21
5th International Conference on Sustainable Solid Waste Management Athens 21-24 June 2017 E. IEREMIADI ENVIROPLAN S.A., 23 PERIKLEOUS & IRAS STR. 15344–GERAKAS ATHENS, GREECE, +30 2106105127-8 E-MAIL: [email protected] GHG emissions from an Integrated Solid Waste Management System: The case of Dubrovnik Neretva County/Croatia 1

GHG from an Integrated Solid Waste System: The of Neretva ...uest.ntua.gr/athens2017/proceedings/presentations/Ieremiadi.pdf5th International Conference on Sustainable Solid Waste

  • Upload
    others

  • View
    2

  • Download
    0

Embed Size (px)

Citation preview

Page 1: GHG from an Integrated Solid Waste System: The of Neretva ...uest.ntua.gr/athens2017/proceedings/presentations/Ieremiadi.pdf5th International Conference on Sustainable Solid Waste

5th International Conferenceon Sustainable Solid Waste Management

Athens21-24 June 2017

E . I E R E M I A D IE N V I R O P L A N S . A . , 2 3 P E R I K L E O U S & I R A S S T R .

1 5 3 4 4 – G E R A K A S A T H E N S , G R E E C E , + 3 0 2 1 0 6 1 0 5 1 2 7 - 8

E - M A I L : I N F O @ E N V I R O P L A N . G R

GHG emissions from an Integrated Solid Waste Management System: 

The case of Dubrovnik ‐ Neretva County/Croatia

1

Page 2: GHG from an Integrated Solid Waste System: The of Neretva ...uest.ntua.gr/athens2017/proceedings/presentations/Ieremiadi.pdf5th International Conference on Sustainable Solid Waste

5th International Conference on Sustainable Solid Waste Management,  Athens 2017

ENVIROPLAN Consultants and Engineers S.A. independent private consulting firm, founded in Athens in 1990 

We provide Technical Consulting, Engineering & Project Management Servicesand we specialize in Environmental Management & Engineering Projects,emphasizing in Waste Management.ENVIROPLAN S.A. is considered one of the leading companies in WasteManagement sector in Greece, Cyprus, Turkey, Bulgaria, Romania, Croatia,F.Y.R.O.M., etc.

2

ENVIROPLAN S.A. is certified according to :DIN EN ISO 9001:2008,EN ISO 14001:2004,OHSAS 18001:2007and holds also a permanent professionalIndemnity Insurance Contract with Lloyd’s.

The company’s headquarters are in Athens and branchoffices are established in Thessaloniki, Skopje, Bucharest,Larnaka, Zagreb and Ankara.

Page 3: GHG from an Integrated Solid Waste System: The of Neretva ...uest.ntua.gr/athens2017/proceedings/presentations/Ieremiadi.pdf5th International Conference on Sustainable Solid Waste

5th International Conference on Sustainable Solid Waste Management,  Athens 2017

Project background3

In 2014, Dubrovnik‐Neretva County in Croatialaunched procurement procedures for technicalassistance services in relation to the elaboration ofFeasibility Studies and EU project fundingapplications according to the regulations.

The project area included Dubrovnik – NeretvaCounty with 139,441 citizens / 65,119 t MSW (2013).

Page 4: GHG from an Integrated Solid Waste System: The of Neretva ...uest.ntua.gr/athens2017/proceedings/presentations/Ieremiadi.pdf5th International Conference on Sustainable Solid Waste

5th International Conference on Sustainable Solid Waste Management,  Athens 2017

4

Total surface: 9,272.37 km2

(land area 1,782 km2,maritime area7,489.88 km2 )

RWMC at Lučino razdolje including waste treatment and disposal

6 Transfer stations

• Metkovic TS• Dubrovnik TS• Janjina TS• Vela Luka TS• Lastovo TS • Mljet TS 

Proposed waste management facilities:

Data for 2013

Permanent Citizens122,509 citizens

480 kg/capita/year or 58,804 t/year

Seasonal Citizens16,932 citizens

370 kg/capita/year or 6,265 t/year

Total Population139,441 citizens

467 kg/capita/year or 65,119 t/year

Project background

Page 5: GHG from an Integrated Solid Waste System: The of Neretva ...uest.ntua.gr/athens2017/proceedings/presentations/Ieremiadi.pdf5th International Conference on Sustainable Solid Waste

