28
Introduction The STEVAL-IHT005V2 evaluation board is designed for the home appliances, focusing on the demonstration of a robust solution with a 3.3 V supplied 32-bit MCU. Target applications are mid-end and high-end washing machines, dishwashers, and dryers with different kinds of ACS/triacs. The evaluation board is based on the 48-pin, 32-bit STM32F100C4T6B MCU running at 24 MHz (RC user-trimmable internal RC clock), featuring 16 kBytes of Flash memory, 12-bit A/D converter, five timers, communication interfaces, and 4 kBytes of SRAM. The power supply circuitry is based on VIPER16LN, an offline converter with an 800 V avalanche rugged power section, operating at 60 kHz. The power supply provides negative 6 V in buck-boost topology. The STEVAL-IHT005V2 can control two high-power loads up to 2830 W thanks to T1635H 16 A, 600 V high temperature triac, and up to 2050 W thanks to the ACST1635-8FP 16 A, 800 V high temperature overvoltage-protected ACST device. The high power load control is based on phase angle control. To limit the inrush current and possible current peaks, the evaluation board features a soft-start routine and a smooth power change function for high-power loads. The STEVAL-IHT005V2 can also control four low-power loads up to 100 W thanks to three ACS108-8SA, 0.8 A, 800 V overvoltage-protected ACS devices, and a Z0109MA 1 A standard four-quadrant 600 V triac. The evaluation board passed the precompliance tests for EMC directives IEC 61000-4-4 (burst up to 8 kV) and IEC 61000-4-5 (surge up to 2 kV). The STEVAL-IHT005V2 has an overall standby power consumption below 500 mW at 264 V/50 Hz. Figure 1. STEVAL-IHT005V2 evaluation board Getting started with the STEVAL-IHT005V2 evaluation board with full 3.3 V ACS/ triac control UM1631 User manual UM1631 - Rev 2 - November 2021 For further information contact your local STMicroelectronics sales office. www.st.com

Getting started with the STEVAL-IHT005V2 evaluation board

  • Upload
    others

  • View
    10

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Getting started with the STEVAL-IHT005V2 evaluation board

Introduction

The STEVAL-IHT005V2 evaluation board is designed for the home appliances, focusing on the demonstration of a robustsolution with a 3.3 V supplied 32-bit MCU.

Target applications are mid-end and high-end washing machines, dishwashers, and dryers with different kinds of ACS/triacs.

The evaluation board is based on the 48-pin, 32-bit STM32F100C4T6B MCU running at 24 MHz (RC user-trimmable internalRC clock), featuring 16 kBytes of Flash memory, 12-bit A/D converter, five timers, communication interfaces, and 4 kBytes ofSRAM.

The power supply circuitry is based on VIPER16LN, an offline converter with an 800 V avalanche rugged power section,operating at 60 kHz. The power supply provides negative 6 V in buck-boost topology.

The STEVAL-IHT005V2 can control two high-power loads up to 2830 W thanks to T1635H 16 A, 600 V high temperature triac,and up to 2050 W thanks to the ACST1635-8FP 16 A, 800 V high temperature overvoltage-protected ACST device.

The high power load control is based on phase angle control. To limit the inrush current and possible current peaks, theevaluation board features a soft-start routine and a smooth power change function for high-power loads.

The STEVAL-IHT005V2 can also control four low-power loads up to 100 W thanks to three ACS108-8SA, 0.8 A, 800 Vovervoltage-protected ACS devices, and a Z0109MA 1 A standard four-quadrant 600 V triac.

The evaluation board passed the precompliance tests for EMC directives IEC 61000-4-4 (burst up to 8 kV) and IEC 61000-4-5(surge up to 2 kV).

The STEVAL-IHT005V2 has an overall standby power consumption below 500 mW at 264 V/50 Hz.

Figure 1. STEVAL-IHT005V2 evaluation board

Getting started with the STEVAL-IHT005V2 evaluation board with full 3.3 V ACS/triac control

UM1631

User manual

UM1631 - Rev 2 - November 2021For further information contact your local STMicroelectronics sales office.

www.st.com

Page 2: Getting started with the STEVAL-IHT005V2 evaluation board

1 Getting started

1.1 Safety instructions

Warning:The high-voltage levels used for the STEVAL-IHT005V2 evaluation board operation could presenta serious electrical shock hazard. This evaluation board has to be used in a suitable laboratoryby qualified personnel only, familiar with the installation, use, and maintenance of power electricalsystems.

1.1.1 Intended useThe STEVAL-IHT005V2 evaluation board is designed for demonstration purposes only, and has not to be used fordomestic or industrial installation.For technical data and information about power supply and working conditions, refer to the documentationincluded in the board package and strictly observe them.

1.1.2 Installation

Warning:Follow and strictly observe the installation instructions of this user manual for the STEVAL-IHT005V2 evaluation board.Protect the components against excessive strain. In particular, do not bend the components anddo not alter isolating distances during transportation, handling, or use.

Danger:Do not touch electronic components and contacts. The STEVAL-IHT005V2 evaluation boardcontains electrostatic sensitive components that could be damaged if not properly used.Do not damage electrical components to prevent potential risks and health injury.

1.1.3 Electrical connectionsFollow the applicable national accident prevention rules when working on the mains power supply. Completethe electrical installation in accordance with the appropriate requirements (that is, cross-sectional areas ofconductors, fusing, PE connections). In particular, disconnect the programming device from the board JTAGconnector when the board is plugged into the mains.

1.1.4 Board operationA system architecture, which supplies power to the evaluation board, must be equipped with additional controland protective devices in accordance with the applicable safety requirements (for example, compliance withtechnical equipment and accident prevention rules).

