48
J GEOLOGICAL SURVEY 30 Malkhe Yisrael St., Jerusalem 95501, Israel TeL: 02-314211 DETERMINATION OF THE LIMITING STATE AREA AROUND UNDERGROUND OPENINGS ANATOLY LIBERMAN I TR - GSI / 5 / 95 I I February 1995, Jerusalem I

GEOLOGICAL SURVEY 30 Malkhe Yisrael St., Jerusalem 95501

  • Upload
    others

  • View
    2

  • Download
    0

Embed Size (px)

Citation preview

AROUND UNDERGROUND OPENINGS
ANATOLY LIBERMAN
I TR - GSI / 5 / 95 I I February 1995, Jerusalem I
GEOLOGICAL SURVEY 30 Malkhe Yisrael St.,
Jerusalem 95501, Israel
AROUND UNDERGROUND OPENINGS
ANATOLY LIBERMAN
I TR - GSI / 5 / 95 I I February 1995, Jerusalem I
- 2 -
CONCLUSIONS ................................................................ 18
~~Itl£~<:~~ .................................................................. 1~
FIGURE 1. Scheme of pressure. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
FIGURE 2. Isolines of the difference in principal stresses within a photo-elastic model. 9
FIGURE 3. Photo-elastic model. Grid for calculations. . . . . . . • • . • . • . • . . • .• 10
FIGURE 4. Photo-elastic model. Grid with support lines. .•.•.........•... 11
FIGURE 5. Scheme of calculations: a) difference in principal stresses; b) sum of principal
stresses. ........................................ 14
FIGURE 6. Limiting state area (LSA) near tunnels. (black color - LSA, points - stable
area, spaces - tunnels). .............................. 17
- 4-
ABSTRACT
Detennination of the limiting state area (LSA) around underground openings is carried out
by means of optical simulation and computer processing. Optical simulation represents isolines
of difference in principal stresses around openings; computer processing gives their sum and
thus complete infonnation on stresses is obtained. This is necessary to fmd the limiting state
area.
Using the stresses in a model (in relative units) and considering the depth of openings and
average volume weight of rocks one can compute in-situ stresses. Comparing in-situ stresses and
limiting stresses of rocks (which are determined in laboratory tests) a picture of limiting state
area can be obtained.
This picture may be used in tunnel planning to detennine: a) the fonn of openings, b)
~
- 5 -
INTRODUCTION
The optical simulation method is based on the property of some translucent materials to
decompose under pressure a monochromatic polarized light to the trajectory of principal stresses.
These materials consist of epoxy resins, plasticizer and hardener. The components of optical
experiment includes: a source of monochromatic light, polarizer, model of the object to be
tested, analyzer and a photocamera. Planes of polarizer and analyzer must be perpendicular.
Without a mod~l one can see only a black field in the analyzer. The polarizer polarizes a light:
the vector of electric intensity of a ray oscillates only on one plane - the plane of polarization.
Passing through the model the ray is decomposed to the trajectory of principal stresses. In the
analyzer the ray is collected in the polarized plane. Following, an interference picture can be
seen - the isolines of difference in the principal stresses.
This method was first used in building bridges (Gordon, 1968). Then it was applied to the
solving many problems in machine constructions (Parton, 1990). In recent years this method
began to be used in underground mining, tunnel building and geology (Muller, 1963). However,
it was not widespread because he gave only a picture of isolines of difference in principal
stresses, but could not give a sum of the stresses. Thus it does not represent an entire field of
stresses. There were other methods of obtaining the principal stresses in some cross-sections
(Frocht, 1948), but they were not useful because they gave stresses only in selected lines (for
example, four instead of eighty); and accuracy of calculaion was so low that it was impossible
to use these methods.
Libman (Frocht, 1948) attempted to solve this problem and suggested the use of an electric
conductive paper for determination of the sum of the principal stresses. However, this takes so
much time (current problems require knowing stresses at 5000 - 10000 points) that its use is not
practical. Even if one had the time to determine stresses at all points, it would be necessary to
compare them with limiting stresses in order to obtain the limiting state area (LSA). Therefore
it seems impossible to carry this out without automatization.
Liberman (1985) suggested a method that completely automatizes the process of obtaining
the limiting state area.
- 6-
This method, described below, can be used in tunnel building, as shown here for the case
of Mount Scopus tunnel.
GEOLOGICAL APPLICATION
The Mount Scopus tunnel (Arkin et aI., 1993) represents a test case for the photo-elastic and
associated numerical techniques. The tunnel site is located between the university campus and
the Augusta Victoria hospital. The general direction of the tunnel is EW and part of the
university road leading to Ma' ale Adumim will run through it.
The tunnel will be excavated in chalk, marl and some clay of the Senonian Menuha
Formation. The strata dip 5°_10° SE, and are part of the eastern monoclinal flank of the Judean
Anticline leading towards the Dead Sea.
Seven exploratory boreholes were made to test the rock mass along the proposed tunnel
alignment. Chalk is the main lithology and generally occurs in the upper and lower parts of the
Menuha Formation. Clayey chalk and marl occur in the central part of the formation. The clayey
component within the marl and clay are smectites and some kaolinite and are sensitive to water.
In general the rock mass represents poor to good quality rock; in order to determine the type
of preliminary and permanent support one must know the distribution of the potential limiting
state area (LSA). LSA is the area of intensive redistribution of in-situ stresses (Liebowitz, 1976).
If the LSA is not strengthened it could be transformed into a failure area and could become a
source of a failure event.
The present research is aimed at determining the LSA around underground openings. For
this purpose it is necessary to know the limiting and real stresses in the rock mass. The
comparison of these stresses defmes the LSA.
To determine the limiting stresses samples of the rock mass from the researched area must
be tested in a laboratory. Laboratory tests include:
-7-
OPTICAL SIMULATION
The distribution of stresses around underground openings can be determined in a model
composed from optical sensitive material (Frocht, 1948). A translucent model representing a
rock mass with openings is placed under pressure and illuminated by circular polarized
monochromatic light. The material for this model was epoxy-elastic (Malkis, 1984), it size was
240 x 160 x 18 IDm. The model was in plane strain conditions and was pressed in the vertical
plane with the pressure of 2 KPa (Fig. 1).
