GEOE GEOL 362 2011 Magmatic Ni Sulfide - Copia

Embed Size (px)

Citation preview

  • 7/23/2019 GEOE GEOL 362 2011 Magmatic Ni Sulfide - Copia

    1/103

    (3) YACIMIENTOS DESULFUROS NI-CU (PGE)

  • 7/23/2019 GEOE GEOL 362 2011 Magmatic Ni Sulfide - Copia

    2/103

    Magmatic Ni-Cu sulphide deposits

    Ni-Cu sulphide deposits occur in certainmafic and/or ultramafic intrusions or volcanic

    ows

    Ni is the main economic commodity and Cu

    is byproduct or coproduct; PGE and Co are

    . , , , ,Te.

  • 7/23/2019 GEOE GEOL 362 2011 Magmatic Ni Sulfide - Copia

    3/103

    ypes oypes o -- uu su p esu p e epos sepos sAstrobleme- associated in mafic intrusion (Ni:Cu~ 1)

    -- Sudbury: world largest Ni producing campRift- and continental flood basalt and intrusions

    various Ni:Cu ratios

    Norilsk and Jinchuan: 2nd an 3rd world producers

    Komatiitic volcanic flows and intrusions (Ni:Cu >

    AlexoAlexo Mine, Ontario; Thompson Nickel belt,Manitoba; KambaldaKambalda and Agnew, Australia)

    Gabbro-Anorthosite intrusions (Ni:Cu ~2-3)

    Voiseys Bay, Labrador

  • 7/23/2019 GEOE GEOL 362 2011 Magmatic Ni Sulfide - Copia

    4/103

    Ni-Cu sulphide deposits in the World

    X

    XXXXX

    Naldrett, 1997

  • 7/23/2019 GEOE GEOL 362 2011 Magmatic Ni Sulfide - Copia

    5/103

    vs.

    Tonnage

    Eckstrand and

    Hulbert, 2005

  • 7/23/2019 GEOE GEOL 362 2011 Magmatic Ni Sulfide - Copia

    6/103

    ,

    FIG.2.CartoonsofthegeologicsettingsofNisulfidedeposits.a.Meteorimpact,Sudbury.b.

    Feeders

    to

    flood

    basalt,e.g.,

    Norilsk.

    c.

    Feeders

    along

    a

    suture,

    Voiseys

    Bay.

    d.

    Thick

    crust,

    Grenville.

  • 7/23/2019 GEOE GEOL 362 2011 Magmatic Ni Sulfide - Copia

    7/103

    ,

    TexturasensulfurosdeNiCuPGEdeorigenmagmtico

  • 7/23/2019 GEOE GEOL 362 2011 Magmatic Ni Sulfide - Copia

    8/103

    ,

  • 7/23/2019 GEOE GEOL 362 2011 Magmatic Ni Sulfide - Copia

    9/103

    ,

    Jinchuan

    NiCu(PGE)deposit

    NWChina.

    A)Nettextured

    oreinterstitial

    to

    olivine.B)Patchy

    nettextured

    orewith

    avariation of

    interstitial

    sulphides

    and

    altered

    silicates. C) Disseminated

    ore. D) Massive

    ore

    incorporating

    minor

    silicate

    and

    carbonatematerial.

    E)

    Massive

    sulphide

    remobilisation.

    F)Small

    scale

    sulphide

    remobilisation

    inacarbonatevein.

  • 7/23/2019 GEOE GEOL 362 2011 Magmatic Ni Sulfide - Copia

    10/103

    Canadian Ni-C s l ide de osits

    Eckstrand and Hubert, 2007

  • 7/23/2019 GEOE GEOL 362 2011 Magmatic Ni Sulfide - Copia

    11/103

    Eckstrand and Hubert, 2007

  • 7/23/2019 GEOE GEOL 362 2011 Magmatic Ni Sulfide - Copia

    12/103

    *

    Voiseys Bay

    (1.3-1.4 Ga)

    Thompson

    Belt (1.88 Ga)

    Sudbury

    (1.85 Ga)

    Location of the Canadian Nickel Deposits and Districts(Eckstrand, 1995)