Warning:Do not touch the board after disconnection from the mains power supply, as several parts andpower terminals, which contain possibly charged capacitors, need to discharge completely.

1.2 Board aimThe STEVAL-IHT005V2 evaluation board demonstrates a complete solution for home appliance applicationsbased on ST components. In particular, it demonstrates a robust 3.3 V solution, which successfully passed the 4kV level in class A IEC-61000-4-4 (burst) test.This board also allows you to check AC switches control feasibility with a 3.3 V supply.You can measure the gate currents and compare them to AN2986 measurements.The board embeds the following devices:• STM32F100C4T6B value line 32-bit MCU;

UM1631Getting started

UM1631 - Rev 2 page 2/28

Page 3: Getting started with the STEVAL-IHT005V2 evaluation board

• T1635H-6T 16 A 600 V 35 mA high temperature snubberless triac in TO-220 package;• ACST1635-8FP 16 A 800 V high temperature overvoltage-protected AC switch in TO-220 FPAB package;• ACS108-8SA 0.8 A 800 V 10 mA overvoltage-protected ACS device in TO-92 package;• Z0109MA 1 A standard 10 mA 4Q triac in TO-92 package;• VIPER16LN offline converter with 800 V avalanche rugged power section operating at 60 kHz.You can control the ACS108-8SA and Z0109MA in on and off modes through buttons. These devices controlsmall loads like valves, pumps, and door locks.Potentiometers allow you to control the T1635H-6T and ACST1635-8FP in phase control mode. These devicescontrol high-power loads like drum motors or heating resistors.

1.3 Features• Complete solution for -3.3 V control• Input voltage range: 90-265 VAC 50/60 Hz• Negative 6 V/3.3 V VDC auxiliary power supply based on the VIPer16L in buck-boost topology• Total power consumption in standby mode is lower than 0.5 W for 264 V/50 Hz• 48-pin, 32-bit value line family STM32F100C4T6B MCU as main controller• Zero voltage switching (ZVS) interrupt to synchronize MCU events with voltage mains• One T1635H-6T and one ACST1635-8FP for phase control of high-power loads• Five discrete power level states with soft change for phase-angle controlled devices• One Z0109MA and three ACS108-8SA for full wave control of low-power loads• One relay for demonstration of the board noise robustness• Red LED to show that the board is supplied from mains• Green LED for each ACS/ACST/triac to show that the device is turned on• JTAG programming connector• External wire loop for gate-current measurement• I²C bus hardware/software ready• Eighteen test pins• IEC 61000-4-4 precompliance test passed (burst up to 8 kV)• IEC 61000-4-5 precompliance test passed (surge up to 2 kV)• RoHS compliant

1.4 Target applicationsTarget applications are mid-end and high-end washing machines, dishwashers, dryers, and coffee machines.This board also targets any home-appliance application where the STM32 MCU controls any type of triac/ACST/ACS.

1.5 Operating conditionsThe board operates in nominal line voltage 110 V/230 V in both 50/60 Hz power nets.• Line voltage: 90-264 V 50/60 Hz• Operating ambient temperature: 0°C to 60°C• Nominal load power (for 230 V voltage)• ACST1635-8FP: 2050 W• T1635H-6T: 2830 W• Z0109MA: 96 W• ACS108-8SA: 105 W

UM1631Features

UM1631 - Rev 2 page 3/28

Page 4: Getting started with the STEVAL-IHT005V2 evaluation board

1.6 Board connections

Figure 2. STEVAL-ITH005V2 connections

Important: Connect loads and voltage probes before applying line voltage.

UM1631Board connections

UM1631 - Rev 2 page 4/28

Page 5: Getting started with the STEVAL-IHT005V2 evaluation board

2 STEVAL-IHT005V2 operation

Connect the line voltage as shown in Figure 2. The evaluation board can work with or without the load. Even if noload is connected, all signals are present and can be displayed on the oscilloscope.Red LED (D6) signals that the board is properly supplied from the mains. It also signals that high voltage ispresent on the evaluation board.Turn both potentiometers to the off position before powering the evaluation board. The board is ready to operateafter passing all initialization routines, like mains frequency recognition, that take approximately 2 seconds.R65 potentiometer controls T1 (T1635H-6T) and R66 potentiometer controls T2 (ACST1635-8FP).You can adjust the output power level by changing the position of the related potentiometer.Power regulation is divided in five steps where position 1 means minimum power and position 5 means maximumpower.D11 LED for T1 (T1635H-6T) and D12 LED for T2 (ACST1635-8FP) signal that the gate control signal is applied.If the load (example motor) is running and the LED lights up, it indicates that the MCU is properly controlling thetriac.Blue, black, and white buttons control the three ACS108-8SA devices and Z0109MA in on/off mode with zero-voltage synchronization. The blue button (S1) controls ACS1, the black button (S2) controls ACS2, the other blackbutton (S3) controls ACS3 and the white button (S4) controls T3. The different colors help to identify easily thecontrolled device.ACS2 and ACS3 are controlled with 2 ms gate pulses. This is sufficient for loads with an RMS currentapproximately in the range of 100 mA - 500 mA. Smaller loads should be controlled through ACS1, which hascontinuous gate control.T3 is controlled with 2 ms pulses and is used for comparison with ACS2 and ACS3 behavior.D10 LED for T3 (Z0109MA), D7 LED for ACS1 (ACS108-8SA), D8 LED for ACS2 (ACS108-8SA), and D9 LED forACS3 (ACS108-8SA) indicate that the gate control signal is applied.The red button (S5) controls relay (R1) in continuous DC mode. The DC control starts at zero voltage for controlcoil.

