurse in genetic testing. Ethical principles, principles of nurse advocacy, and professional standards will be discussed as they apply to individuals' decisions and human responses associated with genetic testing. Nurses' advocacy roles in genetic testing situations will be described, including background information that affects patients' decision-making. The advocacy role of the nurse will be applied to patient care situations that reflect the contexts where decisions to have or not have genetic testing are made. Expert commentary about the decision-making process and the nurse's advocacy role will be provided to develop reader understanding of the complex nature of genetic testing situations. Expert commentary about the nurse's advocacy role in genetic testing will be provided by Ms. Carolyn Farrell.

Course 4: Advocacy for Patients Considering Genetic Testing (2.2 contact hours)

Objectives

At the completion of this course, the nurse will be able to:Identify several methods of genetic testing that families may consider during the

course of routine clinical care. Describe the professional standards of practice that direct the advocacy role of the

non-specialist registered nurse in genetic testing situations. Discuss the ethical issues that nurse advocates must consider when involved in

genetic testing decisions. Apply ethical principles, professional standards, and the principles of nursing

advocacy to patient care situations where genetic testing is considered.

Taking the course onlineOn average, completion of a course and the CE exam should take 2 to 2.5

hours.The cost of each course is $24.00.The courses consist of several chapters covering specific topics, and the chapters

are divided into sections in order to provide greater detail. You can easily move from chapter to chapter or section to section by clicking on the chapter tabs that run horizontally across the screen or the section titles that run vertically down the left hand side of the screen.

Upon finishing each course and its corresponding exam, if you successfully score at least 80% on the CE exam, you will be able to print out a CE Certificate. You will be given two opportunities to take and pass the CE exam.

To get started, simply click on the Home icon, where you will find a list of courses. To review the content of a course, click on the course title link and you will be brought to the introduction for that course.

3

Page 4: genetic resource directory.doc

Genetics Education Program for Nurses, University of Cincinnatihttp://www.cincinnatichildrens.org/ed/clinical/gpnf/default.htmGenetics is Relevant Now: Nurses' Views and Patient Stories   (Non-CE

Version) -- This Non-CE Version of the GRN module has been created with a classroom setting in mind. The purpose of this module is to inform nurses about the relevance of genetics and genomics to patient care and nursing practice. If you wish to obtain nursing contact hours, please use the CE version of this module.

The Multiple Roles   of Genetics Nurses  -- Created by Carol Hetteberg, MSN, RN, Cincinnati Children's Hospital Medical Center.  This presentation contains audio clips from telephone interviews with nurses from the International Society of Nurses in Genetics (ISONG). Practice, education, research and administration roles are highlighted.

Mendelian Inheritance - Meiosis Connection -- The purpose of this introductory level instructional program is to demonstrate the basic relationship between Meiosis and Mendelian Inheritance.

The Chromosome, DNA, Gene Lecture (best performance in Internet Explorer 6). The objective of this presentation is very basic: To distinguish between the terms chromosome, DNA and gene.

The Introduction to Genetic Counseling Lecture (best performance in Internet Explorer 6). The objective of this presentation is to discuss the role of a genetic counselor and how they interact with other health care professionals.

National Genetics Education and Development Centre, UK;(www.geneticseducation.nhs.uk/publications/)-- Publications on Genetics Education for Healthcare Professionals

General

Trossman S (2006) Issues update. It's in the genes: the ANA and nurse leaders want RNs and students to practice with genetics and genomics in mind. American Journal of Nursing 106(2):74.

Van Riper M (2006) Family Nursing in the Era of Genomic Health Care - We Should Be Doing So Much More! Journal of Family Nursing 12(2):111-118.

Westwood G, Pickering RM et al (2006) Feasibility and acceptability of providing nurse counsellor genetics clinics in primary care. Journal of Advanced Nursing 53(5):591-604.

Benjamin CM, Gamet K (2005) Recognising the limitations of your genetics expertise. Nursing Standard 20(6):49-54.

Bradley, AN (2005) Utility and limitations of genetic testing and information. Nursing Standard 20(5):52-55.

Gaff, CL (2005) Identifying clients who might benefit from genetic services and information. Nursing Standard 20(1):49-53.

Haydon J (2005) Genetics: uphold the rights of all clients to informed decision-making and voluntary action. Nursing Standard 20(3):48-51.

Kirk M (2005) Introduction to the genetics series. Nursing Standard 20(1):48.Kirk M (2005) The role of genetic factors in maintaining health. Nursing Standard 20

(4):50-54.

4

Page 5: genetic resource directory.doc

Middleton A et al (2005) Tailoring genetic information and services to clients’ culture, knowledge and language level. Nursing Standard 20(2):52-56.

Skirton H, Barnes C (2005) Obtaining and communicating information about genetics. Nursing Standard 20, 7, 50-53.

Pfeil M and Luo CM (2005) Genetics knowledge for nurses: necessity or luxury? British Journal of Nursing 14(21):1128.

Loud J, Hutson S (2004) The art and science of cancer nursing in the genomic era. Seminars in Oncology Nursing 20(3):143-4.

Conference RINR (2004) "Nurses still lack 'genetic literacy'." Nursing Standard 18(29):11.

Calzone K, Masny A (2004) Genetics and oncology nursing." Seminars in Oncology Nursing 20(3):178-85.

Kirk M (2004) Guest editorial. Nursing through the genetics lens: convergent thinking on education and professional development." Nurse Education Today 24(1):1-3.

Yeomans A, Kirk M (2004). Genetics for beginners. Nursing Standard 18(40):14-7. Edgar DA (2004) Advances in genetics: implications for children, families and

nurses. Paediatric Nursing 16(6):26-9. Grady PA, Collins FS (2003) Genetics and Nursing Science: Realizing the Potential.

Nursing Research. 52(2):69. Nicol MJ (2003) Genetics and nursing: preparing for future health care

development. Nursing Praxis in New Zealand 19(2):27-40. Pestka E. (2003). "Genomics offers opportunities for nurses." Journal of Continuing

Education in Nursing 34(5):195. Deacon E (2002) A midwife's role in prenatal screening. British Journal of Midwifery

10(8):485-8. Anderson G, Rorty MV (2001). Key points for developing an international

declaration on nursing, human rights, human genetics and public health policy. Nursing Ethics 8(3):259-71.

Anderson G, Read CY et al. (2000). Genetics, nursing, and public policy: setting an international agenda. Policy Politics Nursing Practice 1(4):245-55.

Rieger PT, Tinley ST (2000). Cancer genetics and nursing practice: what every gastroenterology nurse needs to know. Gastroenterol Nurs 23(1):28-39.

Jenkins JF (2000) An historical perspective on genetic care. Online J Issues Nurs 5(3):1.

Skirton H and Patch C (2000) The new genetics and nursing: what does it have to do with me? Nursing Standard 14(19):42-46.

Lea DH, Tinley ST (1998). Genetics in the OR--implications for perioperative nursing practice. Aorn J 67(6): 1175-80, 1183-6, 1189, passim.

Lea DH, Anderson G et al. (1998). A multiplicity of roles for genetic nursing: building toward holistic practice. Holistic Nurs Pract 12 (3):77-87.

Forsman I (1994) Evolution of the nursing role in genetics. Journal of Obstetric Gynecologic and Neonatal Nursing 23(6):481-6.

Smyth M, Bach J (1992) Synthesis of genetics into community-based nursing practice. Issues Compr Pediatr Nurs 15(4):219-37.

5

Page 6: genetic resource directory.doc

Education & training - Competences, learning outcomes and curricula

Burke S, Kirk M (2006) Genetics education in the nursing professions: a literature review. Journal of Advanced Nursing.

Lewis JA, CalzoneKM, Jenkins J ( 2006) Essential nursing competencies and curricula guidelines for genetics and genomics. MCN: The American Journal of Maternal/Child Nursing 31(3): 146-55.

Bottorff JL, Blaine S et al (2005) The educational needs and professional roles of Canadian physicians and nurses regarding genetic testing and adult onset hereditary disease. Community Genet 8(2):80-7.

Challen K, Harris HJ et al (2005) Genetic education and non genetic health professionals: Educational providers and curricula in Europe. Genet Med 7(5):302-310.

Engstrom JL et al (2005) Genetic Competencies Essential for Health Care Professionals in Primary Care. Journal of Midwifery & Women's Health 50(3):177-183

Horner SD et al (2004) Using theory to guide the diffusion of genetics content in nursing curricula. Nursing Outlook 52(2):80-4.

Beery T, Hern M (2004). Genetic Practice, Education, and Research: An Overview for Advanced Practice Nurses. Clinical Nurse Specialist 18(3):126-32.

Hetteberg C, Prows CA (2004). A checklist to assist in the integration of genetics into nursing curricula. Nursing Outlook 52 (2): 85-8.

Kirk M, McDonald K (2004) Developing a framework for genetics in cancer nursing. Cancer Nursing Practice 3(8):20-24.

Pestka E and Brown J (2004). Genomics education for nurses in practice. Journal for Nurses in Staff Development 20(3):145-9.

(2003). Education news Genetics competencies for nursing education. Nursing Education Perspectives 24(2):66.

Burton H, Shuttleworth A (2003). Genetics education for midwives. RCM Midwives Journal 6(4):162-4.

Burton H, Shuttleworth A (2003). "Genetics education for primary health care nurses." Primary Health Care 13(4): 35-8.

Burton H, Stewart A (2003). From Mendel to the Human Genome Project: the implications for nurse education. Nurse education today 23(5):380-5; discussion 386-7.

Burton H, Shuttleworth A et al. (2003). Genetics education for nurses, midwives and health visitors. The Professional nurse 18(12):676-80.

Cook S, Kase R, Middelton L, Monsen RB (2003) Portfolio evaluation for professional competence: credentialing in genetics for nurses. J Prof Nurs 19(2):85-90.

Kirk M, McDonald K et al. (2003) Fit for practice in the genetics era. A competence based education framework for nurses, midwives and health visitors. Report

Metcalfe A, Burton H (2003) Post registration genetics education provision for nurses, midwives and health visitors in the UK. (Research to survey the amount of education about genetics, the professional expertise of those teaching it, and what influenced the inclusion of genetics in post registration courses. Journal of Advanced Nursing 44(4):350-9.

Calzone KA, Jenkins J et al. (2002) Core competencies in cancer genetics for advanced practice oncology nurses. Oncol Nurs Forum 29(9):1327-33.

6

Page 7: genetic resource directory.doc

Jenkins J (2002) Genetics competency: new directions for nursing. AACN Clinical Issues: Advanced Practice in Acute and Critical Care 13(4):486.

Lea DH (2002) Position statement: integrating genetics competencies into baccalaureate and advanced nursing education." Nursing outlook 50(4):167.

Nicol MJ (2002) The teaching of genetics in New Zealand undergraduate nursing programmes. Nurse Education Today 22:401-408.

Jenkins JF, Prows C et al (2001) Recommendations for educating nurses in genetics. Journal of Professional Nursing 17(6):283-290.

Jenkins JF, Dimond E et al (2001) Preparing for the future through genetics nurse education. Journal of Nursing Scholarship 33(2): 191-195.