In order to perform the stress analysis, a photograph of the photo-elastic model (Fig. 2) must
be overlain the with a square grid, so that the boundary of openings and the model will conform
to points on the grid. This operation gives the initial data required for computer calculations
(Fig. 3) (Liberman, 1985).
For obtaining initial data one needs to selectc support lines - lines where difference in
principal stresses V = 0'1 - 0'2 is well known. In Figure 4 one can see their numbers (numbered
lines> lenJ. In support lines one needs to mark the support points - points of crossing of the
isolines and support lines and all points along the right boundary of the model. After that it is
possible to begin computer calculations.
COMPUTER CALCULATIONS
By using the linear interpolation method it is possible to spread the values of V throughout
:. the whole model (stripes occur only in about 5 % of the model). In order to determine the LSA
thier sum U = 0'1 + 0'2 must be calculated.
- 8 -
'-a
i
)
'>
.,
;21 3i-
~o~.RSIJ ~e5l( 5:1$ S'J' 6(7 tf'1...64t 6 6' ~ 'f,tT ''1...1-9 :II} 7"~ ro .~ 2. ~'1 ! _1 I II em tiilll rElE'1 I ill II R iii i EIII tffi tililiihld i I'i II t I h'~ ~
~J~ 7. '/I)
'Il 1 1( .
M=1b §I:=~~
I I
.2~ I
~
- 12 -
Computer calculations are made by five programs in GWBASIC for mM PC written by
A.Liberman. These are:
DIF - calculation of the values V = al - a2
SUM - calculation of the values U = al + a2
LSAP - calculation of principal stresses and drawing LSA.
Initial data are entered by the program INDATA. It is stored on a disk and transmitted to
the printer. After checking it is possible to correct the data using program CORDATA.
Initial data include:
- numbers of support lines;
- numbers of support points and the value of the difference in principal stresses
at these points;
(Appendix I)
If the support point lies on the left boundary of the openings after which there is a space -
it is marked with "-", if it lies on the other points of the opening boundary it is marked with
" + ". If a point of an opening boundary is in the tensile condition, the value of stress is marked
with "-", if it is in the compressive condition it is marked with "+".
-.
- 13 -
F8 must be pressed, if it lies on the support line, then F7.
The program DIF calculates V = 0'1 - 0'2 using a linear interpolation method. The
formula for interpolation is:
where V. --------- calculated value of V I .
Vb and V f - known values of V in points with coordinates of B and F
correspondingly (points B and F lie on isolines);
Xi ---------- point where V is calculated (B < Xi < F) (Fig. 5).
The results of calculations between 19 and 31 lines and between 21 and 65 columns are
shown in Appendix ll.
Calculations of the sum of principal stresses is made by the program SUM. Calculations are
based on the numerical solution of the Laplace equation:
where U = 0'1 + 0'2 at the points with coordinates X and Y
Initial data for the solution are:
- U on the boundary of the model (is known)
- U on the boundary of openings (is known because U = V on the free boundary). All
these data were entered in the program INDATA.
The numerical solution is based on the approximation method. An initial approximation is
made for all points necessary to calculate; it is made automatically as the average value of U at
boundary points.
'.
"
I ~ I t ~ I j. I·~" \ \., \ \. j .. : \ \ \ \ 1\·\ I I I i I I Iii t i : i i ~-- -1-·' . U,I t1: ..~ .. "I
- ~ I--'''':-I-~ +..:::. d;;"~;;'~r+-" :; k I:;' I:·;;; '1..' I'f:" r>:: k+"Pl'-tFH .
~. c_~;H-~tl r~-~-~-~-~l~~:~t --Il ti~ II t 1- f 11 I I I I I I 1_1 ~-Fbftbl .. -t;_-· ."~;"-o~-"~-;E::"=;~:U~;-:;~::"L:::,: f:<_;~:~ "'T~~F+-:-F- -: ... ~ ~·--f -f·· I'~" -1"-1 r I
~=t~~"~i~ii~ii:~'if:~5f~~~' ,:c~~~f--~-+~-~;~l-I ~iit:';~~~~~~ ... ~~-=~~~~~~t~~~i~~~f£~I~~~'~T~ ~ ;::~ --I-:"'=---7~ ~rl--l [¥r;~~~~ ~~~~~~"~~.~~_ ~~~3~~~~;;~~i"j~~~::t~~<~~~ ~~~; ~.':~:f:~;>~~~~ ~~~;~ ;:~~~. ;i~~ ... f.+ '.-'-" : .. -~ ~~f:~oc[: ~,j~ .~_:F--:~Y~~~~~~;' ~~_i: ~~~:;S~Jt;. ;~~~~~~~~ ~{~: '~.::' ~,::;~: ~~~~ f:'-:;:' --}- - "'--f--I
~rr~rrr~'O~~'"'T-m~llfC'~~~:'~:l~+2~rr I ~ 'L ~- ~' I I 7:?fc··":·c~:i1J'7~·::-:j~,tJ\~:!~r~1~1i0?sV.}l?fv~>~=~~i+C!~?:;~-·:-··~r~ --~r"~"'I--;-- "':'H--- -.,,~.:.-
~ ~ ~L .... I
.... ,;..., ... f-t ...... I-··· 1-""·-\'.-' ... · I r---
FIGURE 5. Scheme of calculations: a) difference in principal stresses; b) sum of principal
stresses
~ .a;:..
by the following fonnula:
where U1 , U2 , U3 , U4 - values of U at neighboring points (Fig. 5):
Uo - the calculated value of U.
When calculations at all points are completed they are compared to the preliminary values.
Calculations are complete if:
a) the deviation from preliminary values is not greater than the accuracy of the
results;
These conditions are entered by the researcher.
The obtained values are the solution of the Laplace equation. If these conditions are not met
the obtained values are used as the initial values of the next approximations until one of them
is satisfied.