Note: The coil control at zero voltage does not lead to an accurate zero voltage switching (ZVS) of the power contacts.The button control is used in a two-step control. When you push the button for the first time, it turns the relateddevice on. A second push of the button turns the related device off. All devices controlled by buttons are in the offposition after reset.

Figure 3. STEVAL-ITH005V2 operation overview

UM1631STEVAL-IHT005V2 operation

UM1631 - Rev 2 page 5/28

Page 6: Getting started with the STEVAL-IHT005V2 evaluation board

3 MCU programming

Once the evaluation board has the mains cable and load cable correctly connected, you can power it on. TheSTEVAL-IHT005V2 evaluation board enters wait-for-signal mode immediately after powering it on.To modify the software, a JTAG connector for MCU programming is necessary.

Warning:The programming device has to be galvanically isolated from mains when programmed directly onmains.

UM1631MCU programming

UM1631 - Rev 2 page 6/28

Page 7: Getting started with the STEVAL-IHT005V2 evaluation board

4 Load and gate control fitting

The MCU generates gate current pulse. Through the software, you can set the pulse length. Its value must be setaccording to the minimum load current. The load current has to reach the AC switch latching current value to keepthe device on after the gate pulse is removed. Latching current (IL) is specified in the AC switch datasheet.

Important:Check this point for low power loads when RMS current is low and it takes a long time to reach the latching current level.

When gate current is removed before the load current reaches the latching current, the device might turn off.The maximum value and length of the gate current that the board can provide depends on the power supplyrating. The power supply used in the evaluation board is able to provide 120 mA continuously in the operatingvoltage full range.

UM1631Load and gate control fitting

UM1631 - Rev 2 page 7/28

Page 8: Getting started with the STEVAL-IHT005V2 evaluation board

5 Functional description

Two different types of ACS/triac control are implemented: phase angle control and full wave control. The gatecontrol signal is synchronized with zero-voltage-crossing signal (ZVC). The MCU operation is also synchronizedwith ZVC signal. The latter is sent directly to the MCU input pin that is set as external interrupt.

5.1 Phase angle controlControl of T1 (T1635H-6T) and T2 (ACST1635-8FP) is based on phase angle control.

Figure 4. Phase angle control description

Triac gate signal

Firing angle

ZVC

Gate pulse length

Phase angle control is based on changing the firing angle (delay). The firing angle determines the power that isdelivered to the load. The shorter the firing angle (delay), the higher the power.Firing angle and gate control pulse are defined through software.

Table 1. Default settings of firing angle delay

Level 1 Level 2 Level 3 Level 4 Level 5

8.5 ms 6.9 ms 5.2 ms 3.6 ms 2.0 ms

5.2 Full wave controlControl of T3 (Z0109MA), ACS1, ACS2, and ACS3 (all ACS108-8SA) is based on full wave pulse control.

UM1631Functional description

UM1631 - Rev 2 page 8/28

Page 9: Getting started with the STEVAL-IHT005V2 evaluation board

Figure 5. Full wave control descriptionTriac gate signal

ZVC

Gate pulse length

Full wave pulse control is based on sending gate control pulse immediately after ZVC signal. Gate control pulselength is defined by the software.

Table 2. Default gate current pulse duration for 50 Hz mains

Device Variable name for 50 Hz mains Initial gate pulse duration (ms/timer steps)(1)

ACS1 ACS_1_SWITCHTIME_50HZ 10/100

ACS2 ACS_2_SWITCHTIME_50HZ 2/20

ACS3 ACS_3_SWITCHTIME_50HZ 2/20

Z0109MA Z0109_SWITCHTIME_50HZ 2/20

ACST1635-8FP ACST16_SWITCHTIME_50HZ 1/10

T1635H-6T T1635H_SWITCHTIME_50HZ 1/10

1. The timer step is 100 μs.

Table 3. Default gate current pulse duration for 60 Hz mains

Device Variable name for 60 Hz mains Initial gate pulse duration (ms/timer steps)(1)

ACS1 ACS_1_SWITCHTIME_60HZ 8.3/83

ACS2 ACS_2_SWITCHTIME_60HZ 1.6/16

ACS3 ACS_3_SWITCHTIME_60HZ 1.6/16

Z0109MA Z0109_SWITCHTIME_60HZ 1.6/16

ACST1635-8FP ACST16_SWITCHTIME_60HZ 0.8/8

T1635H-6T T1635H_SWITCHTIME_60HZ 0.8/8

1. The timer step is 100 μs.

UM1631Full wave control

UM1631 - Rev 2 page 9/28

Page 10: Getting started with the STEVAL-IHT005V2 evaluation board

6 Power supply consumption

6.1 Maximum output current and standby consumptionNonisolated SMPS based on the VIPER16LN in buck-boost topology is designed to provide output voltage of -6 V.The maximum output current is 120 mA.The LM337 linear regulator provides the -3.3 V voltage necessary to supply the MCU.Standby consumption has been measured in the supply voltage full range. The standby power consumption fulfillsthe requirement of maximum total power consumption below 500 mW.The board total power consumption in standby mode, at supply voltage of 264 Vrms/50 Hz, is 499 mW (10 mAoutput current at -6 V output voltage).The power supply uses mains voltage for self-supply from the high-voltage current generator.Standby power consumption can be reduced by using the configuration with VIPER16LN supply made from thelow voltage side. Refer to the AN2872 and VIPER16 datasheet for further information on the power supply design.

6.2 Gate voltage impact on gate currentThe figure below shows how the gate voltage VGT varies with load current. In this example, load current is inquadrants 2 and 3 (0.2 A RMS) for Z0109MA with Tj = 85°C and IG0 = 7.5 mA. This variation is significant mainlyfor devices that are controlled in DC mode and with a low power supply level of 3.3 V.