Lashley FR (2001) Genetics and nursing: the interface in education, research, and practice. Biol Res Nurs 3(1):13-23.

Kirk M (2000) Genetics, ethics and education: considering the issues for nurses and midwives. Nursing Ethics 7(3):215-26.

Lashley FR (2000) Genetics in nursing education. Nurs Clin North Am 35(3):795-805.

Zamerowski ST (2000) A model for integrating genetics into nursing education. Nursing and Health Care Perspectives 21(6): 298-304.

Anderson G (1999) Genetics education in healthcare. Nurs Spectr ( Wash D C 9(7):24.

Kirk M (1999) Preparing for the future: the status of genetics education in diploma-level training courses for nurses in the UK ." Nurse Education Today 19(2):107-15.

Knowledge, skills and attitudes

Barr OG, McConkey R (2006) Supporting parents who have a child referred for genetic investigation: the contribution of health visitors. Journal of Advanced Nursing 54(2):141–150.

Barr OG, McConkey R (2006) Health visitors’ perceived priority needs in relation to their genetics education  Nurse Education Today In Press, Available online 10 July 2006 .

Chapple J (2006) Simplifying antenatal screening: What midwives need to know. British Journal of Midwifery 14 (4) 193-196.

Feetham S et al (2002) Families and genetics: bridging the gap between knowledge and practice. Newborn and Infant Nursing Reviews 2(4):247-253.

Bramwell R Carter D (2001) An exploration of midwives' and obstetricians' knowledge of genetic screening in pregnancy and their perception of appropriate counselling. Midwifery 17(2):133-41.

Peterson SK, Rieger PT et al (2001) Oncology nurses' knowledge, practice, and educational needs regarding cancer genetics. American Journal of Medical Genetics 98(1):3-12.

Fairgrieve S, Magnay D et al (1997) Maternal serum screening for Down's syndrome: A survey of midwives' views. Public Health {PUBLIC HEALTH}111(6):383-385.

Dyson SM, Fielder AV et al. (1996). Midwives' and senior student midwives' knowledge of haemaglobinopathies in England. Midwifery 12(1):23-30.

7

Page 8: genetic resource directory.doc

Dyson S, Fielder A et al (1996). Research. Midwives' knowledge of haemoglobinopathies. Modern Midwife 6(7):22-5.

Khalid L, Price SM, Barrow M (1994) The attitudes of midwives to maternal serum screening for Down’s syndrome. Public Health 108(2):131-6.

Other articles on nursing genetics education

Schumacher G. et al (2006) Pedigree analysis: One teaching strategy to incorporate genetics into a full FNP program Nurse Education in Practice 6(3):169-174

Cragun DL, Couch SC, Prows CA, Warren NS, Christianson CA (2005) Success of a genetics educational intervention for nursing and dietetic students. Journal of Allied Health. 34(2): 90-96.

Horner SD (2004) A genetics course for advanced clinical nursing practice. Clinical Nurse Specialist 18(4):194-9.

Prows CA, Hetteberg C et al (2004) Development of a Web-based genetics institute for a nursing audience. Journal of Continuing Education in Nursing 35(5):223-31

Prows C, Hetteberg C et al (2003) Outcomes of a genetics education program for nursing faculty. Nurs Educ Perspect 24(2): 81-5.

Moyer, J.E. (2002) The APNG(c): a preliminary look at credentialing nurses through portfolio review... Advanced Practice Nurses in Genetics credential. Newborn and Infant Nursing Reviews 2(4):254-258

Gaff CK, Aittomaki et al (2001) Oncology nurse training in cancer genetics. J Med Genet 38(10):691-5.

Swank CO, Christianson CA et al (2001) Effectiveness of a genetics self-instructional module for nurses involved in egg donor screening. JOGNN Journal of Obstetric Gynecologic and Neonatal Nursing 30(6) 617-25.

Smith DK, Shaw RW et al. (1995) Training obstetricians and midwives to present screening tests: evaluation of two brief interventions. Prenatal diagnosis 15(4):317-24.

Articles with reviews and/or abstracts

Education of nurses in geneticsForsman I. Am J Hum Genet. 1988 Oct;43(4):552-8.The need for education of nurses in genetics was articulated more than 25 years

ago. This article reviews the knowledge of practicing nurses about genetics as well as the content of genetics in nursing curricula. Implementation of federal legislation that mandated increased availability of genetic services and genetics education provided support for the examination of genetics content in curricula for health professionals, including nurses, and for the development of model programs to expand this content. Recent efforts to begin to develop a pool of nurse faculty who are well prepared in genetics will be described, as well as programs to provide the necessary content through continuing-education efforts. These efforts are expected to substantially improve the capability of nurses to contribute more effectively in the delivery of genetic services.

8

Page 9: genetic resource directory.doc

A Clinician's primer in human genetics: what nurses need to know.Lea DH. Nurs Clin North Am. 2000 Sep;35(3):583-614

This article provides nurses with general information about the structure and function of genes, metabolic and chromosomal disorders, and the inheritance of genetic conditions in families. It serves as a foundation for the remainder of this issue, which addresses the clinical application of genetic principles, genetic counseling and evaluation, and emerging genetic technologies. Nurses are present in all health care settings and care for individuals and families throughout their patient's life span. Nurses must therefore have adequate knowledge of human genetics so that they can identify individuals who may have a genetic condition or predisposition, and ensure that those individuals have access to the most current genetic diagnostics, treatment, and management therapeutics. With this knowledge, nurses can collect appropriate family histories, provide current genetic information, and support patients, families, and communities as they integrate this new information and technology into their daily lives.

Clinical genetics: an overview. J Cardiovasc Nurs. 1999 Jul;13(4):19-33. Nehring WM, Faux SA.

It is imperative that clinicians understand basic human genetic concepts. In this article, the patterns of inheritance for single gene disorders are described and include the traditional Mendelian, nontraditional, and multifactorial patterns. Next, chromosomal and structural abnormalities are described, followed by a description of the current measures by which genes are detected, including gene mapping and polymorphisms, and concluding with cytogenetic, molecular, and biochemical testing.

Genes and inheritanceMiddelton LA, Peters KF, Helmbold EA. Cancer Nurs. 1997 Apr;20(2):129-47; quiz

148-51.

The information gained from the Human Genome Project and related genetic research will undoubtedly create significant changes in health care practice. It is becoming increasing clear that nurses in all areas of clinical practice will require a fundamental understanding of basic genetics. This self-learning module provides the oncology nurse with an overview of basic genetic concepts including inheritance patterns of single gene conditions, pedigree construction, chromosome aberrations, and

9

Page 10: genetic resource directory.doc

the multifactorial basis underlying many common diseases of adulthood. Normal gene structure and function will be introduced and the biochemistry of genetic errors will be described.

Genetics Nursing Practice Enters a New Era With Credentialing

Karen E. Greco, Suzanne M. Mahon: Genetics Nursing Practice Enters a New Era With Credentialing. The Internet Journal of Advanced Nursing Practice. 2003. Volume 5 Number 2.

Articles for purchase

Examples from the Nursing Center website LibraryThese can be downloaded from http://www.nursingcenter.com. More articles can be

found by searching on the keyword “genetics”

A Genetics Course for Advanced Clinical Nursing Practice SHARON D. HORNER PhD, RN, MC-CNS Clinical Nurse Specialist: The Journal

for Advanced Nursing PracticeJuly/August 2004 Volume 18 Number 4 pp 194 - 199

$7.95

A Genomic Approach to Dietetic Practice Are You Ready? Gail P. A. Kauwell PhD, RD, LDN Topics in Clinical NutritionApril/June 2003  Volume 18 Number 2 pp 81 – 91 $7.95

African-American Women: Health Beliefs, Lifestyle, and Osteoporosis Cheryl Sadler, Marlene Huff  

Orthopaedic Nursing March/April 2007 Volume 26 Number 2 pp 96 – 101$22.95 (with CME)

Alzheimer Disease and Genetics: Anticipating the Questions Debra L. Schutte PhD, RN AJN, American Journal of Nursing December 2006  Volume 106 Number 12 Pages 40 - 47

24.95 (with CME)

10

Page 11: genetic resource directory.doc

Other articles on genetics in nursing

Sarah Burke BA MA and Maggie Kirk BSc PhD RGN. (2006) Genetics education in the nursing profession: literature review. Journal of Advanced Nursing 54:2, 228–237

Owen G. Barr MSc PhD RGN RNMH and Roy McConkey BA PhD. (2006) Supporting parents who have a child referred for genetic investigation: the contribution of health visitors. Journal of Advanced Nursing 54:2, 141–150

Ayse Gaye Tomatir, Hülya Çetin Sorkun, Huriye Demirhan, Beyza Akdag. (2006) Nurses' Professed Knowledge of Genetics and Genetic Counseling. The Tohoku Journal of Experimental Medicine 210:4, 321

Kirsty Challen, Hilary Harris, Caroline M. Benjamin, Rodney Harris. (2006) Genetics Teaching for Non-Geneticist Health Care Professionals in the UK. Community Genetics 9:4, 251

Kirsty Challen, Hilary J. Harris, Claire Julian-Reynier, Leo P. ten Kate, Ulf Kristoffersson, Irmgard Nippert, J??rg Schmidtke, Caroline Benjamin, Rodney Harris. (2005) Genetic education and nongenetic health professionals: Educational providers and curricula in Europe. Genetics in Medicine 7:5, 302

Sharon Olsen, MS, RN, AOCN, Sharon Dudley-Brown, PhD, APRN, BC, FNP and Patricia McMullen, DNSc, JD, CNS, CRNP

. (2004) Case for blending pedigrees, genograms and ecomaps: Nursing's contribution to the 'big picture'. Nursing & Health Sciences 6:4, 295–308

BooksGenetics in Clinical Practice. New Directions for Nursing and Health Care. Lea DH,

Jenkins JF, Francomano CA (1998): Sudbury MA: Jones and Bartlett.Essentials of Genetics for Nurses by Bernice L Muir New York: Wiley (1983)Essentials of Clinical Genetics in Nursing Practice by Felissa R Lashley New York:

Springer (2006)Genetics for Healthcare Professionals: A Lifestage Approach by H Skirton and C

Patch, Oxford UK: Bios (2002)

Genetics Education Resources reviewed by ISONG (www.isong.org/resources/)

A Review of Medical Genetics: Overview and Study GuideBy Janice Berliner 1995. Reviewed by Becky Althaus

This is a spiral bound, no nonsense book that is a comprehensive review of clinical genetics concepts. The topics are covered in a very organized, concise manner. (If you are looking for flowery explanations, don't look here!) Since the study guide is designed to prepare a person for

11

Page 12: genetic resource directory.doc

the genetic counseling boards, all topic contents are brief and straight-forward. If the reader is not comfortable with a section, the references can be consulted for more in depth study.

The genetics nurse can use this book as a handy reference that is all-in-one. If you are trying to explain or teach a concept that you do not use frequently, this book would be helpful to jog your memory. It is not comprehensive enough to learn the material first hand.

Just as the title suggests, this book is an excellent choice for review, overview and study guide.

