32
Gesine Steudle, Ingmar Müller, and Oliver Benson Humboldt-Universität zu Berlin Institut für Physik, AG Nano-Optik http://www.physik.hu-berlin.de/nano SFB 787 – Teilprojekt C2 19.06.2009 Superconducting Superconducting Single Photon Single Photon Detectors Detectors

Gesine Steudle, Ingmar Müller, and Oliver Benson Humboldt-Universität zu Berlin Institut für Physik, AG Nano-Optik

  • View
    215

  • Download
    1

Embed Size (px)

Citation preview

Page 1: Gesine Steudle, Ingmar Müller, and Oliver Benson Humboldt-Universität zu Berlin Institut für Physik, AG Nano-Optik

Gesine Steudle, Ingmar Müller, and Oliver Benson

Humboldt-Universität zu Berlin

Institut für Physik, AG Nano-Optik

http://www.physik.hu-berlin.de/nano

SFB 787 – Teilprojekt C2 19.06.2009

Superconducting Superconducting Single Photon Detectors Single Photon Detectors

Page 2: Gesine Steudle, Ingmar Müller, and Oliver Benson Humboldt-Universität zu Berlin Institut für Physik, AG Nano-Optik

OutlineOutline

MotivationMotivation

Working PrincipleWorking Principle

Experimental RealizationExperimental Realization

ResultsResults

Current Research / OutlookCurrent Research / Outlook

Page 3: Gesine Steudle, Ingmar Müller, and Oliver Benson Humboldt-Universität zu Berlin Institut für Physik, AG Nano-Optik

MotivationMotivation

Single photon detection is essential for any experiment with single photons.

Page 4: Gesine Steudle, Ingmar Müller, and Oliver Benson Humboldt-Universität zu Berlin Institut für Physik, AG Nano-Optik

MotivationMotivation

Single photon detection is essential for any experiment with single photons.

single photon detectors:

• avalanche photodiodes (APDs) - commercially available single photon detectors

Page 5: Gesine Steudle, Ingmar Müller, and Oliver Benson Humboldt-Universität zu Berlin Institut für Physik, AG Nano-Optik

MotivationMotivation

Single photon detection is essential for any experiment with single photons.

single photon detectors:

• avalanche photodiodes (APDs) - commercially available single photon detectors

• superconducting single photon detectors (SSPDs) - new kind of photodetectors - different types of SSPDs, in our case: meander-type SSPD

Page 6: Gesine Steudle, Ingmar Müller, and Oliver Benson Humboldt-Universität zu Berlin Institut für Physik, AG Nano-Optik

MotivationMotivation

Single Photon Detectors

APDs

Si-APDs

- high efficiencies in the visible (70 % at 700 nm)

- low dark count rates

- long dead times (40 ns)

- not working in the IR

Page 7: Gesine Steudle, Ingmar Müller, and Oliver Benson Humboldt-Universität zu Berlin Institut für Physik, AG Nano-Optik

MotivationMotivation

Single Photon Detectors

APDs

Si-APDs

- high efficiencies in the visible (70 % at 700 nm)

- low dark count rates

- long dead times (40 ns)

- not working in the IR InGaAs-APDs

- working in the IR

- high dark count rates

- long dead times (100ns)

Page 8: Gesine Steudle, Ingmar Müller, and Oliver Benson Humboldt-Universität zu Berlin Institut für Physik, AG Nano-Optik

MotivationMotivation

Single Photon Detectors

APDs

Si-APDs

- high efficiencies in the visible (70 % at 700 nm)

- low dark count rates

- long dead times (40 ns)

- not working in the IR InGaAs-APDs

- working in the IR

- high dark count rates

- long dead times (100ns)

SSPDs

meander-type SSPDs

- working in the IR

- low dark count rates

- short dead times (5 ns)

- working at 4.2 K

Page 9: Gesine Steudle, Ingmar Müller, and Oliver Benson Humboldt-Universität zu Berlin Institut für Physik, AG Nano-Optik

Working PrincipleWorking Principle

Absorption of light can distruct superconductivity.[L. Testardi, Phys. Rev. B 4, p. 2355 (1971)]