Figure 6. Example of VGT variation

ACS devices have lower VGT variation with load current than triacs. Thus, they are more suitable for 3.3 Vapplications as the gate current variation is lower.Refer to AN2986 for further details and for gate resistor calculation.

UM1631Power supply consumption

UM1631 - Rev 2 page 10/28

Page 11: Getting started with the STEVAL-IHT005V2 evaluation board

6.3 Pulsed gate control and average gate current consumptionThe table below lists the initial gate current pulse widths for each AC switch. It also lists the maximum pulsewidth that can be programmed to keep the overall consumption below the maximum capability of the VIPER16LNsupply.

Table 4. Application current consumption

Device PCBlabel

Gateresistor[Ω]

IGT (Tj =25°C) [mA]

IGT (Tj =0°C) [mA]

Gate currentpulse

duration [ms]

Maximumaverage

current [mA]

Max. gatecurrent pulseduration (DCmode) [ms]

T1635H-6T T1 30 35 50 1 5 N.A.(1)

ACST1635-8FP T2 30 35 50 1 5 N.A.(1)

Z0109MA T3 112 10 15 2 3 10

ACS108-8SA ACS1 112 10 15 10 15 10

ACS108-8SA ACS2 112 10 15 2 3 10

ACS108-8SA ACS3 112 10 15 2 3 10

1. The device is controlled in phase angle control. Long pulse is not desired.

The current consumption of the MCU and of six signal LEDs, when turned on, has been estimated at 25 mA. Thetotal current consumption of the board, when all triacs/AC switches are on with the maximum gate current pulse,is 95 mA.

UM1631Pulsed gate control and average gate current consumption

UM1631 - Rev 2 page 11/28

Page 12: Getting started with the STEVAL-IHT005V2 evaluation board

7 Board immunity performance

7.1 Hardware and software features to increase immunityThe software features implemented to improve board immunity are:• Filtering procedure for button and potentiometer control• WatchdogThe hardware features implemented to improve board immunity are:• Input varistor• ACS-ACST technology and Transil as an option for T1635H-6T• 47 nF input X2 capacitor• Noise suppressor circuits (10 nF X2 capacitor and 75 Ω resistor)• R-C-R filter on gate (RG/2, 10 nF, RG/2)The layout rules for immunity improvement are:• Power tracks far from signal tracks• VSS map• Noise suppressor and R-C-R gate filter close to AC switches and triacs• Input MCU pins with a 10 nF filter capacitor• Any branch in the VDD map has a capacitor to decrease the VDD variation

7.2 Surge test resultsStandard IEC 61000-4-5 tests have been performed with a surge level of 2 kV, which is required for homeappliances. The mains voltage used for the tests was 230 Vrms/50 Hz.The ACST1635-8FP is protected against overvoltage spikes up to 2 kV with implemented crowbar technology.ACS108-8SA devices are protected against overvoltage spikes up to 2 kV with implemented crowbar technology.See the ACS108-8SA datasheet for further details.The Z0109MA triac is protected thanks to the noise suppressor circuit and high impedance of the load (refer toAN437 for snubber design).The P6KE400CA Transil protects the T1635H-6T. This is a different implementation of the crowbar technology.This method has the advantage of not aging differently from the varistor technology.

7.3 Burst test results

7.3.1 Test procedureStandard IEC 61000-4-4 tests have been performed at a frequency of 100 kHz and a power supply voltage of254 Vrms/50 Hz. The spike parameters were Td = 0.7 ms, Tr = 300 ms. All affected couplings have been tested.Spikes were applied against the plate and related polarity (+/-) with the mains wires (L+, L-, N+, N-, LN+, LN-).The board has been tested in off state (that is, all AC switches were turned off).Protective earth (PE) wire is not connected on the board. Consequently, the couplings with PE have not beentested.

7.3.2 Test results of the board without hardware modificationsThe target voltage level of the board immunity against burst spikes was 4 KV without any influence on the boardperformance (class A).Burst spikes up to 6 kV (class A) did not disturb the STM32F100C4T6B MCU. Burst spikes up to 8 kV caused theMCU to reset but it recovered without any external intervention (class B). Reset procedure did not influence theimmunity of the devices with higher immunity.The table below shows the immunity level of the ACS/triacs against the burst spikes. The voltage level of spurioustriggering defines the immunity.

UM1631Board immunity performance

UM1631 - Rev 2 page 12/28

Page 13: Getting started with the STEVAL-IHT005V2 evaluation board

Table 5.

STEVAL-IHT005V2 VIN 254 VAC - 50 Hz L+ L- N+ N- LN+ LN-

T1635H-6T (150 W light bulb load) >8 kV >8 kV >8 kV >8 kV >8 kV >8 kV

ACST1635-8FP (150 W light bulb load) >8 kV >8 kV >8 kV >8 kV >8 kV >8 kV

Z0109MA (75 W light bulb load) 4.5 kV 4.1 kV 3.7 kV 4.6 kV 4.0 kV 3.7 kV

ACS1 (75 W light bulb load) 7.4 kV 6.7 kV >8 kV 7.1 kV 7.3 kV 7.0 kV

ACS2 (150 W light bulb load) >8 kV >8 kV >8 kV >8 kV 7.6 kV 7.1 kV

ACS3 (150 W light bulb load) >8 kV >8 kV >8 kV >8 kV 7.6 kV 7.1 kV

7.3.3 Input filter influenceA 47 nF, X2 capacitor is implemented as input filter. To achieve 4 kV immunity against the burst spikes for all ACswitches, we added two other X2 capacitors (100 nF and 220 nF). Each of them influenced a different type ofcoupling. The STEVAL-IHT005V2 board does not include these two capacitors as only Z0109MA was below 4 kVlevel.