  • 7/23/2019 GEOE GEOL 362 2011 Magmatic Ni Sulfide - Copia

    13/103

  • 7/23/2019 GEOE GEOL 362 2011 Magmatic Ni Sulfide - Copia

    14/103

    Ni-Cusulphidedeposits

    inCanada

    Eckstrand, 1996

  • 7/23/2019 GEOE GEOL 362 2011 Magmatic Ni Sulfide - Copia

    15/103

    ASTROBLEME-ASSOCIATED NICKEL-COPPER

    - u Near the southern limit of the Archean

    uper or rov nce, w c s over a n y eProterozoic Huronian Supergroup

    SIC: 1850 Ma

    ,intrusive rocks (2680 Ma)

    South: Mafic and felsic volcanic rocks (2450 Ma)

    and felsic intrusives (2388 Ma), and sedimentaryrocks

    ewa er roup: se men s an e ero c

    breccia

  • 7/23/2019 GEOE GEOL 362 2011 Magmatic Ni Sulfide - Copia

    16/103

    Sudbur

    SIC:1.8 5GaHuronian SG: 2.4 Ga

    WG

    Eckstrand and Hulbert, 2007

  • 7/23/2019 GEOE GEOL 362 2011 Magmatic Ni Sulfide - Copia

    17/103

    Sublayer:contains the Ni-Cu sulphide deposits

    1in or ad acent to thesubla erand com rise

    pyrrhotite as dominated sulphide)

    . , ,

    2. Levack and Strathcona (North)

    3. Copper Clift and Frood Stobie (Apophysis)

    . ,

    AlexoAlexo Mine, Ontario; Thompson Nickel belt,Manitoba; KambaldaKambalda and Agnew, Australia)

    Gabbro-Anorthosite intrusions (Ni:Cu ~2-3)

    Voiseys Bay, Labrador

  • 7/23/2019 GEOE GEOL 362 2011 Magmatic Ni Sulfide - Copia

    40/103

    An igneous suite distinguished bythe resence of ultramafic lavas

    commonly exhibing spinifex texture

    High Mg content Ni mineralization

  • 7/23/2019 GEOE GEOL 362 2011 Magmatic Ni Sulfide - Copia

    41/103

    Typical textures of komatiitic flows

  • 7/23/2019 GEOE GEOL 362 2011 Magmatic Ni Sulfide - Copia

    42/103

    KOMATIITE

    ow op w sp n ex ex ure o v ne a es

    From Helmtaedt- Geol488-2002-notes, with permission

  • 7/23/2019 GEOE GEOL 362 2011 Magmatic Ni Sulfide - Copia

    43/103

    -

    BELTS ex: Timmins and Kambalda camps

    2) KOMATIITES IN RIFTED PROTEROZOICCONTINENTAL MARGINS

    ex: Thompson Nickel Belt

    At Thompson the deposits occurs in the Hudsonian fold-and-thrust belt in a series ofperidotitic lenses along a particularsediment-volcanic contact in allochtonous, recumbently folded

    .

  • 7/23/2019 GEOE GEOL 362 2011 Magmatic Ni Sulfide - Copia

    44/103

    Komatiites in Archean greenstone belts

    Important Ni deposits are in WesternAustralia in the Norseman-Wiluna

    greenstone belt of the Yilgarn craton.

    Kambalda camp

    In Canada, they occur in Timmins camp-

    Alexo, Dundonald, Frederick House Lake

  • 7/23/2019 GEOE GEOL 362 2011 Magmatic Ni Sulfide - Copia

    45/103

    Comparison of Komatiitic hosts and

    n c e ores

    c s ran , , p.