Values of the sum of principal stresses are presented in Appendix III.
After obtaining the stresses it is possible to obtain in-situ stresses (Sedov, 1973) (equation
4).
(4)
0 - average volume weight of rocks
H - depth of openings
The in-situ stresses Uis are real stresses and must be compared with limiting stresses for
- 16 -
determining the LSA.
An estimation of the LSA can be made using the values of V and U by the program '
LSAP.
Firstly this program calculates in-situ stresses by equation 1; then it compares real and
limiting stresses using the Mohr theory and it gives a graphic representation of the LSA (Fig .
6).
- Uniaxial compressive strength - ac
- Average volume weight of rocks - J
In the present case of the Mount Scopus tunnel these parameters are taken from Arkin et al.
(1993) .
'0 = 18 KN/m3
Once a distribution of stresses is obtained, one can obtain a range of LSA for various values
of ac' apf' H, O. Figure 6 shows the black color area - the LSA, the area with points - stable area and spaces ,
which represent tunnels. This picture shows that the LSA propagates from the horizontal line
. . . .
. .. . ..
. . . .
. . . . . .... . . . .
..
. , . .
. . .
,',
.. . . , . . .
.. .
" I ••• , .. , ....
FIGURE 6. Limiting state area (LSA) near tunnels. (black color - LSA, points - stable
area, spaces - tunnels)
-....l
- 18-
the characteristic linear size of a tunnel), has the width .... O.5L and the LSA also occurs in all
squares of the pillar between the tunnels.
Consequently, it is neccesary:
a) to increase the width of the pillar and to plan a support
considering the LSA in the pillar;
or
b) to choose another design, for example one tunnel instead of two in order to eliminate
the interaction of them.
1. The suggested method of optical simulation together with computer calculations gives a
possibility of obtaining the LSA quickly and with a high accuracy.
2. In tunnel planning knowing the LSA is prerequisite to choosing the forms of tunnels, the
-.
Arkin, Y., Michaeli, L. and Wolfson, N. (1993). Har Hazofnn
tunnel geological and geotechnical site investigation.
Usrael Geological Survey. Rep. GSI 18/93, Jerusalem, 62 p.
Frocht, M. (1948). Photoelasticity, New York, Wiley, 2 vol., 535 p.
Gordon, J. (1968). The New Science of Strong Materials or Why We
don't Fall Through the Floor. Penguin Books
Harmondsworth, 272 p.
(in Russian).
Liebowitz, H. (1976). Fracture. An Advanced Treatise. School of Engineering and Aplplied
Science. The George Washington University, Washington, D. C.
Academic Press. New York and London, 7 vol., 4235 p.
Malkis, N. (1984). Epoxy-elastic - the New Matherial for the Photo-elastic Experiment.
Skochinsky Mining Institute, Moscow, 25 p., (in Russian).
Muller, I. (1963). Der Felsbau. Salzburg, Enster Band. Theoretischer Teel.
Ferdinand Enke Verlag Stuttgart, 256 p., (in German).
Parton, V. (1990). Fracture Mechanics. From Theory to Ptactice. "NAUKA", Moscow, 240 p,
(in Russian).
Sedov, L. (1973). Mechanics of Continuous Medium. "NAUKA", 2 vol.,
Moscow, 1125 p., (in Russian) .
-.
!
INITIAL DATA FILENAME - - - - - - - -indatal.dat DIFFERENCE IN STRESSES DATA FILENAME dif1.dat SUM OF STRESSES DATA FILENAME - - -suml.dat ADDITIONAL DATA FILENAME - - - - - - ad1.dat
INITIAL DATA FILENAME - indata1.dat
QUANTITY OF LINES = 55 QUANTITY OF COLUMNS = 85 QUANTITY OF SUPPORT LINES = 33 QUANTITY OF SUPPORT POINTS = 932 BOUNDARY DIFFERENCE IN STRESSES = 1
SUPPORT LINES
ORDINARY NUMBER
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33
SUPPORT LINE
2 6 9 12 15 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 42 45 49 52
SUPPORT POINTS AND STRESSES
ORDINARY NUMBER SUPPORT POINT STRESS
1 26 1 2 43 2 3 60 1 4 F7 5 F8 6 Fa 7 Fa 8 8 4 9 . 14 3 10 20 2
.u ";0 1 12 33 2 13 40 3 14 43 3 15 46 3 16 53 2 17 60 1 18 66 2 19 72 3 20 78 4 21 F7 22 FB 23 F8 24 12 4 25 ]8 3 26 22 2 27 27 1 28 32 2 29 35 3 30 41 4 31 43 4 32 45 4 33 51 3 34 54 2 35 59 1 36 64 2 37 68 3 38 74 4 39 F7 40 Fa 41 F8 42 3 4 43 8 4.5 44 17 4 45 21 3 46 23 2 47 27 1 48 31 2 49 33 3 50 36 4 51 41 5 52 43 5 53 45 5 54 SO 4 55 53 3 56 55 2 57 59 1 58 63 2 59 65 3 60 69 4 61 78 4.5 62 83 4 63 F7 64 FB 65 F8 .. 66 4 4 67 12 5 68 16 5 69 21 4 70 23 3 71 25 Z 72 26 1 73 28 0 74 30 1 75 31 2 76 -. ::12 3
77 J4 4 78 35 5 79 40 6 80 43 6 81 46 6 82 51 5 83 52 4 84 54 3 85 55 2 86 56 1 87 58 0 88 60 1 89 61 2 90 63 3 91 65 4 92 70 5 93 74 5 94 82 4 95 F7 96 F8 97 5 4 98 11 5 99 16 5.4 100 21 5 101 23 4 102 24 : 3.2 103 25 2.45 104 26 1.5 105 27 .5 106 29 a 107 30 1 108 31 2 109 32 3 110 33 4 111 34 5 112 36 6 113 40 6.2 114 43 6.2 115 46 6.2 116 50 6 117 52 5 118 53 4 119 54 3 120 55 2 121 56 1 122 57 0 123 59 .5 124 60 1.5 125 61 2.45 126 62 3.2 127 63 4 128 65 5 129 70 5.4 130 75 5 131 81 4 132 F7 133 6 4 134 12 5 135 15 5.5 136 19 5.8 137 22 5 138 -.. 23 4.3 139 24 3.5 140 ?C; ? 1
1'13 "'4" -'-' 0 144 :10 1 145 31 2 146 32 3 147 33 4 148 34 5 149 35 5.9 150 40 6.4 151 43 6.4 152 46 6.4 153 51 5.9 154 52 5 155 53 4 156 54 3 157 55 2 158 56 1 159 58 0 160 59 1 161 60 2 162 61 2.7 163 62 3.5 164 63 4.3 165 64 5 166 67 5.8 167 71 5.5 168 74 5 169 80 4 170 F7 171 6 4 172 12 5 173 17 6 174 20 6 175 22 5.3 176 23 4.8 177 24 4 178 25 3 179 26 1.8 180 +27 1 181 +28 -1 182 +29 -1 183 +30 1 184 +31 1.9 185 32 2.9 186 33 4 187 34 5 188 35 6 189 38 6.4 190 41 6.6 191 "3 6.65 192 45 6.6 193 48 6.4 194 51 6 195 52 -.