Table 6. IEC-61000-4-4 results with input filter modification

STEVAL-IHT005V2 VIN 254 VAC - 50 Hz 2 kV 4 kV 6 kV 8 kV

Standby

+ L

On + level 3 (5.2 ms)

A A B B

Standby

+ N

On + level 3 (5.2 ms)

A A B B

Standby

+ L +N

On + level 3 (5.2 ms)

A A B B

Standby

- L

On + level 3 (5.2 ms)

A A B B

Standby

- N

On + level 3 (5.2 ms)

A A B B

Standby

- L +N

On + level 3 (5.2 ms)

A A B B

Note: • A. No changes in functionality. The board works properly, no reset occurring.• B. Reset occurs, but the board recovers without any external intervention.• C. Application does not recover without an external intervention.We tested two states: standby mode, when all devices are off, and “on + level 3" when all devices are turned on.The devices controlled in full wave mode (T3, ACS1, ACS2, ACS3) are on for the whole period and phase anglecontrolled devices (T1, T2) are on at level 3 (5.2 ms delay after zero voltage crossing signal).

7.3.4 Noise suppressor influenceThe noise suppressor circuit that consists of X2 capacitor 10 nF (C2, C12, C14, C19, C21, C23) and resistor 75Ω(R13, R19, R28, R43, R51, R60) has significant influence on burst immunity of the devices, as shown in thetests results below.

UM1631Burst test results

UM1631 - Rev 2 page 13/28

Page 14: Getting started with the STEVAL-IHT005V2 evaluation board

Table 7. Immunity of the high power devices without RC noise suppressor

STEVAL-IHT005V2 VIN 254 VAC - 50 Hz L+ L- N+ N- LN+ LN-

T1635H-6T (150 W light bulb load) 1.7 kV 1.6 kV 1.9 kV 1.7 kV 2.1 kV 1.7 kV

ACST1635-8FP (150 W light bulb load) 4.6 kV 3.5 kV 4.8 kV 3.1 kV 3.3 kV 3.1 kV

7.3.5 Gate filtering circuit influenceThe gate filtering circuit influences sensitive devices. When the gate filtering circuit is removed, the Z0109MAimmunity decreases to 2 kV and ACS108-8SA immunity decreases to 4 kV. Gate filtering circuit is not mandatoryto pass IEC-61000-4-4 tests for ACS108-8SA.There is no influence on 35 mA IGT devices when the gate filtering circuit is removed.

7.3.6 Immunity to relay switchingRelay is connected on the board. The relay cannot be controlled in zero voltage mode. Switching of the relayproduces very high dV/dt. We tested the immunity of the devices against relay switching.The figure below shows turn-off behavior of the relay. The dV/dt observed during turn-off is 1 kV/μs. Observedpeak voltage during turn-off was ±1300 V.

Figure 7. dV/dt behavior during relay turn-off

The figure below shows turn-on behavior of the relay. The dV/dt observed during turn-on was 4 kV/μs. The loadwas a 1.4 H inductor with a serial resistance of 12 Ω, and RMS current of 0.52 A. The triacs and ACS/ACSTswitches were not disturbed by these spikes.

UM1631Burst test results

UM1631 - Rev 2 page 14/28

Page 15: Getting started with the STEVAL-IHT005V2 evaluation board

Figure 8. dV/dt behavior during relay turn-on

UM1631Burst test results

UM1631 - Rev 2 page 15/28

Page 16: Getting started with the STEVAL-IHT005V2 evaluation board

8 Board layout

Figure 9. STEVAL-IHT005V2 top layer

Figure 10. STEVAL-IHT005V2 bottom layer

UM1631Board layout

UM1631 - Rev 2 page 16/28

Page 17: Getting started with the STEVAL-IHT005V2 evaluation board

9 Test points

Table 8. List of test points

Name Description

G_T1 Control signal of T1 (T1635H-6T)

ZVC Zero voltage crossing signal

-6 V Reference of SMPS output voltage

N_VDD Neutral reference and VDD

-3.3 V Reference for MCU power supply

A2_T1 A2 terminal of T1

VDD MCU power supply voltage

OUT_T2 Out terminal of T2 (ACST16)

G_T3 Control signal of T3 (Z0109)

A2_T3 A2 terminal of T3

G_T2 Control signal of T2 (ACST16)

G_ACS1 Control signal of ACS1

OUT_ACS1 Out terminal of ACS1

G_ACS2 Control signal of ACS2

OUT_ACS2 Out terminal of ACS2

G_ACS3 Control signal of ACS3

OUT_ACS3 Out terminal of ACS3

Line Line voltage

UM1631Test points

UM1631 - Rev 2 page 17/28

Page 18: Getting started with the STEVAL-IHT005V2 evaluation board

10 Gate resistor calculation

The gate resistor value must be defined within the equation below to apply a gate current higher than thespecified IGT for the worst operating conditions.Rg ≤ 11 + Rg − tol100 ⋅ VDD −Min − VGT −Max − VOLIG 0°CWe assume that:• VDD_Min is the minimum supply voltage (typically 3 V for 3.3 V power supply taking into account dispersion of

resistors at LM337)• VGT_Max = 1.0 V (maximum gate voltage that must be applied between gate and A1 or COM)• VOL = 0.4 V maximum MCU I/O port voltage when switched to low level (given by the datasheet (0.4 V for

STM32F100))

Note: VOL value of 0.4 V is used also for BC547B buffer transistor control.• Rg_tol is the tolerance of the used resistor (typically 1% or 5%).• IG (0°C) is the gate current for the minimum ambient temperature (normally 0°C). Refer to Triac family

datasheet curve.The table below shows the standard resistor choices, according to the above equation and assumptions.