This book can be purchased for $59.00 from the author: Janice Berliner 718-494-5369 fax: 718-494-5336 NYS Institute for Basic Research, Dept. Genetics 1050 Forest Hill Road Staten Island, NY 10314

Indications for a Genetic Referral (BABY-LOVE version)Producer: Texas Department of Health

Reviewer: Dale Halsey Lea, R.N., M.P.H.

This seven minute video provides the nurse with specific indications for referring an individual/family for genetic evaluation and counseling. These indications include: l) situations where a genetic diagnosis has been made in a family (e.g. Marfan syndrome); 2) identification of three or more minor physical variations, or a single major malformation in an individual; 3) a positive family history such as mental retardation; 4) the presence of genetic relatedness (consanguinity); 5) specific ethnic background; 6) advanced maternal age; 7) exposure to an actual or potential teratogenic agent during pregnancy; and 8) the presence of a chronic disorder such as Cystic Fibrosis in a family.

The information is presented clearly. Examples of minor birth defects and familiy history issues are specifically outlined. This is an excellent introduction for nurses who do not have backgound in genetics. It would be useful for educating undergraduate nurses and for continuing educational offerings for practicing nurses.

Starting and Sustaining Genetic Support Groups Joan O. Weiss and Jayne S. Mackta (1996) The Johns Hopkins University Press,

Baltimore, MD. Reviewed by Sara Cook.

Weiss and Mackta have created a sensitive, practical and comprehensive guide for starting and maintaining genetic support groups. The book may be used as a reference manual or when read from beginning to end, as a complete roadmap to developing a new group. The initial chapter details an illuminating history of self-help and support groups. Subsequent chapters consider why people seek support groups and the dynamics of peer support. They also cover the 'nuts and bolts' details of organizing, funding, advertising and programming genetic support groups. Appendices include a list of known genetic voluntary organizations, useful resources, a glossary and annotated bibliography and an overview of the success of one group (the Fanconi Anemia

12

Page 13: genetic resource directory.doc

Research Fund, Inc.). Summary statements and side-bars as well as sample questionnaire formats or tips to follow are sprinkled liberally throughout the text. Real life examples and stories enrich which might otherwise be a straight forward textbook format. This volume would serve as an excellent resource, not only as a review for professionals (there is an excellent section on the role of the genetic counselor) but most especially as a user-friendly tool for lay groups seeking to start their own support group.

Counseling Aids for Geneticists By the Greenwood Genetic Center

Reviewed by: Becky Althaus,RN, MSN

Counseling Aids for Geneticists is a valuable tool for every genetics nurse who counsels families or teaches students about genetic syndromes, inheritance and testing. The new version (Third Edition) has all the old standard essential diagrams such as dominant, recessive, x-linked and multifactorial inheritance in addition to a multitude of new ones, including FISH, uniparental disomies, and linkage analysis.

The easy to use book is tabbed with the following headings: chromosomes, aneuploidy/translocations, FISH, single gene inheritance, non-traditional inheritance, prenatal diagnosis, and molecular strategies.

The illustrations are very clearly presented in green and black in a large enough font for easy reading in one to one counseling. The book is spiral bound so that it lays flat on the table. Photographs of karyotypes, FISH and Southern blots are clearly printed. The information diagrammed is correct and creatively presented in a format that can facilitate understanding in a newcomer to the information.

In summary, I can think of nothing I would have added to this book, and am delighted with the inclusion of subjects I have never tried to illustrate in my years of practice! I recommend this very useful counseling aid.

To order, call the Greenwood Genetic Center at 1-800-473-9411.

Children with Facial Difference: A Parents' GuideBy: Hope Charkins, MSW. Reviewed by Julia F. Houfek

Publisher: Woodbine House, Inc., Bethesda, MD

Date: 1996; Price: $16.95

Families caring for children with cranio-facial anomalies have informational needs about their child's condition and care that is not easily obtainable or user-friendly. The book, Children with Facial Difference: A Parents' Guide, is intended to address these information needs by discussing various cranio-facial anomalies, their treatment, and strategies to promote positive coping. The author, a medical social worker and parent of a child with Treacher Collins Syndrome, has written a sensitive book filled with practical advice for parents as they navigate the medical

13

Page 14: genetic resource directory.doc

system and larger social systems in light of their child's special needs and differences. A distinguished advisory committee assisted with editing.

The first chapter describes the manifestations of common conditions, such as cleft lip and palate, as well as less common disorders, such as various multiple suture craniostenoses, hemifacial microsomia, and Treacher Collins Syndrome. The causes of these disorders, both genetic and environmental are explained comprehensively in nontechnical language. The chapter offers anticipatory guidance in working with an interdisciplinary treatment teach and the need for an early and comprehensive evaluation of the child's condition. The chapter and others could be strengthened by including captions for the pictures that illustrate the text.

Subsequent chapters address the following aspects of care:

Family adjustment and support needs Treatment, including hospitalization and surgery, and interacting with health-care

providers Family life, including coping with stressors and crises and helping affected

children form a health self-concept within the family and society Special speech, language, and hearing needs, their diagnosis and treatment Adapting to school, available support services, and interactions with educators Types of advocacy, the advocacy process, and helpful organizations.

Anecdotes and comments by parents at the end of each chapter offer additional support and insight. The book concludes with three very fine appendices that consist of a glossary, additional reading and audiovisual materials, and a compilation of national resources for families of children with facial difference.

This book is a supportive resource for parents and health care providers and would be an excellent addition to consumer libraries. Using a readability index, I calculated the reading level to be 11th grade, which makes this resource most valuable for consumers who can easily read. Consumers who are more comfortable reading at lower grade levels may find the material more difficult to comprehend and may need assistance from health-care providers in using this resource.

Alphabetized bibliography(2003). Education news Genetics competencies for nursing education. Nursing Education Perspectives 24(2):66. Anderson G (1999) Genetics education in healthcare. Nurs Spectr ( Wash D C 9(7):24. Anderson G, Read CY et al. (2000). Genetics, nursing, and public policy: setting an international agenda. Policy Politics Nursing Practice 1(4):245-55. Anderson G, Rorty MV (2001). Key points for developing an international declaration on nursing, human rights, human genetics and public health policy. Nursing Ethics 8(3):259-71. Barr OG, McConkey R (2006) Health visitors’ perceived priority needs in relation to their

14

Page 15: genetic resource directory.doc

genetics education  Nurse Education Today In Press, Available online 10 July 2006 .Barr OG, McConkey R (2006) Supporting parents who have a child referred for genetic investigation: the contribution of health visitors. Journal of Advanced Nursing 54(2):141–150. Beery T, Hern M (2004). Genetic Practice, Education, and Research: An Overview for Advanced Practice Nurses. Clinical Nurse Specialist 18(3):126-32. Benjamin CM, Gamet K (2005) Recognising the limitations of your genetics expertise. Nursing Standard 20(6):49-54. Bottorff JL, Blaine S et al (2005) The educational needs and professional roles of Canadian physicians and nurses regarding genetic testing and adult onset hereditary disease. Community Genet 8(2):80-7. Bradley, AN (2005) Utility and limitations of genetic testing and information. Nursing Standard 20(5):52-55. Bramwell R Carter D (2001) An exploration of midwives' and obstetricians' knowledge of genetic screening in pregnancy and their perception of appropriate counselling. Midwifery 17(2):133-41. Burke S, Kirk M (2006) Genetics education in the nursing professions: a literature review. Journal of Advanced Nursing. Burton H, Shuttleworth A (2003). "Genetics education for primary health care nurses." Primary Health Care 13(4): 35-8. Burton H, Shuttleworth A (2003). Genetics education for midwives. RCM Midwives Journal 6(4):162-4. Burton H, Shuttleworth A et al. (2003). Genetics education for nurses, midwives and health visitors. The Professional nurse 18(12):676-80. Burton H, Stewart A (2003). From Mendel to the Human Genome Project: the implications for nurse education. Nurse education today 23(5):380-5; discussion 386-7. Calzone K, Masny A (2004) Genetics and oncology nursing." Seminars in Oncology Nursing 20(3):178-85. Calzone KA, Jenkins J et al. (2002) Core competencies in cancer genetics for advanced practice oncology nurses. Oncol Nurs Forum 29(9):1327-33. Challen K, Harris HJ et al (2005) Genetic education and non genetic health professionals: Educational providers and curricula in Europe. Genet Med 7(5):302-310. Chapple J (2006) Simplifying antenatal screening: What midwives need to know. British Journal of Midwifery 14 (4) 193-196. Conference RINR (2004) "Nurses still lack 'genetic literacy'." Nursing Standard 18(29):11. Cook S, Kase R, Middelton L, Monsen RB (2003) Portfolio evaluation for professional competence: credentialing in genetics for nurses. J Prof Nurs 19(2):85-90. Cragun DL, Couch SC, Prows CA, Warren NS, Christianson CA (2005) Success of a genetics educational intervention for nursing and dietetic students. Journal of Allied Health. 34(2): 90-96. Deacon E (2002) A midwife's role in prenatal screening. British Journal of Midwifery 10(8):485-8. Dyson S, Fielder A et al (1996). Research. Midwives' knowledge of haemoglobinopathies. Modern Midwife 6(7):22-5. Dyson SM, Fielder AV et al. (1996). Midwives' and senior student midwives' knowledge

15

Page 16: genetic resource directory.doc

of haemaglobinopathies in England. Midwifery 12(1):23-30. Edgar DA (2004) Advances in genetics: implications for children, families and nurses. Paediatric Nursing 16(6):26-9. Engstrom JL et al (2005) Genetic Competencies Essential for Health Care Professionals in Primary Care. Journal of Midwifery & Women's Health 50(3):177-183 Fairgrieve S, Magnay D et al (1997) Maternal serum screening for Down's syndrome: A survey of midwives' views. Public Health {PUBLIC HEALTH}111(6):383-385. Feetham S et al (2002) Families and genetics: bridging the gap between knowledge and practice. Newborn and Infant Nursing Reviews 2(4):247-253. Forsman I (1994) Evolution of the nursing role in genetics. Journal of Obstetric Gynecologic and Neonatal Nursing 23(6):481-6. Gaff CK, Aittomaki et al (2001) Oncology nurse training in cancer genetics. J Med Genet 38(10):691-5. Gaff, CL (2005) Identifying clients who might benefit from genetic services and information. Nursing Standard 20(1):49-53.Grady PA, Collins FS (2003) Genetics and Nursing Science: Realizing the Potential. Nursing Research. 52(2):69. Haydon J (2005) Genetics: uphold the rights of all clients to informed decision-making and voluntary action. Nursing Standard 20(3):48-51. Hetteberg C, Prows CA (2004). A checklist to assist in the integration of genetics into nursing curricula. Nursing Outlook 52 (2): 85-8. Horner SD (2004) A genetics course for advanced clinical nursing practice. Clinical Nurse Specialist 18(4):194-9. Horner SD et al (2004) Using theory to guide the diffusion of genetics content in nursing curricula. Nursing Outlook 52(2):80-4. Jenkins J (2002) Genetics competency: new directions for nursing. AACN Clinical Issues: Advanced Practice in Acute and Critical Care 13(4):486. Jenkins JF (2000) An historical perspective on genetic care. Online J Issues Nurs 5(3):1. Jenkins JF, Dimond E et al (2001) Preparing for the future through genetics nurse education. Journal of Nursing Scholarship 33(2): 191-195. Jenkins JF, Prows C et al (2001) Recommendations for educating nurses in genetics. Journal of Professional Nursing 17(6):283-290. Khalid L, Price SM, Barrow M (1994) The attitudes of midwives to maternal serum screening for Down’s syndrome. Public Health 108(2):131-6. Kirk M (1999) Preparing for the future: the status of genetics education in diploma-level training courses for nurses in the UK ." Nurse Education Today 19(2):107-15. Kirk M (2000) Genetics, ethics and education: considering the issues for nurses and midwives. Nursing Ethics 7(3):215-26. Kirk M (2004) Guest editorial. Nursing through the genetics lens: convergent thinking on education and professional development." Nurse Education Today 24(1):1-3. Kirk M (2005) Introduction to the genetics series. Nursing Standard 20(1):48.Kirk M (2005) The role of genetic factors in maintaining health. Nursing Standard 20 (4):50-54.Kirk M, McDonald K (2004) Developing a framework for genetics in cancer nursing. Cancer Nursing Practice 3(8):20-24.