5 196 53 4 197 54 2.9 198 +55 1.9 199 +56 1 200 -t-57 -1 201 +58 -1 202 +59 1 203 60 1.8 204 61 3 205 -. 62 4 206 63 4.8 207 fi4 r; 1
ZU::, b~ 6 210 74 5 211 80 4 212 F7 213 .,
3 L.
214 6 4 215 12 5 216 17 6 217 19 6.1 218 21 6 219 22 5.9 220 23 5 221 24 3.8 222 +25 2 223 -26 1.8 224 +32 2 225 +33 3 226 34 5 227 35 6 228 39 6.65 229 43 6.85 230 47 6.65 231 51 6 232 52 5 233 +53 3 234 -54 2 235 +60 1.8 236 +61 2 237 62 3.8 238 63 5 239 64 : 5.9 240 65 6 241 67 6.1 242 69 6 243 74 5 244 80 4 245 84 3 246 'n 247 2 3 248 7 4 249 13 5 250 17 6 251 19 6.3 252 21 6 253 22 6 254 +23 5 255 -24 3.5 256 +34 5 257 +35 6 258 43 7 259 +51 6 260 -52 5 261 +62 3.5 262 +63 5 263 64 6 264 65 6 265 67 6.3 266 69 6 267 73 5 268 79 4 269 84 3 270 F7 271 3 3 272 8 " 273 14 5 274 0. 17 6
275 18 6 276 20 6.4 277 -22 6 278 +36 6.5 279 ~1 7 280 42 7 281 43 7.25 282 44 7 283 45 7 284 -50 6.5 285 +64 6 286 66 6.4 287 68 6 288 69 6 289 72 5 290 78 4 291 83 3 292 F7 293 3 3 294 9 4 295 15 5 296 18 6 297 -22 6.5 298 +36 6.7 299 41 7 300 43 7.5 301 45 7 302 -50 6.7 303 +64 6.5 304 68 6 305 71 : 5 306 77 4 307 83 3 308 F7 309 4 3 310 10 4 311 16 5 312 18 6 313 -21 6.7 314 +37 6.9 315 40 7 316 42 7.75 317 43 8 318 44 7.75 319 46 7 320 -49 6.9 321 +65 6.7 322 68 6 323 70 5 324 76 4 325 82 3 326 F7 327 4 3 328 12 4 329 17 5 330 -21 6.8 331 +37 7 332 41 7.9 333 42 8.100001 334 43 8.2 335 14 8.100001 336 45 7.9 337 -49 7 338 +65 6.8 339 69 ~ 340 74 4
341 a2 3 . 342 F7
343 5 3 344 14 4 345 17 4.9 346 18 5.1 347 19 6.1 348 -21 6.9 349 +37 7.1 350 41 8 351 43 8.399999 352 45 8 353 -49 7.1 354 +65 6.9 355 67 6.1 356 68 5.1 357 69 4.9 358 72 4 359 81 3 360 F7 361 5 3 362 16 4 363 18 5 364 19 6 365 -21 7 366 +37 7.1 367 40 7.9 368 43 8.5 369 46 7.9
.. 370 -49 7.1 371 +65 : 7 372 67 6 373 68 5 374 70 4 375 81 3 376 F7 377 5 3 378 14 4 379 17 4.7 380 18 4.9 381 19 6 :l82 -21 7 383 +37 7.1 384 41 8.100001 385 43 8.399999 386 45 8.100001 387 -49 7.1 J88 +65 7 389 67 6 390 68 4.9 391 69 4.7 392 72 4 393 81 3 394 F7 395 5 3 396 12 4 397 17 5 398 18 6 399 19 6.5 400 -21 7 401 +37 7.1 402 40 7.5 403 42 7.9 404 43 8.100001 405 44 7 9 406 46 7.5 . .