Table 9. Gate resistor definition for each device

Device Tolerance of Rg (%) Rg (Ω) Rg standard (Ω)

T1635H-6T1 31.7 2 x 15

5 30.4 2 x 15

ACST1635-8FP1 31.7 2 x 15

5 30.4 2 x 15

ACS108-8SA1 112.2 2 x 56

5 107.8 2 x 51

Z0109MA1 112.2 2 x 56

5 107.8 2 x 51

The STEVAL-IHT005V2 uses tolerance resistors of 1%.

UM1631Gate resistor calculation

UM1631 - Rev 2 page 18/28

Page 19: Getting started with the STEVAL-IHT005V2 evaluation board

11 Schematic diagram

Figure 11. STEVAL-IHT005V2 circuit schematic

41P

B5VSS_3

47 45P

B8

PC132

37

PA14PB

642

PA313

43P

B7

48VDD_3

44B

OO

T0

46P

B9

VBAT1

VSSA8 NRST7 PD16

PB

1021

PB

220

PB

11918

PB

0PA

717

PA6

16PA4

14

9

3

1110

12PAPAPA

VDDA012

45

PPPD0

C14C15

38

PA15VDD_2 36

PB14 27PB13 26

39P

B3

25PB12

VDD_1

2423V

SS

_1

35VSS_2 34PA13 33PA12PA11 32

31PA10PA9 30

29PA8PB15 28

22P

B11

PB

440

15PA

5

STM32F100CB

VDD

VDD

VDD

GND

GND

GND

GND

100 nFC6

C7100 nF

100 nFC5

R5 D1

1N4007

D2

1N4007

F/450 V F/450 VCE2 CE3

VDD

L1

1 mH

Drain7

Drain8

S 1

FB 4

VDD2

3LIMCOMP

5

Viper16L

C4 1 nF

C3 N.A.N/A

R7N/A

R6

CE1

D4STTH1R06

D3

STTH1R06

X2 47 nF/305 VC11

L

N

321

J2

Header_3

R1 R2ZVC signal

R4

R3

100 nF

C1

L21 mH

-6 V

CE4ADJ

1

IN2 OUT 3

U2

LM337

CE5

R18Res

R15Res

N/A

CE6

-3.3 V

0 V

-6 V

VDD

VDD

J4123

Header_3

10 nF C20

10 nF C22

10 nF C24Cap

N/AR9

ACS_1

ACS_2

ACS_3

T1635HACST1635

Z0109

R57ACS_3

ACS_2

ACS_1 X2 10 nF/305 VC19

R43

X2C23

10 nF

R60

X2C21

10 nF/305 V

R51

R12N/A

R14Varistor

R13

X2

10 nF/ 305 V

C2

VDD

10 nF C10

T1635H

J3123

Header_3

R19

305 VX2 10 nF/C12

VDD

10 nF C13Cap

R17R16ACST1635

R28

X210 nF/ 305 V

C14

VDD

10 nF C16

Z0109

ZVC signal

VDD

C810 nFC9

L3

BC547AQ2

1

2

N/A

XT1

100 nFC27

R63

GND

VDD

R55

BUTTON_ACS_1

BUTTON_ACS_2BUTTON_ACS_3

BUTTON_Z0109

BUTTON_ACS_1 BUTTON_ACS_ 2 BUTTON_ACS_3 BUTTON_Z0109

POTENTIOMETER_T1635H

POTENTIOMETER_ACST1635

VDD

GND

GND

R34

VDD

10k

R27

R29

R23

-6 V

VDD

1

2

3

4RelayK1

-RAS 0515

GND NRST

NRST

R21

100 nF

C15

GND

VDD

BC557AQ1

relay

relay

I2C_SCL

I2C_SDA

1011

123456789

121314151617181920

CN1JTAG

PB3 R42

R45

R46

VDD

VDD

PA13

PA13

PA14

PA15

PB4

NRST_JTAG

NRST_JTAG

PA14

PA15

PB4

321

J1

Header_3

VDD

relay_out

relay_out

R65RPot

VDDVDD

GNDGND

POTENTIOMETER_ACST1635

POTENTIOMETER_T1635H

C17

N/A

N/A

C18N/AR30

LED_ACS_1

LED_ACS_2

LED_ACS_3

LED_Z0109

VDDR35

D7

LEDLED_ACS_1

VDDR37

D8

LEDLED_ACS_2

VDDR40

D9

LEDLED_ACS_3

VDDR44

D10

LEDLED_Z0109

VDDR32

D6

LED -6 V

LED_ACST1635

LED_T1635H

VDDR47

D11

LEDLED_T1635H

VDDR52

D12

LEDLED_ACST1635

R41

R50

R59

R33

R26

R11

I2C_SCLI2C_SDA

D51N4007

-6 V

321

4P1

Header 4

VDD

GND

ON/OFF signal

R58

R48 R49

R38 R39

R25R24

R22 R20

VDDVDD

R8 R10

R66RPot

12

34

S3button

100 nFC28

R64

GND

VDD

R56

12

34

S4button

100 nFC26

R62

GND

VDD

R54

12

34

S2button

100 nFC25

R61

GND

VDD

R53

12

34

S1button

OUTG

COM ACS1

ACS108-8S

OUTG

COM ACS2

ACS108-8S

OUT

COM

G

ACS3

ACS108-8S

T3Z0109

1ZVC

testpoint

testpoint1 -6 V

1

N_VDD

testpoint

testpoint1 -3.3 V

testpoint1 VDD

1

Ltestpoint

1

G_T2

testpoint

1

G_T3testpoint

1

G_ACS1testpoint

1

G_ACS2testpoint

1

G_ACS3testpoint

1A2_T1

testpoint

1

testpoint

A2_T3

1OUT_ACS1

testpoint

1OUT_ACS3

testpoint

1OUT_ACS 2

testpoint

1OUT_T2

testpoint

BUTTON_RELAY

100 nFC29

R68

GND

VDD

R67

12

34

S5button

BUTTON_RELAY

PB3

PB3

T2ACST1635

T1

T1635H

1

2TR1

P6KE400CA

R69

R70

GND

1 nF

C30

GND

1

G_T1testpoint

10 nFC32

GND

10 nFC33

GND

10 nFC34

GND

10 nFC35

GND

10 nFC36

GND

10nF

C37

GND

10 nFC38

GND

1 nFC31

GND

/305 V

UM1631Schematic diagram

UM1631 - Rev 2 page 19/28

Page 20: Getting started with the STEVAL-IHT005V2 evaluation board

12 Bill of materials

Table 10. STEVAL-IHT005V2 bill of materials

Item Q.ty Reference Part/value Description Manufacturer Order code

1 1 C3 - Capacitor Any Any

2 1 P1 - 4-pin header Any Any

3 2 C17, C18 - Capacitors Any Any

4 2 R6, R7 - Resistors Any Any

5 2 R9, R30 - Resistors Any Any

6 1 C11 X2 47 nF/305 V Capacitor EPCOS B32922C3473K000

7 6 C2, C12, C14,C19, C21, C23 X2 10 nF/305 V Capacitors EPCOS B32921C3103K000

8 1 C1 100 nF Capacitor GME 906-096

9 1 C4 1 nF Capacitor GME 906-094

10 1 C8 1 µF Capacitor GME 972-094

11 1 C9 10 nF Capacitor GME 972-014

12 1 CE1 10 µF/50 V Electrolyticcapacitor GME 123-058

13 1 CE4 220 µF/16 V Electrolyticcapacitor GME 123-134

14 1 CE5 10 µF/16 V Electrolyticcapacitor GME 123-048

15 1 CE6 - Electrolyticcapacitor GME

16 1 CN2 MLW20G Connector GME 800-036

17 1 D6 RED Typical LED GME 960-024

18 1 K1 Relay-RAS 0515Single-polesingle-throwrelay

GME 634-246

19 1 L1 1 mH Inductor GME 611-011

20 1 L2 1 mH Inductor GME 611-171

21 1 L3 1 µH Inductor GME 965-084

22 1 Q1 BC557A PNP bipolartransistor GME 210-037