16

Page 17: genetic resource directory.doc

Kirk M, McDonald K et al. (2003) Fit for practice in the genetics era. A competence based education framework for nurses, midwives and health visitors. ReportLashley FR (2000) Genetics in nursing education. Nurs Clin North Am 35(3):795-805. Lashley FR (2001) Genetics and nursing: the interface in education, research, and practice. Biol Res Nurs 3(1):13-23. Lea DH (2002) Position statement: integrating genetics competencies into baccalaureate and advanced nursing education." Nursing outlook 50(4):167. Lea DH, Anderson G et al. (1998). A multiplicity of roles for genetic nursing: building toward holistic practice. Holistic Nurs Pract 12 (3):77-87. Lea DH, Tinley ST (1998). Genetics in the OR--implications for perioperative nursing practice. Aorn J 67(6): 1175-80, 1183-6, 1189, passim. Lewis JA, CalzoneKM, Jenkins J ( 2006) Essential nursing competencies and curricula guidelines for genetics and genomics. MCN: The American Journal of Maternal/Child Nursing 31(3): 146-55. Loud J, Hutson S (2004) The art and science of cancer nursing in the genomic era. Seminars in Oncology Nursing 20(3):143-4. Metcalfe A, Burton H (2003) Post registration genetics education provision for nurses, midwives and health visitors in the UK. (Research to survey the amount of education about genetics, the professional expertise of those teaching it, and what influenced the inclusion of genetics in post registration courses. Journal of Advanced Nursing 44(4):350-9. Middleton A et al (2005) Tailoring genetic information and services to clients’ culture, knowledge and language level. Nursing Standard 20(2):52-56. Moyer, J.E. (2002) The APNG(c): a preliminary look at credentialing nurses through portfolio review... Advanced Practice Nurses in Genetics credential. Newborn and Infant Nursing Reviews 2(4):254-258 Nicol MJ (2002) The teaching of genetics in New Zealand undergraduate nursing programmes. Nurse Education Today 22:401-408. Nicol MJ (2003) Genetics and nursing: preparing for future health care development. Nursing Praxis in New Zealand 19(2):27-40. Pestka E and Brown J (2004). Genomics education for nurses in practice. Journal for Nurses in Staff Development 20(3):145-9. Pestka E. (2003). "Genomics offers opportunities for nurses." Journal of Continuing Education in Nursing 34(5):195. Peterson SK, Rieger PT et al (2001) Oncology nurses' knowledge, practice, and educational needs regarding cancer genetics. American Journal of Medical Genetics 98(1):3-12. Pfeil M and Luo CM (2005) Genetics knowledge for nurses: necessity or luxury? British Journal of Nursing 14(21):1128. Prows C, Hetteberg C et al (2003) Outcomes of a genetics education program for nursing faculty. Nurs Educ Perspect 24(2): 81-5. Prows CA, Hetteberg C et al (2004) Development of a Web-based genetics institute for a nursing audience. Journal of Continuing Education in Nursing 35(5):223-31Rieger PT, Tinley ST (2000). Cancer genetics and nursing practice: what every gastroenterology nurse needs to know. Gastroenterol Nurs 23(1):28-39. Schumacher G. et al (2006) Pedigree analysis: One teaching strategy to incorporate

17

Page 18: genetic resource directory.doc

genetics into a full FNP program Nurse Education in Practice 6(3):169-174Skirton H and Patch C (2000) The new genetics and nursing: what does it have to do with me? Nursing Standard 14(19):42-46. Skirton H, Barnes C (2005) Obtaining and communicating information about genetics. Nursing Standard 20, 7, 50-53.Smith DK, Shaw RW et al. (1995) Training obstetricians and midwives to present screening tests: evaluation of two brief interventions. Prenatal diagnosis 15(4):317-24. Smyth M, Bach J (1992) Synthesis of genetics into community-based nursing practice. Issues Compr Pediatr Nurs 15(4):219-37. Swank CO, Christianson CA et al (2001) Effectiveness of a genetics self-instructional module for nurses involved in egg donor screening. JOGNN Journal of Obstetric Gynecologic and Neonatal Nursing 30(6) 617-25. Trossman S (2006) Issues update. It's in the genes: the ANA and nurse leaders want RNs and students to practice with genetics and genomics in mind. American Journal of Nursing 106(2):74. Van Riper M (2006) Family Nursing in the Era of Genomic Health Care - We Should Be Doing So Much More! Journal of Family Nursing 12(2):111-118.Westwood G, Pickering RM et al (2006) Feasibility and acceptability of providing nurse counsellor genetics clinics in primary care. Journal of Advanced Nursing 53(5):591-604.Yeomans A, Kirk M (2004). Genetics for beginners. Nursing Standard 18(40):14-7. Zamerowski ST (2000) A model for integrating genetics into nursing education. Nursing and Health Care Perspectives 21(6): 298-304.

ISONG, the International Society of Nurses in Genetics Information on mission, membership, funding opportunities, and position statements (www.isong.org/)

ISONG Vision StatementISONG, the International Society of Nurses in Genetics, is a global nursing specialty

organization dedicated to fostering the scientific and professional growth of nurses in human genetics and genomics worldwide.

The ISONG vision is: Caring for people's genetic and genomic health.

Mission StatementTo foster the scientific, professional, and personal development of members in the

management of genomic information. Genetics Nursing Credentialing Commission

Membership CategoriesFULL MEMBERSHIP ($100)

Full membership shall be extended to any professional nurse, licensed to practice nursing, who is interested in fostering the goals of the Society and who has paid dues in

18

Page 19: genetic resource directory.doc

full to the Society. Full members may attend all meetings of members, vote, hold office, serve on the Board of Directors or as Chairperson of a committee, be a committee member, and receive privileges of membership.

STUDENT MEMBERSHIP ($75)Student membership shall be extended to any full time student who is enrolled in nursing, genetics or a related field of study. Student members shall have all the privileges of affiliate membership.

RETIRED MEMBERSHIP ($75)Retired membership shall be extended to any full or affiliate member who has retired from employment. Retired members have all of the rights and privileges of their immediately preceding membership category (or category for which they would qualify prior to retirement) and shall receive a reduction in the annual dues as established by the Board of Directors.

AFFILIATE MEMBERSHIP ($75)Affiliate membership shall be extended to any person who is not eligible for full or student membership, but who is interested in fostering the goals of the Society. Affiliate members have all privileges of full membership except they may not vote, hold office, serve on the Board of Directors, as a Chairperson of a committee, or as a member of the Nominating Committee.

ISONG CONTACT:International Society of Nurses in Genetics, Inc.

461 Cochran Road, Box 246Pittsburgh, PA 15228Phone: 412-344-1414 Fax: 412-344-0599

Beth Kassalen, Executive Director Email: [email protected]

ISONG Membership ApplicationName: _____________________________ Degrees/Certifications: _________E-Mail Address: __________Home address:Street: _______________________________________City: ________________State/Province:____________Postal Code: _____________ Country: ____________Phone Number: _______________________________Work address:Hospital/Company: ____________________________Position: _________________Dept/Div: ________________________Bldg/Room: ______________Street:__________________________City: ______________State/Province: _____Postal Code:_____ Country: _____Phone Number: _______________Fax Number:__________________________

Membership Dues Payment in U.S. Funds Only

ISONG Membership is good for one year, beginning the month that you joined. Renewal information will be sent one month prior to your renewal date.

❑ Full member $100 ❑ Student* $75

❑ Retired member $75 Institution/program:

19

Page 20: genetic resource directory.doc

❑ Affiliate member $75 ______________________*Student members must include proof of full time status (e.g. aletter from a faculty advisor or copy of current registration ID.)

❑ Check ❑ VISA ❑ MasterCard# ___________________________ Expiry _________Cardholder Signature: __________________________

Add CVV or CID ❑❑❑ (Please enter the three digit number from the back of your card

immediately following your account number.) This number is required to process a card whichis not physically present at ISONG headquarters.

ISONG, the International Society of Nurses in Genetics, is a nursing specialty organization dedicated to fostering the scientific and professional growth of nurses in human genetics.

The ISONG vision is: Caring for people’s genetic health.The ISONG mission is: To foster the scientific, professional, andpersonal development of members in the management of geneticinformation.The ISONG goals are:• Provide a forum for education and support for nursesproviding genetic healthcare.• Promote the integration of thenursing process into the deliveryof genetic healthcare services.• Encourage the incorporation of the principles of human genetics into all levels of

nursing education.• Promote the development of standards of practice for nurses in human genetics.• Advance nursing research in human genetics.• Provide a forum for dialogue with others.Please send me information on the following committees:

❑ Awards Committee This committee solicits and reviews nominations for established ISONGawards which are presented at the annual meetings.

❑ Bylaws Committee This committee considers and recommends changes or amendments tothe Articles of Incorporation and Bylaws.

❑ Education Committee This committee promotes the education goals of the Society, and assembles and maintains education resources for both the Society and other groups.

❑ Ethical Issues and Public Policy Committee This committee evaluates scientificand political changes which require a response by the Society. It also recommends and establishes criteria

which reflect the Vision, Mission and Goals of the Society.

❑ Liaison Committee This committee is responsible for interacting with genetic, nursing and other health care or public organizations.

❑ Membership Committee This committee establishes criteria for eligibility, reviews all membership applications, and formulates and recommends plans for increasing and maintaining membership. This committee also prints and distributes an annual directory.

❑ Communications Committee This committee is responsible for compiling and publishing newsletters for the membership.

❑ Nominating Committee This committee selects nominees for office, distributes ballots and manages voting as described in the Articles of Incorporation and Bylaws.

❑ Professional Practice Committee This committee is instrumental in supporting efforts, developing and evaluating the scope and standards of practice, credentialing, and ongoing genetics nursing practice issues.

❑ Program Committee This committee provides the Society with an annual education program, initiates and participates in obtaining financing for the program, and obtains continuing

education credits for the annual program.