';\)7 -"9 7.J. 408 +65 7 409 117 6.5 410 68 6 411 69 5 412 74 4 413 81 3 414 F7 415 5 3 416 11 4 417 16 5 418 ]8 6 419 21 7 420 -22 8 421 +36 8 422 39 7 423 41 7 424 42 7.3 425 43 7.8 426 44 7.3 427 45 7 428 47 7 429 -50 8 430 +64 8 431 65 7 432 68 6 433 70 5 434 75 4 435 81 3 .. 436 F7 437 4 3 438 10 4 439 15 5 440 17 5.9 441 18 6 442 19 6.7 443 20 7 444 21 8 445 +22 10 446 +23 6 447 +24 2.5 448 +25 0 449 +26 -1.5 450 +27 -1. 75 451 +28 -1.9 452 +29 -2 453 +30 -1.8 454 +31 -1.5 455 +32 0 456 +33 1.8 457 +34 2.5 458 +35 6 459 +36 10 460 37 8 461 38 7.1 462 39 7 463 40 7.1 464 42 7 465 43 7.1 466 44 7 467 46 7.1 468 47 7 469 48 7.1 470 49 8 471 +50 10 472 '. +51 6
473 ... 52 2.5 474 ~53 1.8 475 +54 a 476 +55 -1.5 477 +56 -1.8 478 +57 -2 479 +58 -1.9 480 +59 -1. 75 481 +60 -1. 5 482 +61 a 483 +62 2.5 484 +63 6 485 +64 10 486 65 8 487 66 7 488 67 6.7 489 68 6 490 69 5.9 491 71 5 492 76 4 493 02 3 494 F7 495 4 3 496 9 4 497 14 5 498 17 6 499 19 7 500 20 7.7 501 21 8.100001 .. 502 22 8 503 23 6 504 24 4 505 25 2.5 506 26 1.1 507 29 1 508 31 1 509 32 1.4 510 33 2.5 511 34 4 512 35 6.2 513 36 8.3 514 37 8.399999 515 38 7.5 516 39 7 517 ~o 7 518 43 7.2 519 46 7 520 47 1 521 48 7.5 522 49 8.100001 523 50 8.3 524 51 6.2 525 52 2 526 53 2.5 527 54 1.4 528 55 1 529 57 1 530 60 1.1 531 61 2.5 532 62 4 533 63 6 534 64 8 535 65 8.100001 536 66 7.7 537 67 7 538 . 69 6
539 72 5 540 77 4 541 82 3 542 F7 543 4 3 544 9 4 545 13 5 546 16 6 547 17 6 548 18 6.7 549 19 7 550 21 7.S 551 22 7 552 23 6 553 24 4.2 554 25 3 555 27 1 556 28 .2 557 29 0 558 30 .2 559 31 .9 560 32 1.8 561 33 3 562 34 4.2 563 35 6 564 36 7.25 565 37 7.5 566 38 7.5 567 40 7 568 43 7.5 569 46 7 570 48 7.5 571 1\9 7.5 572 50 7.25 573 51 6 574 52 4.2 575 53 3 576 51\ 1.8 577 55 .9 578 56 .2 579 57 0 580 58 .2 581 59 1 582 61 3 583 62 4.2 584 63 6 585 64 7 586 65 1.5 587 67 7 588 68 6.7 589 69 6 590 70 6 591 73 5 592 77 4 593 82 3 594 F7 595 4 3 596 8 4 597 12 5 598 16 6 599 20 7 600 23 5.45 601 24 4.1 602 27 1.1 603 28 .2 604 ~g 0 .
uO!) ~u .2 606 31 .9 607 32 2 608 34 4 609 35 5.8 610 37 6.9 611 40 7 612 43 7.1 613 46 7 614 49 6.9 615 51 5.8 616 52 4 617 54 2 618 55 .9 619 56 .2 620 57 0 621 58 .2 622 59 1.1 623 62 4.1 624 63 5.45 625 66 7 626 70 6 627 74 5 628 78 4 629 82 3 630 F7 631 3 3 632 8 4 633 12 5
.. 634 17 6 635 19 6.35 636 21 ' 6.1 637 7.2 5.9 638 23 5 639 27 1 640 28 .2 641 29 0 642 30 .2 643 31 1 644 34 4 645 35 5.25 646 36 6 647 40 6.9 648 43 6.9 649 46 6.9 650 50 6 651 51 5.25 652 52 4 653 55 1 654 56 .2 655 57 0 656 58 .2 657 59 1 658 63 5 659 64 5.9 660 65 6.1 661 67 6.35 662 69 6 663 74 5 664 78 1\ 665 83 3 666 F7 667 3 3 668 7 4 669 12 5 670 17 6 -.
C1 ZO :;).~
672 22 5 673 25 2.7 674 26 2 675 28 .2 676 29 0 677 30 .4 678 31 1.1 679 32 2 680 34 3.9 681 35 4.8 682 37 6 683 40 6.5 684 43 6.7 685 46 6.5 686 49 6 687 51 4.8 688 52 3.9 689 54 2 690 55 1.1 691 56 .4 692 57 0 693 58 .2 694 60 2 695 61 2.7 696 64 5 697 66 5.9 698 69 6 699 74 5 700 79 4 701 83 ,3 702 F7 703 3 3 704 7 4 705 12 5 706 15 5.5 707 18 5.8 708 21 5 709 23 4 710 26 1.9 711 27 1 712 29 .3 713 31 1.2 714 32 2 715 33 2.9 716 34 3.7 717 35 4.2 718 36 5 719 39 6 720 43 6.45 721 47 6 722 50 5 723 51 4.2 724 52 3.7 725 53 2.9 726 54 2 727 55 1.2 728 57 .3 729 59 1 730 60 1.9 731 63 4 732 65 5 733 68 5.8 734 71 5.5 735 74 5 736 79 4
7'J7 03 3 738 F7 739 3 3 740 7 4 741 12 5 742 15 5.3 743 20 5 744 21 4.9 745 27 1.1 746 29 .5 747 30 .9 748 32 2 749 35 4 750 37 5 751 41 6 752 43 6.2 753 45 6 754 49 5 755 51 4 756 54 2 757 56 .9 758 57 .5 759 59 1.1 760 65 4.9 761 66 5 762 71 5.3 763 74 5 764 79 4 765 83 3 766 F7 767 3 3 768 7 4 769 12 5 770 19 5 771 22 4 772 23 3.25 773 24 2.8 774 25· 2.1 775 26 1.8 776 27 1.1 777 29 .9 778 30 1.1 779 32 2 780 35 3.9 781 38 5 782 40 5.4 783 43 5.9 784 46 5.4 785 48 5 786 51 3.9 787 54 2 788 56 1.1 789 57 .9 790 59 1.1 791 60 1.8 792 61 2.1 793 62 2.8 794 63 3.25 795 64 4 796 67 5 797 74 5 798 79 4 799 83 3 800 F7 801 3 3 802 -, 6 4
a03 13 5 804 17 5 805 21 4 806 23 3.1 807 24 2.8 808 25 2.3 809 26 1.9 810 27 1.4 811 29 1 812 30 1.1 813 32 2 814 34 3 815 36 4 816 39 5 817 42 5.5 818 43 5.7 819 44 5.5 820 47 5 821 50 4 822 52 3 823 54 2 824 56 1.1 825 57 1 B26 S9 1.4 827 60 1.9 828 61 2.3 R29 62 2.8 830 63 3.1 831 65 4 832 69 S 833 73 5 834 80 4 835 83 3 836 F7 837 Fa 838 3 3 839 6 " 840 12 5 841 19 4 842 22 3.1 843 23 2.9 844 25 2 845 29 1.3 846 32 2 847 34 2.9 848 35 3.1 849 38 4.1 850 40 4.1 851 43 5 852 46 4.5 853 48 4.1 854 51 3.1 855 52 2.9 856 54 2 857 57 1.3 858 61 2 859 63 2.9 860 64 3.1 861 67 4 862 74 5 863 80 4 864 83 J 865 F7 866 F8 867 Fa 868 . 2 3
-.