  • 7/23/2019 GEOE GEOL 362 2011 Magmatic Ni Sulfide - Copia

    46/103

    Ni-Cusulphide

    depositsin Canada

    Eckstrand, 1996

  • 7/23/2019 GEOE GEOL 362 2011 Magmatic Ni Sulfide - Copia

    47/103

    Houle et al., 2008

  • 7/23/2019 GEOE GEOL 362 2011 Magmatic Ni Sulfide - Copia

    48/103

    Ni-Cu Mineralization associated with

    Dundonald Formation

    Houle et al., 2008

  • 7/23/2019 GEOE GEOL 362 2011 Magmatic Ni Sulfide - Copia

    49/103

    Komatiitic flow and Ni sulphide ore: cross section

  • 7/23/2019 GEOE GEOL 362 2011 Magmatic Ni Sulfide - Copia

    50/103

    Net-textured Ni ore

    spnifex texture

    W t A t li l i l

  • 7/23/2019 GEOE GEOL 362 2011 Magmatic Ni Sulfide - Copia

    51/103

    Western Australia- geological map

  • 7/23/2019 GEOE GEOL 362 2011 Magmatic Ni Sulfide - Copia

    52/103

    Yilgarn Block

    Most of the depositsWestern Australiaare confined to acentral rif t (200Km

    wide) which ischaracterized byabundant komatiitesand sulphidic cherts

    (deep marineenvironment)

  • 7/23/2019 GEOE GEOL 362 2011 Magmatic Ni Sulfide - Copia

    53/103

    camp

    Important features:

    Ultramafic rocks

    Sedimentary

    Structures

    magma con u t

    Eckstrand and Hulbert, 2007

    P Mi

  • 7/23/2019 GEOE GEOL 362 2011 Magmatic Ni Sulfide - Copia

    54/103

    Perceverance MineGeneralized Geology (Evans, 1996)

    Archean Komatiite-hosted deposits

  • 7/23/2019 GEOE GEOL 362 2011 Magmatic Ni Sulfide - Copia

    55/103

    m p

    Most of the deposits occur at or near the base of an extrusive

    sequence

    typically in the lowest, thickest, and most magnesian of the flows.

    (marginal chilled zone with >20-35% MgO)

    The orebodies occupy the depressions in the floors of the flows

    The eneral se uence from the base u ward is: massive, matrix (continuous network of sulphides

    enclosing olivine crystals), and

    Ore minerals: pyrrhotite, pentlandite, pyrite, magnetite,

    ,

    118 Kambalda (Western Australia)

  • 7/23/2019 GEOE GEOL 362 2011 Magmatic Ni Sulfide - Copia

    56/103

    Panorama de la mine et de lusine de Kambalda, Au premier plan

    se s ue e s oc age es caro es e orages e es ernMining. Photographie prise en 1993. Copyright Michel Jbrak.

  • 7/23/2019 GEOE GEOL 362 2011 Magmatic Ni Sulfide - Copia

    57/103

    119 Kambalda (Western Australia)Sulfures rubans nickel-cuivre Photo ra hie rise en 1993.

    Copyright Michel Jbrak.

  • 7/23/2019 GEOE GEOL 362 2011 Magmatic Ni Sulfide - Copia

    58/103

    117 Kambalda (Western Australia)Sulfures dissmins : pyrrhotine

    omininante, pent an ite. P otograp ieprise en 1993. Copyright Michel Jbrak

  • 7/23/2019 GEOE GEOL 362 2011 Magmatic Ni Sulfide - Copia

    59/103

    Barnes et al. (1999) model

    Kambalda schematic cross-section

  • 7/23/2019 GEOE GEOL 362 2011 Magmatic Ni Sulfide - Copia

    60/103

    Kambalda schematic cross section

    In Barnes et al.

    (1999)

  • 7/23/2019 GEOE GEOL 362 2011 Magmatic Ni Sulfide - Copia

    61/103

    Leshers Model

    Lesher, 1989

  • 7/23/2019 GEOE GEOL 362 2011 Magmatic Ni Sulfide - Copia

    62/103

    LeshersModel

    (cont)

    Lesher, 1989

  • 7/23/2019 GEOE GEOL 362 2011 Magmatic Ni Sulfide - Copia

    63/103

  • 7/23/2019 GEOE GEOL 362 2011 Magmatic Ni Sulfide - Copia

    64/103

    (0)= [(Rsample/Rstandard)-1]103

    R= moles of heavy isotope/ moles of light isotope = mo es mo es

    samp e -

    34 32

    Standard: Canon Diablo Troilite (CDT)

    Guidelines for Ex loration?:

  • 7/23/2019 GEOE GEOL 362 2011 Magmatic Ni Sulfide - Copia

    65/103

    Guidelines for Ex loration?:

  • 7/23/2019 GEOE GEOL 362 2011 Magmatic Ni Sulfide - Copia

    66/103

  • 7/23/2019 GEOE GEOL 362 2011 Magmatic Ni Sulfide - Copia

    67/103

    ypes oypes o -- uu su p esu p e epos sepos sAstrobleme- associated in mafic intrusion (Ni:Cu~ 1)

    -- Sudbury: world largest Ni producing camp

    Rift- and continental flood basalt and intrusionsvarious Ni:Cu ratios

    Norilsk and Jinchuan: 2nd an 3rd world producers

    Komatiitic volcanic flows and intrusions (Ni:Cu >

    AlexoAlexo Mine, Ontario; Thompson Nickel belt,Manitoba; KambaldaKambalda and Agnew, Australia)

    Gabbro-Anorthosite intrusions (Ni:Cu ~2-3) Voiseys Bay, Labrador

  • 7/23/2019 GEOE GEOL 362 2011 Magmatic Ni Sulfide - Copia

    68/103

    *

    Voiseys Bay

    (1.3-1.4 Ga)

    Thompson

    Belt (1.88 Ga)

    Sudbury

    (1.85 Ga)

    Location of the Canadian Nickel Deposits and Districts

    (Eckstrand, 1995)

  • 7/23/2019 GEOE GEOL 362 2011 Magmatic Ni Sulfide - Copia

    69/103

    Regional Geology-Voiseys Bay

  • 7/23/2019 GEOE GEOL 362 2011 Magmatic Ni Sulfide - Copia

    70/103

  • 7/23/2019 GEOE GEOL 362 2011 Magmatic Ni Sulfide - Copia

    71/103

    Geolo

    In the boundary

    and Nain

    Provinces

    n ga ro-

    anorthosite that

    cuts Nain gneiss

    Eckstrand and

    Hulbert, 2005,

    (after Naldrett, 1997)

    Voise s Ba NW-SE

  • 7/23/2019 GEOE GEOL 362 2011 Magmatic Ni Sulfide - Copia

    72/103

    Voise s Ba NW SEvertical section

    Bacon and Cochrane (2003)

  • 7/23/2019 GEOE GEOL 362 2011 Magmatic Ni Sulfide - Copia

    73/103

    Eckstrand and

    , ,

    (after Li and Naldrett, 1999)

  • 7/23/2019 GEOE GEOL 362 2011 Magmatic Ni Sulfide - Copia

    74/103

    Eckstrand and

    Hulbert, 2005

    (after Li et al., 2001)

  • 7/23/2019 GEOE GEOL 362 2011 Magmatic Ni Sulfide - Copia

    75/103

    Massive sulphide ore

    (45 cm wide)

    Leopard-textured

    (45 cm wide)

    Disseminated

    (45 cm wide)

  • 7/23/2019 GEOE GEOL 362 2011 Magmatic Ni Sulfide - Copia

    76/103

  • 7/23/2019 GEOE GEOL 362 2011 Magmatic Ni Sulfide - Copia

    77/103

    1860Ma

    -

    1350-1290 Ma

    Voise s Ba : conce tual model

  • 7/23/2019 GEOE GEOL 362 2011 Magmatic Ni Sulfide - Copia

    78/103

    What was needed to form a Voiseys Bay

  • 7/23/2019 GEOE GEOL 362 2011 Magmatic Ni Sulfide - Copia

    79/103

    1) Source of Ni: mafic magma

    ,

    2) Conduit for the magma: major structures

    (boundary between Archean Nain and

    Paleoproterozoic Churchil l Province)

    3) Source of S: country rocks with S

    (Tasiuyak gneiss: derived from metamorphism

    4) Formation of immiscible sulf ide melt:

    accumu a on o su es a e ase o e

    intrusion (trap)