5th International Conference on Sustainable Solid Waste Management,  Athens 2017

Project background5

Page 6: GHG from an Integrated Solid Waste System: The of Neretva ...uest.ntua.gr/athens2017/proceedings/presentations/Ieremiadi.pdf5th International Conference on Sustainable Solid Waste

5th International Conference on Sustainable Solid Waste Management,  Athens 2017

Project background6

The option analysis of the project regarding the Waste Management CentreTechnology in Dubrovnik – Neretva County resulted in four main scenarios.

The scenarios were based on objectives and recent national legislation for waste management and took into consideration the production and composition of the County’s waste.

Proposed Scenarios Description

Scenario 1 Mechanical separation with recovery of Recyclables and RDF and biological treatment (aerobic composting) for CLO production

Scenario 2 Mechanical separation with recovery of Recyclables and RDF, wet AD with electricity production and dewatering of digestate

Scenario 3 Biological treatment (Biodrying) for production of low quality SRF andmechanical separation with recovery of Fe/Al

Scenario 4 Mechanical Separation with recovery of recyclables and RDF, dry fermentation with electricity and heat production and bio‐stabilization of digestate (Hybrid MBT)

Page 7: GHG from an Integrated Solid Waste System: The of Neretva ...uest.ntua.gr/athens2017/proceedings/presentations/Ieremiadi.pdf5th International Conference on Sustainable Solid Waste

5th International Conference on Sustainable Solid Waste Management,  Athens 2017

Project background7

Within the elaboration of the Feasibility Study and in accordance with the Guide toCost‐Benefit Analysis of Investment Projects (2014‐2020), the incremental calculationof greenhouse gas (GHG) emissions were implemented. The Carbon Footprint Methodology was used for the calculation of greenhouse gasemissions.

This method provides a series of emissions factors derived from internationallyrecognized sources.

The calculation of the emissions included:Both direct and indirect GHG emissions from the different components of thewaste management system and from the alternative waste treatmenttechnologies examined

GHG emissions, Avoided GHG emissions and Net GHG emissions of an incrementalapproach (with‐without project scenario)

Page 8: GHG from an Integrated Solid Waste System: The of Neretva ...uest.ntua.gr/athens2017/proceedings/presentations/Ieremiadi.pdf5th International Conference on Sustainable Solid Waste

5th International Conference on Sustainable Solid Waste Management,  Athens 2017

Introduction8

Green house gases that can be included within the footprint include the seven gases listed inKyoto Protocol, namely: carbon dioxide (CO2),

methane (CH4), nitrous oxide (N2O), hydrofluorocarbons (HFCs),

per fluorocarbons (PFCs), sulphur hexafluoride (SF6) nitrogen fluoride (NF3).

Total emissions of these gases are counted in units of CO2 equivalent. The potentialsources of direct GHG emissions from the activities included in the project’s proposedwaste management system for the Dubrovnik‐Neretva County are shown in the followingtable:

Selected examples of sources of direct GHG emissions by activity type:

Activity GHG Type Potential sources of emission

Transport CO2 CO2 from mobile equipment combustion.

Biological waste treatment plants CH4 CH4 from anaerobic digestion of biodegradable waste.

Municipal solid waste landfills CH4 CH4 from anaerobic digestion of biodegradable waste.

Page 9: GHG from an Integrated Solid Waste System: The of Neretva ...uest.ntua.gr/athens2017/proceedings/presentations/Ieremiadi.pdf5th International Conference on Sustainable Solid Waste

5th International Conference on Sustainable Solid Waste Management,  Athens 2017

Project Boundaries9

The project boundaries define what is to be included in the calculation of the absolute,baseline and relative emissions. For the definition of the scope of GHG emissions thatwere taken into account in the carbon footprint calculation, the literature has generallyaccepted the approach developed by the GHG Protocol:

Scope 1: Direct GHG emissions. Occur physically from sources operated by the projectwithin the project boundary. For example, emissions produced by industrial processesand by fugitive emissions inside the project boundary.Scope 2: Indirect GHG emissions. From electricity generation that is consumed by theproject. The indirect emissions are produced outside of the project boundary (i.e. atpower plant level) but since a project has control over consumption and can improve itwith energy efficiency measures, emissions should be allocated to the project.Scope 3: Other indirect GHG emissions. Consequence of the activities of the projectthat occur from sources not operated by the project (i.e. indirect emissions outside thecontrol of the operator, such as emissions by suppliers).