Page 10: Gesine Steudle, Ingmar Müller, and Oliver Benson Humboldt-Universität zu Berlin Institut für Physik, AG Nano-Optik

Working PrincipleWorking Principle

[G. N. Gol‘tsman et al., phys. stat. sol. c 2, p. 1480 (2005)]

Absorption of light can distruct superconductivity.[L. Testardi, Phys. Rev. B 4, p. 2355 (1971)]

a) absorption of a photon

superconducting wire biased close to critical current (I = 0.9 IC)

Page 11: Gesine Steudle, Ingmar Müller, and Oliver Benson Humboldt-Universität zu Berlin Institut für Physik, AG Nano-Optik

Working PrincipleWorking Principle

[G. N. Gol‘tsman et al., phys. stat. sol. c 2, p. 1480 (2005)]

Absorption of light can distruct superconductivity.[L. Testardi, Phys. Rev. B 4, p. 2355 (1971)]

a) absorption of a photon

b) absorbed photon causes “hot spot“

superconducting wire biased close to critical current (I = 0.9 IC)

Page 12: Gesine Steudle, Ingmar Müller, and Oliver Benson Humboldt-Universität zu Berlin Institut für Physik, AG Nano-Optik

Working PrincipleWorking Principle

[G. N. Gol‘tsman et al., phys. stat. sol. c 2, p. 1480 (2005)]

Absorption of light can distruct superconductivity.[L. Testardi, Phys. Rev. B 4, p. 2355 (1971)]

a) absorption of a photon

b) absorbed photon causes “hot spot“

c) current is repelled to the sidewalks - critical current density is exceeded

superconducting wire biased close to critical current (I = 0.9 IC)

Page 13: Gesine Steudle, Ingmar Müller, and Oliver Benson Humboldt-Universität zu Berlin Institut für Physik, AG Nano-Optik

Working PrincipleWorking Principle

[G. N. Gol‘tsman et al., phys. stat. sol. c 2, p. 1480 (2005)]

Absorption of light can distruct superconductivity.[L. Testardi, Phys. Rev. B 4, p. 2355 (1971)]

a) absorption of a photon

b) absorbed photon causes “hot spot“

c) current is repelled to the sidewalks - critical current density is exceeded

d) a resistive state appears across the whole strip

superconducting wire biased close to critical current (I = 0.9 IC)

Page 14: Gesine Steudle, Ingmar Müller, and Oliver Benson Humboldt-Universität zu Berlin Institut für Physik, AG Nano-Optik

Detector LayoutDetector Layout

Detectors are made at TU Delft by Sander Dorenbos and Val Zwiller.

[S. Dorenbos, Master Thesis, TU Delft (2007)]

• NbN on sapphire (TC, NbN =11K)• wire width: 100 nm• wire height: 4-6 nm• filling factor: 50%• wire length: ≈ 100 µm• active area: 10 x 10 µm2

Page 15: Gesine Steudle, Ingmar Müller, and Oliver Benson Humboldt-Universität zu Berlin Institut für Physik, AG Nano-Optik

Fiber CouplingFiber Coupling

scheme of the fiber coupling

• theoretical coupling factor: k = 0.87

• experimental coupling factor: k = 0.61 k = 0.333 in [W. Słysz et al., Appl. Phys. Lett. 88, 261113 (2006)]

backside view

frontside view

Page 16: Gesine Steudle, Ingmar Müller, and Oliver Benson Humboldt-Universität zu Berlin Institut für Physik, AG Nano-Optik

SetupSetup

Page 17: Gesine Steudle, Ingmar Müller, and Oliver Benson Humboldt-Universität zu Berlin Institut für Physik, AG Nano-Optik

SetupSetup

Page 18: Gesine Steudle, Ingmar Müller, and Oliver Benson Humboldt-Universität zu Berlin Institut für Physik, AG Nano-Optik

SetupSetup

Page 19: Gesine Steudle, Ingmar Müller, and Oliver Benson Humboldt-Universität zu Berlin Institut für Physik, AG Nano-Optik

SetupSetup

Page 20: Gesine Steudle, Ingmar Müller, and Oliver Benson Humboldt-Universität zu Berlin Institut für Physik, AG Nano-Optik