❑ Research Committee This committee fosters research activities in nursing, genetics, and related areas to enhance professional and personal development of members, consistent with the Vision, Mission and Goals of the Society.

20

Page 21: genetic resource directory.doc

Do you wish to subscribe to the ISONG listserv? ❑ Yes ❑ NoI would like to join the following Special Interest Group (SIG):

❑ Newborn Screening ❑ Pediatrics/Newborn GeneticsList other SIGs you are interested in should they become available:_______________________________________________________________________________________

Funding Opportunities in Genetics (listed by ISONG)

ISONG grants (www.isong.org/index.cfm)

DOE Office of Health and Environmental Reasearch (OHER)

Human Genome Program

Contact for funding information or general inquiries: [email protected] or 301-903-6488

NIH National Human Genome Research Institute(NHGRI)

Program announcements are listed in NIH Guide for Grants and Contracts (http://www.nih.gov)

NHGRI Grants Management Officer: [email protected]

NIH National Institute of Nursing Research (NINR)

The extramural program of NINR provides funds for research and research training activities in a variety of public and private, profit and nonprofit organizations, including universities, hospitals, and research centers across the country. All applications receive dual review for scientific merit and program relevance by panels of experts. Awards are made on a competitive basis to institutions on behalf of a principal investigator, except for training fellowships which are made to individuals. Extramural research affairs consists of three areas: extramural research programs, review and grants management. The Director is:

o Dr. Lynn M. Amende, Director of Extramural Research, [email protected] phone: 301-594-5968

NIH National Cancer Institute (NCI)

Small Business Innovation Research (SBIR) Grants

DOE and NIH invite small business firms (less than 500 employees) to submit grant applications addressing the human genome topic of SBIR programs. The two

21

Page 22: genetic resource directory.doc

agencies also support the Small Business Technology Transfer (STTR) program to foster transfers between research institutions and small businesses. Contacts:

Kay Etzler; c/o SBIR Program Manager, ER-16; DOE; Washington D.C. 20585 (301-903-5867 FAX: -5488)

Bettie Graham NIH SBIR due April 15, August 15 and December 15. STTR, December 1

National SBIR/STTR conferences: Washington D.C. (Oct. 28-30, 1996); Anaheim, CA (Nov 13-15, 1996). Conference hotline: 407-791-0720; electronic registration: 203-379-9427

Another resource: The Sparks Page

Grants & Internet info from Dr.Susan Sparks, RN, PhD, FAAN, Extramural Programs, National Library of Medicine.E-mail: [email protected]

The National Tuberous Sclerosis Association

The National Tuberous Sclerosis Association invites applications for awards at three different levels. The NTSA strives to stimulate and support research on all aspects of the tuberous sclerosis complex. Priority will be given to studies that will directly impact the understanding of the mechanisms of disease and/or clinical care of individuals with tuberous sclerosis. For further information, contact: Dr Vicky Holets Whittemore, Vice President for Medical & Scientific Affairs, National Tuberous Sclerosis Association, 8181 Professional Place, Suite 110, Landover, MD 20785-2226, Phone 1-800-225-6872

ISONG Position Statements

ISONG Position Statement: Provision of Quality Genetic Services and Care: Building a Multidisciplinary, Collaborative Approach among Genetic Nurses and Genetic Counselors

Approved: November 1, 2006

BackgroundThe National Society of Genetic Counselors (NSGC) and the International Society

of Nurses in Genetics (ISONG) are two genetics professional organizations that strive to address the needs of their members in providing genetic services within the healthcare system. Both organizations work toward improving appropriate access to quality genetic services for the benefit of individuals, families and communities affected with and/or at risk for genetic conditions 1, 2.

22

Page 23: genetic resource directory.doc

Genetic counselors are health professionals with specialized education, training and experience in medical genetics and counseling who help people understand and adapt to the implications of genetic contributions to disease 3, 4. Genetic nurses have specialized education and training in genetics in addition to generic training in healthcare practice with the goal of caring for people's genetic and genomic health 5. Genetic counselors and genetic nurses are accustomed to working as members of multidisciplinary healthcare teams 1, 6. There is a need for close collaboration between NSGC and ISONG in order to meet the needs of individuals, families, and communities as genetics and genomic medicine become more integral to all of healthcare.

It is the position of ISONG and NSGC that both organizations will, together, promote a multidisciplinary and collaborative approach to enhance the quality of genetic services and care by:

respecting and valuing the knowledge, perspectives, contributions, and areas of competence of colleagues and collaborating with them to provide the highest quality of services;

advocating for genetic counseling services to be provided by appropriately trained, qualified, and competent genetics professionals to protect the public;

collaborating with multidisciplinary research teams to develop effective, high-quality, evidence-based approaches to genetic services including prevention, screening, diagnostics, prognostics, selection of treatment, monitoring of treatment effectiveness, and in providing psychosocial support;

educating health care professionals, insurers, educators, legislators, public health officials, colleagues, and the public regarding the expanding role of genetics and genomics as integral components in the promotion of the public's health and well-being.

SummaryThe National Society of Genetic Counselors and the International Society of Nurses in Genetics, Inc. recognize that the central focus of each of their practices is to support their members in providing the highest quality, evidence-based genetic services and care to individuals, families and communities. Toward that common aim, both organizations will embrace opportunities to collaborate in research, education, and the provision of multidisciplinary care including collaboration with other healthcare providers, insurers, public health officials, legislators, international colleagues, and the public.

References:

1. National Society of Genetic Counselors (1991) Position Statement: Access to Care. http://www.nsgc.org/about/position.cfm#Access

2. International Society of Nurses in Genetics (2003). Position Statement: Access to Genomic Healthcare: The Role of Nursing. www.isong.org.

3. National Society of Genetic Counselors (2006). FAQs about Genetic Counselors and the NSGC. www.nsgc.org/about/faq.cfm

4. A New Definition of Genetic Counseling: National Society of Genetic Counselors' Task Force Report Journal of Genetic Counseling April 2006, p. 77-82

23

Page 24: genetic resource directory.doc

5. International Society of Nurses in Genetics (2006). Mission Statement. www.isong.org

6. International Society of Nurses in Genetics, Inc. (1998). Statement on the Scope and Standards of Genetics Clinical Nursing Practice. Washington, D.C.: American Nurses Association.

7. Jenkins, J., Calzone, K., Lea, D. & Prows, C. (2005). Essential Nursing Competencies and Curricula Guidelines for Genetics and Genomics

Posted on 11/7/06

ISONG Position Statement: Informed Decision-Making and Consent: The Role of Nursing

Approved: September 30, 2000Revision approved 4 April, 2005

BackgroundBrief Statement of Need/Importance

Genetic testing can now be used for screening, diagnosis, management, treatment or health and reproductive decision-making. The benefits of genetic testing range from early detection for treatable disorders to prevention by health planning before the onset of symptoms for those who are at risk for a genetic disorder. Genetic testing should be carried out within the context of voluntariness, informed consent and confidentiality. Nurses, as the omnipresent health care provider, have a central role in providing information and support to clients in the multiphase processes of genetic testing. With genetics knowledge, nurses can advocate, educate, counsel and support clients during the informed decision-making and consent process.

It is the Position of ISONG that:

Professional nurses are responsible for alerting clients about their right for an informed decision- making and consent process before genetic testing.

Professional nurses should advocate for client autonomy, privacy, and confidentiality in the informed decision-making and consent process.

Professional nurses should ensure that the informed decision-making and consent process includes discussion of benefits and risks including the potential psychological and societal injury by stigmatization, discrimination, and emotional stress, in addition to, if any, potential physical harm.

Professional nurses should be aware of the criteria that delineate research versus clinical uses of genetic tests, and advise clients of the status of a specific test.

Professional nurses who have an established relationship and are providing ongoing care to a client contemplating genetic testing should augment the informed decision-making and consent process by assisting the client in the context of the client's specific circumstances of family, culture, and community life.

24

Page 25: genetic resource directory.doc

Professional nurses should integrate into their practice the guidelines for practice (e.g. informed consent, privacy and confidentiality, truth telling and disclosure, and non-discrimination) identified by the American Nurses Association. " Advance practice nurses in preparation for providing genetic services should receive appropriate education that includes knowledge of the implications and complexities of genetic testing, ability to interpret results, and knowledge of the ethical, legal, social, and psychological consequences of genetic testing.

Health care professionals should collaborate to maximize the potential for the client to make an informed decision.

BackgroundISONG supports an interactive process with an emphasis on the informed decision-making authority of the client to choose either to accept or reject genetic testing. Pivotal to accomplishing this process is a dialogue between the client and the providers in a joint endeavor to facilitate informed decision making and consent. This educational and informative dialogue should occur at the level of language and comprehension of the competent client. Nurses should encourage clients to seek information and identify concerns before giving informed consent. The nursing process can be universally utilized to assist clients contemplating any type of genetic testing and to ascertain whether essential elements of informed consent are present in the decision making process.

References:

1. American Nurses Association (2001). Code of Ethics for Nurses with Interpretive Statements. Washington, DC: Author. International Society of Nurses in Genetics (ISONG) (January 27, 2000). ISONG Testimony to Secretary's Advisory Committee on Genetic Testing (SACGT).

2. International Society of Nurses in Genetics (in press). Statement on the Scope and Standards of Genetics Nursing Practice. Washington, DC: American Nurses Association.

ISONG Position Statement: Access to Genomic Healthcare: The Role of the Nurse

Approved: September 9, 2003

BackgroundSince the onset of the Human Genome Research Project in 1990 the pace has

accelerated in the discovery of clinical applications of genetic science. These applications have transformed the way patients, healthcare providers, and healthcare insurers define health and wellbeing. With a new paradigm for health and wellbeing comes a new conceptualization of healthcare services that includes consideration for the impact of genetics on disease etiology, predisposition, incidence, treatment and treatment outcomes. As a result of rapid technological advances, evolving healthcare needs and a growing interest among the public there is and will continue to be an increasing number of people requiring genetic healthcare services.

25

Page 26: genetic resource directory.doc

Guttmacher and Collins (1) propose a broader definition of genomic healthcare to include the study of the functions and interactions of all the genes in the human genome, including their interactions with environmental factors. There is, however, a significant lag in the time it takes to move knowledge-to-practice and to apply scientific advances within the healthcare setting. A large portion of this delay is justifiable and may be attributed to dissemination of information about genetic advances to health care professionals. As a consequence there is inconsistent and irregular availability of genetic healthcare services as they become clinically valuable to the public. At present there are three essential elements of genetic healthcare: infrastructure necessary to provide genomic healthcare, information required by healthcare providers and consumers to appropriately offer or act upon genomic information, and uniform allocation of genomics within healthcare services throughout the United States (2). Laboratory and clinical researchers will continue to identify more applications for this genetic science. Significant funding will be required to realize these three basic elements in the provision of genomic healthcare.

The Institute of Medicine identified assessment of health and health behaviors; policy development to inform, educate and empower; and assurance of appropriate integration of genomics into healthcare services as the three core functions of public health (3). All three of these functions must be immediately and expeditiously addressed in relation to genomic healthcare for every person.