23 1 Q2 BC547A NPN generalpurpose amplifier GME 210-025

24 1 R12 N/A Varistor GME

25 1 R14 595-275 Varistor GME 115-034

26 1 R15 1.2 k Resistor GME 110-075

27 1 R18 2 k Resistor GME 110-080

28 1 R28 56 Resistor GME 110-043

29 1 R31 4k7 Resistor GME 110-089

30 1 R32 2 k Resistor GME 901-609

31 1 R5 22 R ±5% Resistor GME 114-044

32 1 R69 100 Resistor GME 110-049

33 1 S1 P-DT6BL Button GME 630-051

UM1631Bill of materials

UM1631 - Rev 2 page 20/28

Page 21: Getting started with the STEVAL-IHT005V2 evaluation board

Item Q.ty Reference Part/value Description Manufacturer Order code

34 1 S4 P-DT6WS Button GME 630-049

35 1 S5 P-DT6RT Button GME 630-042

36 1 XT1 HC49/U 8 MHz Crystal oscillator GME 131-059

37 2 C30, C31 1 nF Capacitors GME 906-094

38 2 CE2, CE3 4 µ7 F/450 V Electrolyticcapacitors GME 123-039

39 2 R1, R2 220 k ±1% Resistors GME 110-129

40 2 R3, R4 56 k Resistors GME 901-586

41 2 R65, R66 50 K Potentiometerand shaft GME 112-230,624-088

42 2 S2, S3 P-DT6SW Button GME 630-048

43 3 C5, C6, C7 100 nF Capacitors GME 972-089

44 3 D1, D2, D5 SMA Default diode GME 917-016

45 3 R23, R34, R70 1 k Resistors GME 901-178

46 4 J1, J2, J3, J4 ARK300V-3P Three-poleterminals GME 821-109

47 4 R8, R10, R16,R17 15 Resistors GME 901-573

48 5 R13, R19, R43,R51, R60 75 Resistors GME 110-046

49 5 R61, R62, R63,R64, R68 100 Resistors GME 901-212

50 6 C10, C13, C16,C20, C22, C24 10 nF Capacitors GME 906-089

51 6 C15, C25, C26,C27, C28, C29 100 nF Capacitors GME 906-096

52 6 D7, D8, D9, D10,D11, D12 GREEN Typical LEDs GME 960-023

53 6 R11, R26, R33,R41, R50, R59 0 STIP line 2x and

jumpers GME 832-021,832-013

54 6 R21, R27, R36,R42, R45, R46 10k Resistors GME 901-176

55 6 R35, R37, R40,R44, R47, R52 510 Resistors GME 901-409

56 7C32, C33, C34,C35, C36, C37,C38

10nF Capacitors GME 906-089

57 7R20, R22, R53,R54, R55, R56,R67

4k7 Resistors GME 901-188

58 9R24, R25, R29,R38, R39, R48,R49, R57, R58

56 Resistors GME 901-389

UM1631Bill of materials

UM1631 - Rev 2 page 21/28

Page 22: Getting started with the STEVAL-IHT005V2 evaluation board

Item Q.ty Reference Part/value Description Manufacturer Order code

59 18

-3V3, -6V, A2_T1,A2_T3, G_ACS1,G_ACS2,G_ACS3, G_T1,G_T2, G_T3,L, N_VDD,OUT_ACS1,OUT_ACS2,OUT_ACS3,OUT_T2, VDD,ZVC

- Test points RS 262-2179

60 1 T1 T1635H-6T16 A - 600 V -150°C H-seriestriac

ST T1635H-6T

61 1 T2 ACST1635-8FPOvervoltage-protected ACswitch

ST ACST1635-8FP

62 1 T3 Z0109MA 1 A standardtriac ST Z0109MA

63 1 TR1 P6KE300CA 600 W TVS inDO-15 ST P6KE300CA

64 1 U1 VIPER16LN

Energy saving 6W high voltageconverter withdirect feedback

ST VIPER16LN

65 1 U2 LM337

Three-terminaladjustablenegative voltageregulators

ST LM337

66 1 U3 STM32F100C4T6B

Mainstreamvalue line, Arm®

Cortex®-M3MCU with 16Kbytes of Flashmemory, 24 MHzCPU, motorcontrol and CECfunctions

ST STM32F100C4T6B

67 2 D3, D4 STTH1R06A 600 V, 1 A Turbo2 ultrafast diode ST STTH1R06A

68 3 ACS1, ACS2,ACS3 ACS108-8SA

Overvoltage-protected ACswitch

ST ACS108-8SA

69 2 - -Heat sinkconnected to T1,T2

SEMIC TP104-30

70 1 -

Wirediameter:0.75mm,length 90 mm,1xKONPC-SPK-2,2xKONPC-SPK-PI

Wire loop GME 840-002,840-004

71 4 - 10 mm,KDI6M3X10

Distancecolumns GME 623-071

72 4 - 6 mm M3 screw Any Any

UM1631Bill of materials

UM1631 - Rev 2 page 22/28

Page 23: Getting started with the STEVAL-IHT005V2 evaluation board

Revision history

Table 11. Document revision history

Date Revision Changes

29-Oct-2021 1 Initial release.

03-Nov-2021 2Updated Section 12 Bill of materials.

Minor text edits throughout the document.

UM1631

UM1631 - Rev 2 page 23/28

Page 24: Getting started with the STEVAL-IHT005V2 evaluation board

Contents

1 Getting started . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .21.1 Safety instructions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.1.1 Intended use . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.1.2 Installation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.1.3 Electrical connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.1.4 Board operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Board aim. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.4 Target applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.5 Operating conditions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.6 Board connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 STEVAL-IHT005V2 operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .53 MCU programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .64 Load and gate control fitting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .75 Functional description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .8

5.1 Phase angle control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

5.2 Full wave control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

6 Power supply consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .106.1 Maximum output current and standby consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