  • 7/23/2019 GEOE GEOL 362 2011 Magmatic Ni Sulfide - Copia

    80/103

  • 7/23/2019 GEOE GEOL 362 2011 Magmatic Ni Sulfide - Copia

    81/103

  • 7/23/2019 GEOE GEOL 362 2011 Magmatic Ni Sulfide - Copia

    82/103

  • 7/23/2019 GEOE GEOL 362 2011 Magmatic Ni Sulfide - Copia

    83/103

    and

    Important Features:

    auFlood basalts

    Sediments

    Eckstrand, 1996

    Cross-section Talnakh camp

  • 7/23/2019 GEOE GEOL 362 2011 Magmatic Ni Sulfide - Copia

    84/103

  • 7/23/2019 GEOE GEOL 362 2011 Magmatic Ni Sulfide - Copia

    85/103

    Norilsl and Talnakh:Three types of mineralization:

    . ssem nate re

    2. Massive Ore

    3. Copper Ore

    Distribution of Talnakh ore

  • 7/23/2019 GEOE GEOL 362 2011 Magmatic Ni Sulfide - Copia

    86/103

    Eckstrand and

    ,

    Massive Ore

  • 7/23/2019 GEOE GEOL 362 2011 Magmatic Ni Sulfide - Copia

    87/103

    eet- e o es, may a so ntru e t e un er y ng

    metassedimentary rock footwall.

    Form bodies as large as 1.5 km long , several hundred

    kilometres wide, and several tens of meters thick

    Succession of sulphides:

    pyr ot te e 1-x ,pet an te e 9 8 an c a copyr te

    (CuFeS2) chalcopyrite--cubanite (CuFe2S3),mooihoekite (Cu9Fe9S16), and talnakhite [Cu9(Fe,Ni)8S16]

    C O

  • 7/23/2019 GEOE GEOL 362 2011 Magmatic Ni Sulfide - Copia

    88/103

    Copper Ore

    a disseminated veinlets that form a halo around

    the periphery of massive ore and

    (b) breccia ores with copper sulfide matrix in the

    roofs of some intrusions. PGE contents are higher

    in the copper ores.

  • 7/23/2019 GEOE GEOL 362 2011 Magmatic Ni Sulfide - Copia

    89/103

    E i i I

  • 7/23/2019 GEOE GEOL 362 2011 Magmatic Ni Sulfide - Copia

    90/103

    Engineering Issues

    Mining Ni-Cu sulfide

    -

    Environmental remediation

    Guidelines for Ex loration ( eneral)

  • 7/23/2019 GEOE GEOL 362 2011 Magmatic Ni Sulfide - Copia

    91/103

    Regional scale

    a c an u rama c magma c roc s

    Komatiite (Archean-Proterozoic)

    S contaminants: sedimentary rocks

    Cam scale Selection of intrusions and flow

    Depletion in Ni

    Distinct S isotope signature (contamination)

    Deposit scale

    Massive sulphides at the base of the flow or intrusion

    The comparison of the S isotope

    data frommajormagmaticNiCu

    sulfide deposits (Fig 13) shows

  • 7/23/2019 GEOE GEOL 362 2011 Magmatic Ni Sulfide - Copia

    92/103

    sulfidedeposits

    (Fig. 13) showsthat NeboBabel has the

    narrowest range of S isotope

    values and that they are

    consistent with S being entirely

    mantlederived.Incontrast,allthe

    other deposits show evidence for

    at leastsomeadditionofcrustalS

    (Fig.13).Ourfindingsindicatethat

    increasing Si was the primarycause of sulfide saturation and

    furthermore, although clearly

    favorable in the ore genesis of

    most

    other

    magmatic

    Ni

    Cu

    PGE

    deposits (cf. Naldrett, 2004),

    crustal S addition did not play a

    role at the NeboBabel deposit.

    Consequently,crustalSaddition is

    notaubiquitoussulfideoregenesismodel.

    Zeat

    et al.,2009 Econom

    Geology,v.104,pp.521538.