With appropriate planning, funding and allocation of resources, barriers to the integration of and access to genomic healthcare services can be overcome. Some facilitators to realization are: federal and state legislative protection from discrimination, appropriate insurance coverage, consistent and proper diagnostic and billing codes, and availability of services without regard to socioeconomic status, geographic location, ethno-cultural beliefs, or genetic literacy (4).

Nurses in all practice settings will be addressing patients’ genetic healthcare concerns. They will require knowledge of genetic evaluation and treatment services and must participate at the level of policy and program development. Nurses share with other healthcare professionals the responsibility to ensure equal access to genetic information and genomic healthcare services.

Access to Genetic Healthcare: The Role of the NurseThe Codes of Ethics for Nurses developed by the International Council of Nurses

(5) and the American Nurses Association (6) state that nurses have a shared responsibility with other health professionals and society to ensure initiation and promotion of community, national, and international efforts to meet the health and social needs of the public. This includes the right to seek and receive genomic healthcare that is nondiscriminatory, confidential, private and ensures the opportunity for nondirective informed decision-making. As providers in all practice settings, nurses must advocate for and fulfill a central role in the assessment, policy development and assurance of universal access to genomic healthcare by all populations regardless of genetic literacy, socioeconomic or ethno-cultural background.

The International Society of Nurses in Genetics, Inc. (ISONG) recognizes the application of genetic nursing practice at both the basic and advance practice levels (7). It is the focus of this

26

Page 27: genetic resource directory.doc

practice to provide nursing care to all individuals, families or communities with, or at risk for, a genetic disorder or disease resulting from a genetic susceptibility. The genetics nurse fulfills this responsibility by the identification of genetic risk factors, nursing interventions, information, services, referrals or promotion of health behaviors to enhance the health and well being of the individual or family seeking care. The advanced practice genetic nurse further fulfills this responsibility through the provision of genetic counseling and case management for those with, or at risk for, a disease, resulting from a genetic susceptibility.

To fulfill the right of the public to access genomic healthcare without fear of discrimination, the basic and advanced practice genetic nurse’s responsibility extends to the development of partnerships with other stakeholders such as patients, healthcare providers, insurers, government officials, and legislators.

These partnerships should:

Ensure the right of all seeking care to the opportunity to participate in the process of informed decision making (8).

Mandate the management of genetic information so as to adhere to and fulfill the principles of confidentiality and privacy (10).

Ensure the protection of vulnerable populations in order to promote and safeguard their participation in healthcare (10).

Eliminate discriminatory insurance practices based on the outcome of genetic testing and/or evaluation of one’s genetic history.

Identify and adopt diagnosis and reimbursement to be used for genetic tests, genetic education, genetic counseling and management of genetic conditions.

Promote the timely validation and approval of new genetic tests to ensure reimbursement for expenses incurred while providing services.

Create opportunities whereby nurses from diverse backgrounds will receive genetic training to enhance culturally appropriate genetic health services.

It is the position of ISONG that professional nurses will:

Recognize and acknowledge the role of genomics as an integral component in the promotion of the public’s health and wellbeing.

Advocate and promote the right of the individual or family to voluntarily choose or to not choose to seek genomic healthcare services.

Evaluate and support legislation that provides protection from health insurance and employment discrimination at the state and federal levels.

Identify and seek solutions to the elimination of barriers to accessing genetic healthcare.

Advocate equal access to genomic healthcare. Implement continuing higher genetic education programs in genetics for nurses

to improve and maintain their genetic science knowledge base. Establish and evaluate practice settings for provision of genetic counseling,

genetic education, or other genetic healthcare services to meet the needs of the patient population.

27

Page 28: genetic resource directory.doc

Integrate into clinical practice genetic research findings that promote the health and well being of individuals and families.

Participate in strategic planning that creates partnerships for the delivery of genomic healthcare within and between the public and private sectors.

Conduct or participate in research studies that attempt to describe and explain the interactions of genetic susceptibility and environmental factors.

Educate the public about genetic healthcare and genetic healthcare services using school-based and community-based educational programs.

Participate in and endorse the need for evidence-based research by nurses.

References:1. Guttmacher, A. E. & Collins, F. S. (2002). Genomic medicine: A primer. New

England Journal of Medicine, 347, 1512-1520. 2. Baker, T. (1998). Genetics and public health: Need for information, integration

and infrastructure. Genomics and Disease Prevention, Centers for Disease Prevention. http://www.cdc.gov/genomics/infor/reports/program/baker.html

3. Institute of Medicine. (1988). The Future of Public Health. Washington, D.C.: National Academy Press.

4. Jane Lin-Fu and Michele Lloyd-Puryear, "Access to Genetic Services in the United States: A Challenge to Genetics in Public Health", Genetics and Public Health in the 21st Century: Using Genetic Information to Improve Health and Prevent Disease, Oxford University Press, 2000.

5. International Council of Nurses. (2000). The ICN Code of Ethics for Nurses. Geneva, Switzerland: Author.

6. American Nurses Association. (2001). Code of Ethics for Nurses with Interpretive Statements. Kansas City, Missouri: Author.

7. International Society of Nurses in Genetics, Inc. (1998). Statement on the scope and standards of genetics clinical nursing practice. Washington, D.C.: American Nurses Association.

8. International Society of Nurses in Genetics. (Winter 2002). Position statement: Privacy and confidentiality of genetic information: The role of the nurse. International Society of Nurses in Genetics Newsletter, 13 (1), Insert.

9. International Society of Nurses in Genetics, Inc. (Winter 2000). Position Statement: Informed decision-making and consent: The role of nursing. International Society of Nurses in Genetics Newsletter, 11 (3), 7-8.

10. International Society of Nurses in Genetics. (Winter 2002). Position statement: Genetic counseling for vulnerable populations: The role of nursing. International Society of Nurses in Genetics Newsletter, 14 (1), Insert.

ISONG Position Statement: Privacy and Confidentiality of Genetic Information: The Role of the Nurse

Approved: August 8, 2005

Brief Statement of Need/Importance

28

Page 29: genetic resource directory.doc

Genetic information refers to any information about a person that identifies inherited traits or characteristics, or genetic alterations that are acquired during a person's lifetime. An increasing amount of genetic information about individuals is becoming available because of genetic advances. While this information has the potential to provide health benefits, it may also increase risk of harm. Of major concern is the potential for misuse of genetic information resulting in any kind of discrimination or stigmatization. Assuring privacy and confidentiality of genetic information demands continued vigilance on the part of all nurses as genetic technologies and discoveries are translated into clinical application and practice.

It is the position of ISONG that a professional nurse should:

Safeguard a client's right to privacy; Adopt into her or his practice, guidelines for ethical practice, identified by the

American Nurses Association (1) or the professional codes of conduct pertaining to their own countries regarding privacy and confidentiality, informed consent, truth telling and disclosure, and non-discrimination;

Become familiar with legislation in their own state or country with regard to the nurse/client relationship, confidentiality of medical information and privileged status;

Obtain and make a record of a client or their designee's consent prior to releasing genetic information to any third party;

Understand that family culture, values, traditions, and relationships influence the sharing of genetic information;

Recognize that each individual in the family is autonomous with respect to genetic matters that may be compromised by the decisions of other family members;

Collaborate with all other health professionals to assure that clients receive the highest level of genetic health care by:

1. Advocating for the creation of practice guidelines that assure privacy and confidentiality of genetic information.

2. Keeping informed regarding legal and ethical issues associated with the use of tissue samples in genetic research.

3. Educating clients and the public about the various ways in which: a) abandoned tissues and cells might be used as a source of genetic information and; b) genetic information might be used (positively or negatively) by employers or insurance companies.

4. Becoming aware of the potential for stigmatization and discrimination as a consequence of linking genetic information with ethnicity, race, gender, or other social variables.

5. Advocating for policies and practices to ensure freedom from unfair discrimination arising from the use of such genetic information.

In addition to the above, it is the position of ISONG that nurses who are prepared at an advanced level be able to integrate knowledge of privacy and confidentiality issues and psychological consequences of the use of genetic information into health care practice.

29

Page 30: genetic resource directory.doc

References:

1. American Nurses Association (2001). Code of ethics for nurses with interpretive statements. Kansas City, Missouri: Author.

2. International Society of Nurses in Genetics, Inc. (1998). Statement on the scope and standards of genetics clinical nursing practice. Washington, D.C.: American Nurses Association.

3. International Society of Nurses in Genetics, Inc. (Winter 2000). Position Statement: Informed decision-making and consent: The role of nursing. International Society of Nurses in Genetics letter, 11 (3), 7-8.

4. National Coalition for Health Professional Education in Genetics (2001). Committee Report: Recommendations of core competencies in genetics essential for all health professionals. Genetics in Medicine, 3(2), 155-158.

5. Scanlon, C. & Fibison, W. (1995). Managing Genetic Information: Implications for Nursing Practice. American Nurses Association: Washington, D.C.

6. Secretary's Advisory Committee on Genetic Testing (2000). A public consultation on oversight of genetic tests. Bethesda, MD: National Institutes of Health

Acknowledgements:This document was drafted by the ISONG Ethics & Social Policy Committee, Chaired by Dale Halsey Lea, RN, MPH, CGC, APNG(c), FAAN. The document, initially approved on October 9, 2001 was amended and approved by the ISONG Board of Directors on August 8, 2005. The views expressed are those of the board and committee and do not necessarily represent the views or judgment of any individual member.

ISONG Position Statement: Genetic Counseling for Vulnerable Populations: The Role of Nursing

Approved: October 10, 2002

BackgroundThe explosion of genetic discoveries resulting from human genome research is

creating new medical and nursing practice roles and expanding health opportunities for clients worldwide. As a result, clients are increasingly seeking genetic information and counseling services. Nurses will use counseling and case management skills to assist clients in this new era of genomic-based health care.

Optimum ways to provide genetic counseling is needed to address all clients’ genomic-based health care needs. This is especially important for vulnerable populations. Several Position Statements provide guidelines for genetic counseling and testing of children as a vulnerable population (ASHG, 1995; WHO, 1997). The International Society of Nurses in Genetics, Inc. (ISONG), supports a broader interpretation of vulnerable populations to include: children, individuals with hearing and language deficits or conditions limiting communication (for example, language differences and concerns with reliable translation), cognitive impairment, psychiatric disturbances, persons from minority populations, clients undergoing stress due to a

30

Page 31: genetic resource directory.doc

family situation, those without financial resources; clients with acute or chronic illness and in end-of-life, and those in whom medication may impair reasoning.

Traditional genetic counseling strategies focus heavily on the exchange of factual information, a model that may reveal cognitive differences between counselor and client. Standard of practice for providing genetic information is based on the average person’s needs, modified by the individual’s needs or desires, as determined through discussion. The intended result is informed decision-making and a change in knowledge and/or behavior (Finucane, 1998). Issues of concern to vulnerable clients are likely to be similar to those of other clients; however the process may differ. When considering genetic counseling with vulnerable populations, outcomes such as satisfaction of the need for certainty and satisfactory achievement in the client’s psychological adaptation to the genetic condition/issue in the family are more appropriately considered and tailored to each specific client situation (Skirton, 2001).