SetupSetup

Page 21: Gesine Steudle, Ingmar Müller, and Oliver Benson Humboldt-Universität zu Berlin Institut für Physik, AG Nano-Optik

Quantum EfficiencyQuantum Efficiency

• quantum efficiencies between 2% - 10%• quantum efficiency increases with bias current and photon energy

Page 22: Gesine Steudle, Ingmar Müller, and Oliver Benson Humboldt-Universität zu Berlin Institut für Physik, AG Nano-Optik

Dark CountsDark Counts

exponential increase of the dark counts with the bias current

Page 23: Gesine Steudle, Ingmar Müller, and Oliver Benson Humboldt-Universität zu Berlin Institut für Physik, AG Nano-Optik

Noise Equivalent Power (NEP)Noise Equivalent Power (NEP)

R dark count rate QE quantum efficiency

with

Page 24: Gesine Steudle, Ingmar Müller, and Oliver Benson Humboldt-Universität zu Berlin Institut für Physik, AG Nano-Optik

Noise Equivalent Power (NEP)Noise Equivalent Power (NEP)

R dark count rate QE quantum efficiency

with

NEP at 1550nm: ~10-15 W·Hz-1/2 (InGaAs-APDs: NEP = 10-13 W·Hz-1/2)

Page 25: Gesine Steudle, Ingmar Müller, and Oliver Benson Humboldt-Universität zu Berlin Institut für Physik, AG Nano-Optik

Single Photon DetectionSingle Photon Detection

• Hanburry-Brown and Twiss setup with APD and SSPD

• source: single N-V center in a diamond nanocrystal (emission around 637 nm)

Page 26: Gesine Steudle, Ingmar Müller, and Oliver Benson Humboldt-Universität zu Berlin Institut für Physik, AG Nano-Optik

Single Photon DetectionSingle Photon Detection

Page 27: Gesine Steudle, Ingmar Müller, and Oliver Benson Humboldt-Universität zu Berlin Institut für Physik, AG Nano-Optik

Outlook I Outlook I

Antibunching With One DetectorAntibunching With One Detector

• detector dead time: 5 ns

• life times of N-V defect centers in nano-diamonds: 40-60 ns

It is possible to see antibunching with one detector.

Page 28: Gesine Steudle, Ingmar Müller, and Oliver Benson Humboldt-Universität zu Berlin Institut für Physik, AG Nano-Optik

Outlook I Outlook I

Antibunching With One DetectorAntibunching With One Detector

• detector dead time: 5 ns

• life times of N-V defect centers in nano-diamonds: 40-60 ns

It is possible to see antibunching with one detector.

current problem:

more sophisticated electronics necessary

Page 29: Gesine Steudle, Ingmar Müller, and Oliver Benson Humboldt-Universität zu Berlin Institut für Physik, AG Nano-Optik

Outlook II Outlook II

Photon Number ResolutionPhoton Number Resolution

In principle SSPDs provide information about the energy absorbed by the detector.

This information is can be obtained e.g. by looking at the shape of the detector pulses. [A. D. Semenov et al., Physica C 351, p. 349 (2001)]

Page 30: Gesine Steudle, Ingmar Müller, and Oliver Benson Humboldt-Universität zu Berlin Institut für Physik, AG Nano-Optik

Outlook II Outlook II

Photon Number ResolutionPhoton Number Resolution

Our approach: Measurements at different bias currents

Idea: At low bias currents one single photon does not have enough energy to trigger the detector.

Reduction of the bias current makes the detector sensitive for multi-photon events (because single photon events are suppressed).

Page 31: Gesine Steudle, Ingmar Müller, and Oliver Benson Humboldt-Universität zu Berlin Institut für Physik, AG Nano-Optik

Outlook II Outlook II

excitation with attenuated lasers pulses (repetition rate: 82 MHz)

first test of muti-photon absorption:

Photon Number ResolutionPhoton Number Resolution

Page 32: Gesine Steudle, Ingmar Müller, and Oliver Benson Humboldt-Universität zu Berlin Institut für Physik, AG Nano-Optik

Thank you!Thank you!