    Histograms

    of

    34S data fro

    magmatic

    NiCuPGE deposi

    References: Norilsk: Grine

    (1985), Li et al. (2003);Dulut

    Ripley (1981), Ripley and A

    Jassar

    (1987);Uitkomst:Lieta

    (2002); Voiseys

    Bay: Ripleyal. (1999); Jinchuan: Ripley

    al.(2005)

    ,

  • 7/23/2019 GEOE GEOL 362 2011 Magmatic Ni Sulfide - Copia

    93/103

    ,

    FIG. 14. Mantlenormalized plots of different types of sulfides. T

    massiveandmatrixsulfides from (a)NorilskTalnalk, (b)CapeSmi(c)Sudbury,and (d)Pechengashowvariations incomposition.Tho

    withPd/Irratio>disseminatedores(dashed lines)areenriched inC

    Au,andPt.ThosewithPd/Irratio

  • 7/23/2019 GEOE GEOL 362 2011 Magmatic Ni Sulfide - Copia

    94/103

    ,

  • 7/23/2019 GEOE GEOL 362 2011 Magmatic Ni Sulfide - Copia

    95/103

    ,

    FIG.17.Modelof

    changes

    in

    metal

    concentrations

    asilicatemeltduringcrystalfractionation.Twocurv

    areshown forNi,oneassumingno sulfideextractio

    (D = 4), and one assuming that olivine and sulfid

    have been extracted from the melt in approximate

    cotectic proportions (D = 6). Note the additionsulfide extraction does not change the Ni content

    themeltsignificantly.Twopossiblecurvesareshow

    forPGE,oneassumingtheDPGE/sul is10,000(bulk

    =100),andoneassumingDPGE/sul=40,000(bulkD

    400).AsmallamountofsulfideextractiondramaticalowersthePGEcontentofthemelt.

    FIG. 15. Model of changes in (a) metal

    concentrationsand (b)metal ratios in the magma

    versus thedegreeofpartialmelting,assuming the

    PGEconcentrationsarecontrolledbyacombination

    ofmonosulfidesolidsolution(mss)andPGEalloys.

    FIG. 19. Model of metal enrichment (CS/CL) durin

    sulfidecollectionvs.theRfactor(theratioofsilicate

    sulfide liquid). Curves shown for a range of partitio

    coefficients

  • 7/23/2019 GEOE GEOL 362 2011 Magmatic Ni Sulfide - Copia

    96/103

    ,

    Cu/Pdvs.CuforNorilsk.Circles=silicaterockswithintheintrusions,crosses=lavasabovetheintrusion

    triangles = disseminated and matrix ores. The solid lines represent tie lines between thesilicate liqu

    composition(representedbythelavas)andsulfidesformedinequilibriumwiththelavasatRfactorsof10

    1,000,and10,000.Thesoliddotsrepresentthecompositionofa rockthatcontainsamixtureof1,10,

    100percentsulfides.Mostof theNorilsksulfidesplot in thevicinityofR factorsof1,000 to10,000.Th

    dashed lines represent models of the silicate liquid composition as sulfide liquid is removed in cotect

    proportions.Manyofthesilicaterocksoverlyingthesulfideoresplotinthisdepletedfield.

    FIG.22.

    Ratio

    plots

    of

    (a)Ni/Cu

    vs.

    Pd/Ir,

    and (b)Ni/Pd

    vs.Cu/Ir(modified

    afterS.J.Barnesetal.,

    1988) for common rock types. a. The

    Perseverance sulfides hosted in komatiites

    (circles)plot inthekomatiite field,VoiseysBay

    sulfides (squares) plot in the high Mg basalt

  • 7/23/2019 GEOE GEOL 362 2011 Magmatic Ni Sulfide - Copia

    97/103

    ,

    sulfides (squares) plot in the high Mg basaltfield, the Norilsk disseminated and massive

    sulfides (triangles)plot inthe floodbasalt field.

    The Norilsk Curich sulfides (inverted triangle

    open) and veins (+) plot in the vein field. Ingeneral, massive sulfides (solid symbols) have

    higherNi/Cu ratios and lower Pd/Ir ratios than

    the disseminated sulfides, due to mss

    accumulation.CurichsulfideshavehigherPd/Ir

    andlowerNi/Curatios,duetomssremoval.

    b. The effect of sulfide segregation is visible.