01-09-1994
10:19:09
LINE: 19 21 5.65 22 5.3 23 4.8 24 4 25 3 26 1.8 27 1 28 1 29 1 30 1 31 1.9 32 2.9 33 4 34 5 35 6 36 6.133333 37 6.266667 38 6.4 '39 6.466667 40 6.533334 41 6.6 42 6.625 43 6.65 44 6.625 45 6.6 46 6.533334 47 6.466667 48 6.4 49 6.266667 50 6.133333 51 6 52 5 53 4 54 2.9 55 1.9 56 1 57 1 58 1 59 1 60 1.8 61 3 62 4 63 4.8 64 5.3 65 5.65
LINE= 20 21 6 22 5.9 23 5 24 3.8 25 2 26 1.8 27 0 28 0 29 0 30 0 31 0 32 2 33 3 34 5 35 6 36 6.1625 37 6.325 38 6.4875 39 6.65 40 6.7 41 6.75 42 6.8 43 6.85 44 6.8 45 6.75 46 6.7 47 6.65 48 6.4875 49 6.325 50 6.1625 51 6 52 5 53 3 54 2 55 0 56 0 57 0 58 0 59 0 60 1.8 61 2 62 3.8 63 5 64 5.9 65 6
LINE= 21 21 6 22 6 23 5 24 3.5 25 0 26 0 27 0 28 0 29 0 30 0 31 0 ~,
.)- 0 33 0 34 5 35 6 36 6.125 37 6.25 38 6.375 39 6.5 40 6.625 41 6.75 42 6.875 43 7 44 6.875 45 6.75 46 6.625 47 6.5 48 6.375 49 6.25 50 6.125 51 6 52 5 53 0 54 0 55 0 56 0 57 0 58 0 59 0 60 0 61 0 62 3.5 63 5 64 6 65 6
LINE: 22 ~1 6.2 22 6 23 0 24 0 25 0 26 0 27 0 28 0 29 0 30 0 31 0 32 0 33 0 34 0 35 0 36 6.5 37 6.6 38 6.7 39 6.8 40 6.9 41 7 42 7 43 7.25 44 7 45 7 46 6.9 47 6.8 48 6.7 49 6.6 50 6.5 51 0 52 0 53 0 54 0 55 0 56 0 57 0 58 0 59 0 60 0 61 0 62 0 63 0 64 6 65 6.2
LINE= 23 21 6.375 22 6.5 23 0 24 0 25 0 26 a 27 0 28 a 29 0 30 0 31 0 32 0 33 0 34 0 35 0 36 6.7 37 6.76 38 6.82 39 6.88 40 6.94 41 7 42 7.25 43 7.5 44 7.25 45 7 46 6.94 47 6.88 48 6.82 49 6.76 50 6.7 51 0 52 0 53 0 54 0 55 0 56 0 57 0 58 0 59 0 60 0 61 0 62 0 63 0 64 6.5 65 6.375
UNE= 24 21 6.7 22 0 23 0 24 0 25 0 26 0 27 0 28 0 29 0 30 0 31 0 32 0 33 0 34 0 35 0 36 0 37 6.9 38 6.933334 39 6.966667 40 7 41 7.375 42 7.75 43 8 44 7.75 45 7.375 46 7 47 6.966667 48 6.933334 49 6.9 50 0 51 0 52 0 53 0 54 0 55 a 56 0 57 0 58 a • 59 a 60 a 61 0 62 0 63 0 64 0 65 6.7
LINE= 25 21 6.8 22 0 23 0 24 0 25 a 26 0 27 a 28 0 29 0 30 0 31 0 32 0 33 0 34 0 35 0 36 0 37 7 38 7.225 39 7.45 40 7.675 41 7.9 42 8.100001 43 8.2 44 8.100001 45 7.9 46 7.675 47 7.45 48 7.225 49 7 50 0 51 0 52 0 53 0 54 0 55 0 56 a 57 0 58 0 59 0 60 0 61 0 62 0 63 0 64 0 65 6.8
LINE= 26 21 6.9 22 0 23 0 24 0 : 25 0 26 0 27 0 28 0 29 0 30 0 31 0 32 0 33 0 34 0 35 0 36 0 37 7.1 38 7.325 39 7.55 40 7.775 41 8 42 8.199999 43 8.399999 44 8.199999 45 8 46 7.775 47 7.55 48 7.325 49 7.1 50 0 , 51 0 52 0 53 0 54 0 55 0 56 0 57 0 ~., ., ,. ... 0 60 1'1 61 0 62 0 .IV .., oJ::! ... 63 0 64 0 65 6.9
LINE= 27 21 7 22 0 23 0 24 0 25 0 26 0 27 0 28 0 29 0 30 a 31 0 32 a 33 0 34 0 35 0 16 0 37 7.1 38 7.366667 39 7.633333 40 7.9 41 8.100001 42 8.3 43 8.5 44 8.3 45 8.100001 46 7.9 47 7.633333 48 7.366667 49 7.1 50 0 51 0 52 0 53 a 54 a 55 0 56 a 57 0 58 0 59 0 60 0 61 0 62 0 63 0 64 0 65 7
-.