Genetic counseling is only effective to the extent that it addresses issues of interest and concern to the person being counseled (Wolff and Jung, 1995). For vulnerable populations genetic counseling using a focused discussion is more appropriate to address specific, concrete situations related to the clients’ issues of interest. When providing genetic counseling to a vulnerable client it is preferable to explore a single client-centered need or concern than to complete an agenda of standard activities that may have little meaning to the client. For example, a detailed discussion of probability concepts and comparative risks may not be useful for the client with cognitive impairment, chronic pain or side effects from medications. A vulnerable client may not necessarily comprehend the concept of probability or the intricacies of DNA analysis that would lead to competent understanding of the implications of the genetic condition. Still, this client may be able to make informed decisions about gene-based diagnostics and/or therapeutics.

Nurses in all practice settings care for vulnerable clients and populations with genetic-related health concerns, and share with other team members the responsibility to ensure that optimum and appropriate genetic counseling is made available. This can be accomplished through nursing participation in the genetic counseling process, wherein counseling methods and outcomes have been tailored to most directly and efficiently address client-centered goals of persons from vulnerable populations.

Genetic Counseling of Vulnerable Populations: The Role of NursingThe International Code of Ethics for Nurses (ICN, 2000) states that all nurses

ensure that the individual receives sufficient information on which to base consent for care and related treatment. This includes the right to be given accurate, complete and understandable information in a manner that facilitates an informed judgment; to be assisted with weighing the benefits, burdens, and available options in their treatment, including the choice not to pursue treatment (ANA, 2001). Nursing support of this right includes the opportunity for the individual to make decisions together with family and significant others and access to advice and support from knowledgeable nurses and other health professionals. Nursing responsibility may extend, with the client’s consent, to communication with other health or social care professionals on behalf of or in conjunction with the client, to ensure that the client’s needs are met. The ICN Code of Ethics for Nurses further addresses the nurse’s responsibility (shared with society) for

31

Page 32: genetic resource directory.doc

initiating and supporting action to meet the health and social needs of the public, including those of vulnerable populations. In particular, as advocates and caregivers of vulnerable clients, nurses promote provision of genetic counseling with a focus on genetic issues of concern to the client and that includes family and/or legal guardian when needed.

Nurses in all practice settings have a role in delivery of genetics services to vulnerable populations. The International Society of Nurses in Genetics, Inc. (ISONG) recognizes in genetics nursing practice, the focus of is on providing nursing care to all clients who have a known genetic condition, who are at risk to develop a genetic condition, or have children with genetic conditions. Comprehensive genetics nursing practice involves interpersonal relationships between the client and nurse. It is a dynamic process that involves interdisciplinary collaboration with genetics professionals and other health care professionals in order to serve the shared mission of assisting clients, including vulnerable clients, in reaching their self-defined outcomes. The genetics nurse identifies expected outcomes that are individualized to the client. Expected outcomes are formulated by the nurse and client together, and are realistic in relation to the client’s present and potential capabilities and interests.

At the basic practice level, nurses advocate for the vulnerable client by facilitating access to genetics resources; and providing or reinforcing information about a genetic condition/concern. At this level, nurses advocate for and support vulnerable clients by ensuring that they have access to genetic counseling services that meet the clients’ desired outcomes. At the advanced practice level and with expanded skills, nurses themselves provide genetic counseling to vulnerable clients. This includes:

Assessing vulnerable clients’ physical, cognitive and developmental levels and expressed interest in genetic information.

Identifying outcomes that are appropriate to the client’s goals, selecting interventions, including genetic counseling to achieve these outcomes.

Evaluating outcomes of the care in collaboration with the client and a multidisciplinary team.

Participating and/or conducting nursing research in genetic services.

It is the position of ISONG that professional nurses will:

Incorporate a broad definition of vulnerable populations receiving genetic counseling services to include: children; individuals without financial resources; conditions limiting communication including language differences and concerns with translation from one language to another, cognitive impairment, persons with psychiatric disturbances; people at end of life, and persons from minority populations.

Evaluate the extent to which stress from family situations, acute or chronic illness, and medications may contribute to a client’s status as a member of a vulnerable population.

Advocate for optimum genetic counseling outcomes for vulnerable clients, including assuring that in situations when language differences are present

32

Page 33: genetic resource directory.doc

appropriate and reliable translation of genetic information is made available to the client.

Communicate, (after consultation with and consent of the client) with other health and social care professionals on behalf of or in conjunction with the client to ensure that the client’s needs are met.

Adopt into practice, guidelines for ethical practice, as identified by the International Counsel of Nurses and the American Nurses Association, the patient’s right to self-determination, and the nurse’s responsibility to meet the health and social needs of vulnerable populations.

Understand that formation of a personalized relationship between the client and genetics staff significantly influences the central outcome of genetic counseling.

Recognize that important outcomes of genetic counseling for all clients include: 1. a client’s lay knowledge of a genetic condition, 2. satisfaction with the need for certainty, 3. determination of decisions regarding testing or management with respect

to a genetic condition or risk for a genetic condition, and 4. satisfactory achievement in the client’s psychological adaptation to the

genetic condition in the family. Incorporate into genetic counseling services for vulnerable populations, methods

to evaluate understanding in the client. Participate in and/or initiate research in nursing interventions including genetic

counseling strategies and methods and evaluation of such for vulnerable populations.

References:

1. Ad Hoc committee on Genetic Counseling (1975). Report to the American Society of Human Genetics. American Journal of Human Genetics, 27, 240-242.

2. American Nurses Association (2001). Code of ethics for nurses with interpretive statements. Kansas City, Missouri: Author.

3. American Society of Human Genetics (1995). ASHG/ACMG Report: Points to consider: Ethical, legal and psychosocial implications of genetic testing in children and adolescents. http://www.faseb.org/genetics/acmg/pol-13.htm

4. Skirton, H. (2001). The client’s perspective of genetic counseling – A grounded theory study. Journal of Genetic Counseling, 19 (4), 311-329.

5. Finucane, B. (1998). Working with women who have mental retardation: A genetic counselor’s guide. Elwyn, Pennsylvania: Elwyn, Inc.

6. International Council of Nurses (2000). The ICN code of ethics for nurses. Geneva, Switzerland: Author.

7. International Society of Nurses in Genetics, Inc. (1998). Statement on the scope and standards of genetics clinical nursing practice. Washington, D.C.: American Nurses Association.

8. International Society of Nurses in Genetics, Inc. (Winter 2000). Position Statement: Informed decision-making and consent: The role of nursing. International Society of Nurses in Genetics Newsletter, 11 (3), 7-8.

33

Page 34: genetic resource directory.doc

9. National Coalition for Health Professional Education in Genetics (2001). Committee Report: Recommendations of core competencies in genetics essential for all health professionals. Genetics in Medicine, 3(2), 155-158.

10.Veatch, R.M., & Fry, S.T. (1995). Case studies in nursing ethics. Boston, MA, Jones and Bartlett Publishers.

11.Wolff, G. and Jung, C. (1995). Nondirectiveness and genetic counseling. Journal of Genetic Counseling, 4, 3-25.

12.World Health Organization (Geneva, 15-16 December 1997). Proposed international guidelines on ethical issues in medical genetics and genetics services: Report of a WHO meeting on ethical issues in medical genetics. http://www.who.int/ncd/hgn/hgnethic.htm. Document Reference: WHO/HGN/GL/ETH/98.1, ENGLISH ONLY.

Standards of Practice

Statement on the Scope and Standards of Genetics Clinical Nursing Practice

By The International Society of Nurses in Genetics. Inc. and American Nurses Assn.

Contents:

IntroductionGenetics

Description of genetics NursingScope of Genetics Clinical Nursing Practice

Standards of CareIntroduction

Standard I. Assessment Standard II. DiagnosisStandard III. Outcome Identification Standard IV. PlanningStandard V. Implementation Standard Va. IdentificationStandard Vb. Health Teaching Standard Vc. Case CoordinationStandard Vd. Health Promotion and Health MaintenanceStandard Ve. Psychosocial Counseling Standard Vf. Genetic TherapeuticsStandard Vg. Genetic Counseling Standard Vh. Case ManagementStandard Vi. Consultation Standard VI. Evaluation

Standards of Profesiional Performance Standard I. Quality of careStandard II. Performance Appraisal Standard III. EducationStandard IV. Collegiality Standard V. Ethics Standard VI. CollaboationStandard VII. Resource Utilization Standard VIII. Research

References Glossary 1998. 42 pages. ANA Pub# 9807ST.

List Price$14.95 plus postageState Nurses Association Member Price $11.95 plus postage

To order call (800) 637-0323.

34

Page 35: genetic resource directory.doc

Academic Programs

Currently there are several master's or Nursing Doctorate programs available to nurses who wish to specialize in Genetics. Although nurses in the past have been eligible to sit for the Genetic Counselor Certification exam, eligibility now requires an MS in Genetic Counseling. ISONG currently offers a credential of Advanced Practice for nurses who have a nursing masters or doctorate with a genetics specialty.

Career Opportunities after graduation include: Prenatal/antenatal testing and screening centers; specialty clinics with high risk genetic populations across the lifespan and across nursing specialties i.e. Cystic Fibrosis Clinic, Huntington's Chorea, infertility centers, Genetic Centers as a Clinical Nurse Specialist, newborn screening programs with state health departments, and teaching at undergraduate or graduate levels in nursing education.

The programs are:

Columbia UniversityColumbia University School of Nursing 630 West 168th Street New York, NY 10032

Phone: (212) 305-5756 EMAIL: [email protected]

Columbia University School of Nursing (New York City) offers a subspecialty in Clinical Genetics in their Master’s Program. The three courses may be taken as sub-specialty of a Master's or Certificate Program or alone as a non-degree educational opportunity of the Center for Advanced Practice. Courses include Incorporating Genetics into Advanced Nursing Practice, Genetic Concentration for Advanced Practice Nursing, and Practicum in Genetics for Advanced Practice Nursing.

Information about this program is available at http://www.cumc.columbia.edu/dept/nursing/academics-programs/cg.html

University of Iowa

University of Iowa College of Nursing101 Nursing BuildingIowa City, IA 52242 Phone: (319) 335-7079EMAIL: [email protected]

The University of Iowa (Iowa City) offers an Advanced Practice Nursing in Genetics (APNG) curriculum in their MSN program. Beginning in the fall of 2005, two APNG courses will be offered online. Options for doctoral study and post-doctoral training in genetics are also available.

Information about this program is available at http://www.nursing.uiowa.edu/academprog/msn/curric.htm

University of San Francisco

35

Page 36: genetic resource directory.doc

University of California, San FranciscoDepartment of Physiological Nursing2 Koret Way, Suite N631 San Francisco, California 94143-0610Phone: (415) 476-0984 EMAIL: [email protected]

The Department of Physiological Nursing at the University of California, San Francisco (UCSF), is offering three dual specialty graduate programs in advanced practice nursing: cardiovascular/genomics, oncology/genomics, and gerontology/genomics. These master’s degree dual programs prepare advanced level experts, i.e., Clinical Nurse Specialists (CNS), to join multidisciplinary teams and provide evaluation, counseling and educational services in a wide variety of healthcare settings, such as hospitals or outpatient clinics.