6.2 Gate voltage impact on gate current. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

6.3 Pulsed gate control and average gate current consumption . . . . . . . . . . . . . . . . . . . . . . . . . . 11

7 Board immunity performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .127.1 Hardware and software features to increase immunity. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

7.2 Surge test results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

7.3 Burst test results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127.3.1 Test procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

7.3.2 Test results of the board without hardware modifications . . . . . . . . . . . . . . . . . . . . . . . . . 12

7.3.3 Input filter influence. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

7.3.4 Noise suppressor influence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

7.3.5 Gate filtering circuit influence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

7.3.6 Immunity to relay switching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

8 Board layout. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .169 Test points . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1710 Gate resistor calculation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .18

UM1631Contents

UM1631 - Rev 2 page 24/28

Page 25: Getting started with the STEVAL-IHT005V2 evaluation board

11 Schematic diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1912 Bill of materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .20Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .23List of tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .26List of figures. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .27

UM1631Contents

UM1631 - Rev 2 page 25/28

Page 26: Getting started with the STEVAL-IHT005V2 evaluation board

List of tablesTable 1. Default settings of firing angle delay . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8Table 2. Default gate current pulse duration for 50 Hz mains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9Table 3. Default gate current pulse duration for 60 Hz mains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9Table 4. Application current consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11Table 5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13Table 6. IEC-61000-4-4 results with input filter modification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13Table 7. Immunity of the high power devices without RC noise suppressor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14Table 8. List of test points . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17Table 9. Gate resistor definition for each device . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18Table 10. STEVAL-IHT005V2 bill of materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20Table 11. Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

UM1631List of tables

UM1631 - Rev 2 page 26/28

Page 27: Getting started with the STEVAL-IHT005V2 evaluation board

List of figuresFigure 1. STEVAL-IHT005V2 evaluation board. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1Figure 2. STEVAL-ITH005V2 connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4Figure 3. STEVAL-ITH005V2 operation overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5Figure 4. Phase angle control description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8Figure 5. Full wave control description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9Figure 6. Example of VGT variation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10Figure 7. dV/dt behavior during relay turn-off . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14Figure 8. dV/dt behavior during relay turn-on . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15Figure 9. STEVAL-IHT005V2 top layer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16Figure 10. STEVAL-IHT005V2 bottom layer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16Figure 11. STEVAL-IHT005V2 circuit schematic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

UM1631List of figures

UM1631 - Rev 2 page 27/28

Page 28: Getting started with the STEVAL-IHT005V2 evaluation board

IMPORTANT NOTICE – PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, enhancements, modifications, and improvements to STproducts and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. STproducts are sold pursuant to ST’s terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design ofPurchasers’ products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. For additional information about ST trademarks, please refer to www.st.com/trademarks. All other product or servicenames are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2021 STMicroelectronics – All rights reserved

UM1631

UM1631 - Rev 2 page 28/28