LINE= 29 21 7 22 0 23 0 24 0 25 0 26 0 27 0 28 0 29 0 30 0 31 0 32 0 33 0 34 0 35 0 36 0 37 7.1 38 7.233333 39 7.366667 40 7.5 41 7.7 42 7.9 43 8.100001 44 7.9 45 7.7 46 7.5 47 7.366667 48 7.233333 49 7.1 50 0 51 0 52 0 53 0 54 0 55 0 56 0 57 0 58 0 59 0 60 0 61 0 62 0 63 0 64 0 65 7
LINE= 30 21 7 22 8 23 0 24 0 25 0 26 0 27 0 28 0 29 0 30 0 31 0 32 0 33 0 34 0 35 0 36 8 37 7.666667 38 7.333334 39 7 40 7 41 7 42 7.3 43 7.8 44 7.3 45 7 46 7 47 7 48 7.333334 49 7.666667 50 8 51 0 52 0 53 0 54 0 55 0 56 0 57 0 58 0 59 0 60 0 61 0 62 0 63 0 64 8 65 7
LINE= 31 21 8 22 10 23 6 24 2.5 25 0 26 1.5 27 1.75 28 1.9 29 2 30 1.8 31 1.5 32 0 33 1.8 34 2.5 35 6 36 10 37 8 38 7.1 39 7 40 7.1 41 7.05 42 7 43 7.1 44 7 45 7.05 46 7.1 47 7 48 7.1 49 B 50 10 51 6 52 2.5 53 1.8 54 0 55 1.5 56 1.8 57 2 58 1.9 59 1.75 60 1.5 61 0 62 2.5 63 6 64 10 65 8
- 41 -
SUM OF PRINCIPAL STRESSES DATA FILENAME -sum1.dat
ACCURACY = .000001 MAXIMUM NUMBER OF ITERATIONS = 100 MAXIMUM TIME FOR ITERATIONS = 1800 sec
NUMBER OF ITERATION ACCURACY
1 .2579671 7 .1253407 3 8.385832E-02 4 6.438735E-02 5 .0528715 6 4.521566E-02 7 .0397608 8 3.568638E-02 9 .0325324 10 3.001802E-02 11 2.796171E-02 12 2.624168E-02 13 2.477359E-02 14 2.349809E-02 15 2.237258E-02 16 2.136609E-02 17 2.045558E-02 18 1.962392E-02 19 1.885802E-02 20 1.814786E-02 21 1. 748548E-02 22 1. 686468E -02 23 1.6<.'8046E-02 ?I! ~ ~7~!379E-O~
25 1.520625E-02 26 1.4710]3E-02 27 1.423805E-02 28 1.378806E-02 29 .0133584 30 1. 2911767E-02 31 .0125545 32 1. 217779E -02 .,., 1. 181653E-02 oJJ
.
37470.72 37492.96 31515.26 37537.61 31559.97 31582.32 37604.68 31627.03 37649.44 37671.8 37694.15 37716.56 37738.92 37761.27 37783.63 37806.04 37828.39 37850.75 37873.1 37895.45 37917.81 37940.16 37962.52 37984.87 38007.23 38029.58 38051.88 38074.24 38096.59 38118.95 38141. 3 38163.66 38185.96 38208.31 38230.61 38252.96 38275.32 38297.62 38319.97 38342.27 38364 .63 38386.93 38409.28 38431.58 38453.88 38476.24 38498.54 38520.84 38543.19 38565.49 38587.79 38610.09 38632.39 38654.74
55 0.531623£-03 38677.04 ~6 6.J75626E-03 38699.34 57 6.224759E-03 38721.64 S8 6.078807E-03 38743.94 59 5.937601E-03 38766.24 GO 5.800948E-03 38788.54 61 5. 668677E -03 38810.84 62 5.540639E-03 38833.14 63 5.416642E-03 38855.44 64 5.296559E-03 38877.74 65 5.180246E-03 38899.99 66 5.067561E-03 38922.29 67 4.958372E-03 38944.59 68 4.852533E-03 38966.89 69 4.749945[-03 38989.19 70 4.65048E-03 39011.43 71 4.554024E-03 39033.73 72 4.460457E-03 39056.03 73 4.369697E-03 39078.33 74 4.281623E-03 39100.57 75 4.196143E-03 39122.87 76 4.113183E-03 39145.12 77 4.01264E-03 39167.42 78 3.9S441E-03 39189.66 79 3.878434E-03 39211.96 80 3.80464E-03 39234.21 81 3.732925E-03 39256.51
, LINE= 19
21 3.459344 22 3.386592 23 3.129587 24 2.632545 25 2.04818 26 1.597349 27 1 28 -1 29 -1 30 1 31 1.9 32 2.21389 33 2.812406 34 3.440774 35 3.895274 36 4.101505 37 4.1571 :!3 4.130227 39 4.0d9313 1)0 4.035451 41 3.991061 42 3.964307 43 3.959197 44 3.976541 45 4.014266 46 4.067235 47 4.126431 48 4.176977 49 4.19384 50 4.133287 51 3.920524 52 3.459476 53 2.824266 54 2.22083 55 1.9 56 1 57 -1 58 -1 59 1 60 1.597676 61 2.048631 62 2.633479 63 3.131833 64 3.391471 65 3.468561
LINE= 20 21 4.008496 22 4.025914 23 3.783531 24 2.979019 25 2 26 1.8 27 0 28 0 29 0 30 0 31 0 32 2 ~3 3 34 4.029145 35 4.677979 36 4.791392 37 4.730757 38 4.620115 39 4.504739 40 4.404445 41 4.329457 .. 42 4.285322 43 4.274635 44 4.297701 45 4.352768 46 4.435945 47 4.54068 48 4.656177 49 4.762635 50 4.815622 51 4.693339 52 4.038204 53 3 54 2 . 55 0 56 0 57 0 58 0 59 0 60 1.8 61 2 62 2.979356 63 3.784794 64 4.029507 65 4.016345