The didactic component includes content on basic principles of human genetics, assessment, genetic approaches to prevention and treatment of disease, i.e., pharmacogenetics or gene therapy, ethical, legal, and social issues related to genetic testing and information, and genetics advanced nursing interventions (genetic counseling, case management, consultation, evaluation). Students will acquire genetic knowledge to identify, refer, support, and care for persons affected by or at risk for manifesting or transmitting genetic conditions such as, familial hypercholesterolemia or hypertrophic cardiomyopathy, familial breast or ovarian cancer, or Alzheimer’s disease. Focused clinical practicums include history taking and pedigree construction and a laboratory practicum on genetic methodologies, i.e., mutation detection, genotyping.

Clinical experiences for cardiovascular/genomics students include residencies in settings such as lipid clinics, where expertise in the diagnosis and management of patients with arteriosclerosis, emphasizing diagnosis and therapy determined at the genomic level is obtained. Oncology students learn to identify individuals who will benefit from screening for cancer risk, become familiar with the use of genetically targeted therapies, and develop the ability to educate patients, families, and nurse colleagues in newly emerging cancer genetics technologies. Gerontology clinical experiences provide training in optimal health planning and management of aging patients with genetic disorders. All three programs offer opportunities to participate in counseling and clinical research in the prevention, early detection, treatment, and long-term follow-up of individuals with genetic conditions. Doctoral studies in genomics are also available.

For specific program information, visit UCSF's Web site at http://nurseweb.ucsf.edu/www/genomic.htm

For an application, use UCSF’s web site to access an online form at http://nurseweb.ucsf.edu/from.htm or call 415-476-1435.

University of Pittsburg (PA)

Student Services Office 239 Victoria Building School of NursingUniversity of Pittsburgh Pittsburgh, PA 15261Phone: (412) 624-4586 EMAIL: [email protected]

36

Page 37: genetic resource directory.doc

The University of Pittsburg (PA) offers both Post-baccalaureate and Post-Master’s certificates in genetics. The 15- credit Post-baccalaureate certificate program is designed for Bachelor's Degree prepared individuals who are seeking focused, graduate-level education in the specialty of genetics. The curriculum consists of two courses taught through the School of Nursing (Introduction to Genetics and Molecular Therapeutics and Advanced Topics in Human Genetics) and three courses taught through other departments in the Schools of the Health Sciences (selected to meet the student's career goals or interests). The 15-credit Post-master’s certificate is designed for the health care worker with a Master's Degree who is seeking a focus in Genetics.

Information about this program is available at http://www.pitt.edu/~nursing/news_events/newprograms.html

University of Washington

University of Washington School of NursingBiobehavioral Nursing and Health SystemsBox 357266 Seattle, WA 98195 Phone: (206) 543-4771

The University of Washington, Seattle offers an Advanced Practice Genetics Nursing Program (Master of Nursing degree). The program requires five quarters of full-time study, with a variety of part-time options. Students who complete the series of courses from the School of Public Health (PHG) can receive a certificate in Public Health Genetics in the Context of Law, Ethics and Policy. Students with a primary interest in other nursing fields may apply for a minor in genetics nursing. The minor in genetics will provide the graduate student with the knowledge to interpret the rapidly generated findings from the human genome project that will impact their clinical practice in areas such as oncology, cardiovascular, neonatal nursing or nurse midwifery.

Information about this program is available at http://www.son.washington.edu/eo/apgn

Other websites of interest for genetics and subdisciplines

Category site

Embryology Virtual embryo www.ucalgary.ca/~browder/

Ethics Biologic ethics publications guweb.georgetown.edu/nrcbi

Ethics Ethical issues in science, medicine www.onlineethics.org

Genes genes for hearing loss www.uia.ac.be/dnalab/hhh

Genetics American College of Medical Genetics www.faseb.org/genetics/acmg

Genetics DNA related topics and tutorials www.DNA.com

Genetics Gene map and diseases www.ncbi.nlm.nih.gov/disease--one of NIH subsets

GeneticsGeneclinics--information about

counseling, Genetests--U. Wash Seattle www.geneclinics.org www.gene tests.org

Genetics Genetics guidelines, bioethics www.humgen.umontreal.ca--directory organizations, bookmarked

37

Page 38: genetic resource directory.doc

Genetics Genetics News--Geneletter www.genesage.com/professionals/geneletter/index.epl

Genetics Mouse mutations socrates.berkeley.edu/~skarnes/resource.html

GeneticsNational Organization for rare

disorders www.rarediseases.org

Genetics Neuromuscular diseases www.neuro.wustl.edu/neuromuscular

Genetics Prevalence genetic diseases archive.uwcm.ac.uk/uwcm/mg/fidd/index.html

GeneticsRepository of photos, data from US

eugenics era vector.cshl.org

GenomesGenetic databases--integrates gene

locus, protein info. bioinformatics.weizmann.ac.il/cards/index.html

GenomesGenomes online database--over 250

genomes igweb.integratedgenomics.com/GOLD

GenomesKyoto encyclopedia of genes and

genomes www.genome.ad.jp/kegg

GenomesList of genome sizes and

chromosomes www.genomesize.com bookmarked

Genomes national center for genome resources www.ncgr.org

Genomes

Overview of biological databases--editors review article for Nucleic Acids Research www3.oup.co.uk/nar/Volume_28/Issue_01/Introduction

GenomesProtein folding and sequence

matching www.tc.cornell.edu/reports/NIH/resource/CompBiologyTools

GenomesProtein of the month--face on protein

data bank www.rcsb.org/pdb

GenomesRepository of biotechnology, genetic

databases www.nbif.org

GenomesSequenced genomes, metabolic

pathways wit.mcs.anl.gov/WIT2

Genomics 123 Genomics http://123genomics.com

Genomics 123genomics.com  

Genomics Cancer genome anatomy www.ncbi.nlm.nih.gov/cgap

GenomicsFinding gene pathways, gene

networks www.genepath.org

Medicine All about cancers www.cancertrack.com

Medicine Alternative therapy sites vm.cfsan.fda.gov nccam.nih.gov www.herbmed.org www.consumerlab.com www.naturaldatabase.com

Medicine Alternatives to animal research altweb.jhsph.edu

MedicineCancer death rates in US counties

since 1950 www.nci.nih.gov/atlas

Medicine Cancer genetics and genes www.cancergenetics.org

MedicineCase Management Guide--110,000

health care resources www.cmrg.org

Medicine Centers for Disease Control www.cdc.gov/ncidod/diseases

Medicine clinical drug trials www.centerwatch.com

MedicineComputer modeling of synapse

transmission www.npaci.edu

MedicineDatabase citing clinical evidence on

therapies www.cochrane.org

Medicine Diagnoses (register free) www.medscape.com

Medicine Historic medicine prints wwwihm.nlm.nih.gov

Medicine Info on 41,000 clinical trials www.centerwatch.com (part of www.PDR.net)

38

Page 39: genetic resource directory.doc

Medicine Medical book store www.medbookstore.com

Medicine Mosaic Down syndrome from Virginia http://www.mosaicdownsyndrome.com

Medicine MRI machines www.cis.rit.edu/htbooks/mri/inside.htm

Medicine News on health and science www.nando.net/healthscience

Medicine Obesity genes obesitygene.pbrc.edu

MedicinePublic policy site including health care

and energy www.policy.com/

Medicine Surgeon general's reports sgreports.nlm.nih.gov/NN

Medicine Viruses A to Z www.tulane.edu/~dmsander/garryfavweb.html

Medicine Web guide to cancer www.ncbi.nlm.nih.gov/ncicgap

Medicine Weird plants www.sarracenia.com/faq.html

Molecular biology Biological clocks www.cbt.Virginia.edu

Molecular biology Dictionary of cell biology www.mblab.gla.ac.uk/~julian/Dict.html

Molecular biology Metabolic pathways and their genes www.genome.ad.jp/kegg/

Molecular biology Micro images www.mdl.sandia.gov/Micromachine

Molecular biology Microscopic images micro.magnet.fsu.edu/micro/gallery.html

Molecular biology molecular biology visuals www.accessexcellence.org/AB/GG

Molecular biology Protein folding theory examples www.tc.cornell.edu/Exhibits/Alanine

Molecular biology Resistant bacteria resistanceweb.mfhs.edu

Molecular biologyThe RNA world--history,

conformations www.ibc.wustl.edu/~zuker/ma

Pediatrics Advice for parents online www.medem.com

PediatricsAmerican Association of Pediatrics

best of web www.aap.org/bpi/

Pediatrics Bright futures www.brightfutures.org

PediatricsCommercial medscape pediatrics--

presentations, practice guidelines www.medscape.com

Pediatrics Data on children, families www.childtrendsdatabank.org

Pediatrics Family health sites cancernet.nci.nih.gov www.cdc.gov www.healthfinderl.gov www.intelihealth.com

Pediatrics Family health sites www.mayohealth.org www.medscapte.com www.oncolink.upenn.edu www.nlm.nih.gov

Pediatrics Family health sites www.onhealth.com drkoop.com www.adam.com www.aap.org

Pediatrics General pediatrics www.generalpediatrics.com

Pediatrics general peds and links www.pedinfo.com

Pediatrics general peds info www.drpaula.com

Pediatrics growth charts www.cdc.gov/growthcharts

Pediatrics hyperactivity www.chadd.org www.add.org

Pediatrics Immunizations www.cdc.gov

Pediatrics Immunizations www.immunizationinfo.org www.cdc.gov/nip www.immunize.org/stories

Pediatrics learning disabilities www.ldanatl.org

Pediatrics New mother's guide to breastfeeding www.aap.org/pubserv/breastfdbook.htm

PediatricsOnline articles from journal Pediatrics

in Review www.pedsinreview.org

Pediatrics Online articles from journal: Pediatrics www.pediatrics org

Pediatrics parents and pedi info www.thewebpediatrician.com

Pediatrics parents growth and development info www.babysdoc.com

39

Page 40: genetic resource directory.doc

Pediatrics parents growth and development info www.kidsgrowth.com

PediatricsPediatric cases, developmental

information www.medconnect.com

Pediatrics Pediatric on-line textbooks www.emedicine.com

Pediatrics Public Health acheivement www.cdc.gov/phtn/tenachievements/charts/charts.htm

PediatricsRadiology cases in pediatric

emergency medicine www2.hawaii.edu/medicine/pediatrics/pemxray/pemxray.html

PediatricsResearch policy issues affecting

children www.futureofchildren.org

PediatricsReview of pediatric web sites for

parents and physicians www.pediatrics.medsch.ucla.edu

Pediatrics teens www.zaphealth.com www.awarefoundation.org teengrowth.com

Pediatrics Yellow book on infectious diseases www.cdc.gov/ncidod/hip/abc/contents.htm

Prehistory Stonehenge and other stone sites www.stonepage.com

TeratologyEducational site from teratology

society teratology.org/jfs/teratologyindex.html

40