    Sulfides in equilibrium with magmas that have

    previously segregated sulfides (such as the

    VoiseysBaysulfides;squares)havehigherNi/Pdand Cu/Ir ratios than the primary magmas. In

    contrast, sulfides such as from Norilsk formed

    athighRfactorsandhavesimilarNi/PdandCu/Ir

    ratiosto

    those

    of

    primary

    magmas.

    FIG. 16. Cartoon outlining th

    processes that lead to th

    formation of a Ni sulfide o

    deposit. a. The mantle melts

    release Ni from olivine and PG

    from sulfides. b. Magma

    transferred to the crust along cru

  • 7/23/2019 GEOE GEOL 362 2011 Magmatic Ni Sulfide - Copia

    98/103

    ,

    transferred to thecrustalongcru

    penetrating faults.c.Sulfur isadde

    to the magma from sediments

    bring about saturation of a sulfid

    liquid.

    d.

    The

    sulfide

    dropleassimilatechalcophilemetals.e.Th

    droplets are transported by th

    magmauntilthemagmaflowslow

    suchthattheycollectat thebase

    the

    intrusionor

    flow.

    f.

    The

    sulfidliquid undergoes cryst

    fractionation to produce an m

    cumulate and a Curich liquid th

    canbe injected intothefootwall.

    In somecases theremaybeaneinjection of magma and the C

    sulfide liquidmaybeentrainedan

    movedtoanewsitecollectionsit

    h.Deformationconcentrates in th

    incompetent sulfides, resultingsulfides being displaced from the

    arentbod ossibl asbreccias

    Fig. 3: Sketch showing how the

  • 7/23/2019 GEOE GEOL 362 2011 Magmatic Ni Sulfide - Copia

    99/103

    ,

    Magmatic

    Ni

    Cu

    sulfide

    deposits

    form

    when

    immiscible

    sulfide

    liquid

    separates

    from

    a

    mafic

    orultramaficmagma.Thetrigger iscommonlyassimilationofwall rocks,whichaddssulfur

    and/ordecreasessulfidesolubility.Whenthesegregatedsulfide

    interactswithlargevolumes

    ofmagma, itscavengeschalcophileelements (Ni,CuandPGE) toproducehightenorores.

    Suchprocessesshouldoperate inmostorallmagmaticsystems,butoredepositsarefound

    onlyin

    restricted

    parts

    of

    certain

    magmatic

    provinces.

    The

    restricted

    distribution

    might

    be

    explained by the cratonmarginmodel, according towhich deposits formwhen amantle

    plumeascendsattheslopingcontactofcratoniclithosphere.Thehypothesisthatoremetals

    are derived from metasomatically enriched portions of the subcontinental lithospheric

    mantle(SCLM)

    receives

    little

    support

    when

    the

    compositions

    of

    ore

    bearing

    magmas

    and

    samples from the SCLM are examined. A better understanding of the controls on ore

    formationwillcomefrommodellingofflowageofmixturesofsilicateandsulfide liquidand

    solidphases(crystalsandrockfragments)inthecomplexmagmaticconduitsthatconstitute

    containtheoredeposits.

    g g

    accumulation, slumping and

    reinjection of dense crystalsulfide

    mushcanexplain some featuresof

    magmaticsulfidedeposits.

    Fig

    1.

    Temperature

    distributions

    inplumes rising at the boundary of

    an Archean craton, as at the

    margin of the Archean craton

    where the NorilskTalnakh

    deposits are localized. The top

  • 7/23/2019 GEOE GEOL 362 2011 Magmatic Ni Sulfide - Copia

    100/103

    four diagrams show that the

    plume flows laterally towards to

    the thinner lithosphere, then

    upwards:as

    it

    ascends

    it

    partial

    melts and magma formation is

    thereby focussed near the craton

    margin.The lowerdiagram shows

    a plume ascending beneath

    thinnerlithosphere

    beneath

    the

    West Siberian Basin where the

    plume produces highdegree

    meltsdispersedoverawidearea.

    Diagrams

    from

    S.