LINE= 21 21 4.680554 22 4.926617 23 5 24 3.5 25 0 26 0 27 0 28 0 29 0 30 0 31 0 32 0 33 0 34 5 35 6 36 5.663458 37 5.367164 38 5.123818 39 4.925921 40 4.771909 41 4.662722 42 4.599476 43 4.58265 44 4.611863 45 4.685862 46 4.80268 47 4.960016 48 5.156175 49 5.392516 50 5.677035 51 6 52 5 53 0 54 0 55 0 56 0 57 0 58 0 59 0 60 0 61 0 62 3.5 63 5 64 4.928592 65 4.686739
LINE= 22 21 5.400857 22 6 23 0 24 0 25 0 26 0 27 0 28 0 29 0 30 0 31 0 32 0 33 0 34 0 35 0 36 6.5 37 5.961131 38 5.597645 39 5.32309 40 5.117749 41 4.975442 42 4.893576 43 4.870729 44 4.905872 45 4.998209 46 5.147484 47 5.354906 48 5.625693 49 5.979033 50 6.5 51 0 52 0 53 0 54 0 55 0 56 0 57 0 58 0 59 0 60 0 • 61 0 62 0 63 0 64 6 65 5.405218
LINE= 23 21 6.002072 22 6.5 . 23 0 24 0 25 0 26 0 27 0 28 0 29 0 30 0 31 0 32 0 33 0 34 0 35 0 36 6.7 37 6.388096 38 5.996486 39 5.669813 40 5.423035 41 5.252639 42 5.154655 43 5.126529 44 5.166799 45 5.274929 46 5.451611 47 5.699226 48 6.020191 49 6.399806 50 6.7 51 0 52 0 53 0 54 0 55 0 56 0 57 0 58 0 59 0 60 0 61 0 62 0 63 0 64 6.5 65 6.004936
LINE= 24 21 6.7 22 0 23 0 24 0 25 0 26 0 27 0 28 0 29 0 30 0 31 0 32 0 33 0 34 0 35 0 36 0 37 6.9 38 6.342603 39 5.954321 40 5.673696 41 5.481826 42 5.371448 43 5.339206 44 5.383427 45 5.503646
<I 46 5.701194 47 5.981487 48 6.3616 49 6.9 50 0 51 0 52 0 53 0 54 0 55 0 56 0 57 0 58 0
-.
LINE= 25 21 6.8 22 0 23 0 24 0 25 0 26 0 27 0 28 0 29 0 30 0 31 0 32 0 33 0 34 0 35 0 36 0 37 7 38 6.530793 39 6.148061 40 5.85678 41 5.65348 42 5.535296 43 5.500301 44 5.54714 45 5.674941 46 5.883532 47 6.173915 48 6.548037 49 7 50 0 51 0 52 0 53 0 54 0 55 0 56 0 57 0 58 0 59 0 60 0 61 0 62 0 63 0 64 0 65 6.8
LINE= 26 21 6.9 22 0 23 0 24 0 25 0 26 0 27 0 28 0 29 0 30 0 31 0 32 0 33 0 34 0 35 0 36 0 37 7.1 38 6.643191 39 6.266793 40 5.972698 41 5.763684 42 5.640884 43 5.604164 44 5.65265 45 5.784955 46 5.999087 47 6.292081 48 6.659825 49 7.1 50 a 51 0 52 0 53 0 54 0 55 0 56 0 57 0 58 0 59 0 60 0 61 0 62 0 63 0 64 0 65 6.9
LINE= 27 21 7 22 0 23 0 24 0 25 0 26 0 27 0 28 0 29 0 30 0 31 0 32 0 33 0 34 0 35 0 36 0 37 7.1 38 6.685705 39 6.319531 40 6.024235 41 5.811235 42 5.68521 43 5.647312 44 5.696971 45 5.832504 46 6.050638 47 6.344856 48 6.702379 49 7.1 50 0 51 0 52 0 53 0 54 0 55 0 56 0 57 0 58 0 59 0 60 0 61 0 62 0 63 0 64 0 65 7
LINE= 28 21 7 22 0 23 0 24 0 25 0 26 0 27 0 28 0 29 0 30 0 31 0 32 0 33 0 34 0 35 0 36 0 37 7.1 38 6.690791 39 6.317882 40 6.014317 41 5.795465 42 5.666299
-.
LINE= 29 21 7 22 0 23 0 24 0 25 0 26 0 27 0 28 0 29 0 30 0 31 0 32 0 33 0 34 0 35 0 36 0 37 7.1 38 6.670882 39 6.263924 40 "5.940935 41 5.713952 42 5.582178
~ 43 5.542845 44 5.594136 45 5.735779 46 5.968545 47 6.291359 48 6.690222 49 7.1 50 0 51 0 S2 0 53 0 54 0 55 0 56 0 57 0 58 0 59 0 60 0 61 0 62 0 63 0 64 0 65 7
LINE= 30 21 7.11637 22 8 23 0 24 0 25 0 26 0 27 0 28 0 29 0 30 0 31 0 32 0 33 0 34 0 35 0 36 8 37 7.308595 38 6.641652 39 6.144015 40 5.793439 41 5.561613 42 5.431066 43 5.392718 44 5.443188 45 5.583933 46 5.822218 47 6.173914 48 6.666116 49 7.32103 50 8 51 0 52 0 53 0 54 0 55 0 56 0 57 0 58 0 59 0 60 0 61 0 62 0 63 0 64 8 65 7.118916
LINE= 31 21 7.2583 22 10 23 6 24 2.5 2S 0 26 -1. 5 27 -1.75 28 -1.9 29 -2 30 -1.8 31 -1.S 32 0 33 1.8 34 2.5 35 6 36 10 37 7.501726 38 6.451'725 39 5.896238 40 5.549846 41 5.332874