    Sobolev(unpublished) using techniques

    describedbySobolevetal.(2012)

    FIG. 10. Anew

    model

    for

    th

    formationofNiCuPGEsulfideore

    in the Kharaelakh intrusion. Th

    sulfide liquid, segregated inadee

    staging chamber from the Nd1d d b h

  • 7/23/2019 GEOE GEOL 362 2011 Magmatic Ni Sulfide - Copia

    101/103

    ,

    magmas, was upgraded by th

    Morongovskymagma (a), and the

    dissolved by a new, Sunsaturate

    magmafrom

    the

    mantle

    to

    form

    PGEenriched magma (b). Reactio

    of the PGEenriched magma wit

    anhydritebearingevaporitecount

    rocks at a higher level produce

    immiscible sulfide liquids with hig

    PGEtenorsaswellaselevated 34

    values. The sulfide liquids becam

    lodged inthehydraulictrapsofth

    plumbingsystematKharaelakhto form the deposit (c).

    Li, C., Riple

    E.M.,and

    Naldrett,A.J.,(2009).Anew gene

    model

    for

    the

    giant

    NiCuPGEsulfide

    depos

    associated

    with

    the

    Siberian

    flood

    basal

    Economic

    Geology,104,

    291

    301.

    General References for Magmatic Ni-Cu sulphide deposits

    Barnes, S-J and Maier, W.D (1999). The Fractionation of Ni, Cu and the Noble Metals in Silicate and Sulphide

    Li id I K R R L h M C Li htf t P C F C E G (1999) D i P i

  • 7/23/2019 GEOE GEOL 362 2011 Magmatic Ni Sulfide - Copia

    102/103

    Liquids. In Keas, R.R., Lesher, M.C., Lightfoot, P.C., Farrow, C.E.G. (1999). Dynamic Processes in

    Magmatic Ore Deposits and Their Applications to Mineral Exploration. GAC- Short Course Notes, v. 13, p.

    69-106

    Barnes, S-J, Hill, RET , Perring C.S. and Dowling, S.E. Komatiite Flow Fields and Associated Ni-Suphide

    Mineralization with Examples form the Yilgarn, Block, Western Australia. In Keas, R.R., Lesher, M.C.,

    Lightfoot, P.C., Farrow, C.E.G. (1999). Dynamic Processes in Magmatic Ore Deposits and Their

    Applications to Mineral Exploration. GAC- Short Course Notes, v. 13, 159-194

    -, . . . .

    Eckstrand, WD Sinclair, RI Thorpe) Geological Survey of Canada. Geology of Canada, 8, p. 584-605

    Eckstrand and Hubert (2007). Magmatic Ni-Cu-Pt deposits . In Mineral Deposits of Canada, Geological

    Association of Canada, special publ ication n.5.

    Evans, A., M. (1996) Ore geology and Industrial minerals: An introduction. Backwell Sciences Ltd., 3e edition.

    - - -, .

    Guilbert, J.M. et Park, C.F, Jr. (1986) The Geology of Ore Deposits. W. H. Freeman and Company, USA, 985 p.

    (ISBN 0-7167-1456-6)

    Keas, R.R., Lesher, M.C., Lightfoot, P.C., Farrow, C.E.G. (1999). Dynamic Processes in Magmatic Ore Deposits

    and Their Applications to Mineral Exploration. GAC- Short Course Notes, v. 13, 477p.

    , . . - . , . , . -

    101

    Naldrett, A.J. (1981). Nickel sulfide deposits: Classification, composition and genesis. Economic Geology,Seventy-fifth anniversary volume. P. 628-685.

    Naldrett, A.J. (1989). Ore Associated with flood basalts. Dans Ore deposition associated with magmas. Reviews

    . , ., , . - - -

    Naldrett, A.J. (1997). Magmatic Sufides:17th Ore Deposit Workshop, University of Toronto, Department of

    Geology.

    References- complementary

  • 7/23/2019 GEOE GEOL 362 2011 Magmatic Ni Sulfide - Copia

    103/103

    References complementary

    ee a so e re erences n e rs par o e - u su p e epos s e.

    Ryan, B., Wardle, R., Gower, C., and Nunn, G. (1985). Nickel-Copper-Sulphide

    Mineralization in Labrador: The Voisey Bay Discovery and its Exploration Implication:Geological Survey of Newfoundland and Labrador, Current Research , report 95-1