Page 10: GHG from an Integrated Solid Waste System: The of Neretva ...uest.ntua.gr/athens2017/proceedings/presentations/Ieremiadi.pdf5th International Conference on Sustainable Solid Waste

5th International Conference on Sustainable Solid Waste Management,  Athens 2017

Project Boundaries10

According to international standards and methodologies for the assessment of Project GHGemissions and emission variations, only Scope 1: Direct GHG emissions and Scope 2: IndirectGHG emissions of projects are normally included in the footprint exercise.

In order to quantify GHG emissions released and avoided in the waste management system,the system is separated into its individual components:

Material Recovery Facility (MRF)Anaerobic DigestionCompostingMechanical‐Biological treatment (MBT)Waste incinerationLandfill

Specific emission factors deriving from the literature are applied to calculate the GHGemissions that are characteristic for the individual processes that take place in these facilities.

Page 11: GHG from an Integrated Solid Waste System: The of Neretva ...uest.ntua.gr/athens2017/proceedings/presentations/Ieremiadi.pdf5th International Conference on Sustainable Solid Waste

5th International Conference on Sustainable Solid Waste Management,  Athens 2017

Quantification Process and Methodology11

Define project Boundary

Emission scopes to include

Quantify absolute project emissions (Ab)

Identify & quantify baseline

emissions (Be)

Calculate relative emissionsRe=Ab-Be

The Carbon Footprint Methodology used provides a series of emissions factors derivedfrom internationally recognized sources, e.g. GHG Protocol and IPCC Guidelines for NationalGHG Inventories.

To quantify the European Investment Bank (EIB) carbon footprint for investment projectsand the associated relative emissions compared to the baseline the following series ofactivities must be followed:

Page 12: GHG from an Integrated Solid Waste System: The of Neretva ...uest.ntua.gr/athens2017/proceedings/presentations/Ieremiadi.pdf5th International Conference on Sustainable Solid Waste

5th International Conference on Sustainable Solid Waste Management,  Athens 2017

Specific Assumptions12

For the GHG emissions calculation, the following specific assumptions were used:

Assumptions regarding carbon contents of MSWNecessary for the estimation of carbon contents (total carbon, degradable/ dissimilable organic carbon andfossil carbon) of the different waste fractions treated.

Assumptions regarding GHG emissions from waste collection and transportationThose GHG emissions depend on the distance travelled by waste collection and transport vehicles, thevehicle type and size of payload. General, fixed assumptions on vehicle types used, payloads and kmtravelled are used.

Assumptions regarding GHG emissions from waste treatmentDifferent emission factors and assumptions regarding different waste treatment processes included in theproject: Anaerobic Digestion, Landfilling.

Assumptions regarding avoided GHG emissions through recycling of recovered materialsSpecific emission factors were applied to calculate avoided GHG emissions through recycling of materials recovered from waste. 

Assumptions regarding avoided GHG emissions through recovery of energy from wasteDue to the fact that the proposed technology treatment includes energy production (heat or electricity)from waste, in the GHG calculator has been used the Electricity –country grid emission factor including gridlosses for electricity imported from grid and the Electricity ‐ Country grid emissions factor excluding gridlosses for electricity exported to grid.

Page 13: GHG from an Integrated Solid Waste System: The of Neretva ...uest.ntua.gr/athens2017/proceedings/presentations/Ieremiadi.pdf5th International Conference on Sustainable Solid Waste

5th International Conference on Sustainable Solid Waste Management,  Athens 2017

Results from GHG Emission Calculations13

As part of the option analysis, and taking into consideration the aforementionedmethodology and assumptions, the quantification of GHG emissions for each examinedscenario was performed, including GHG emissions in without project scenario and theincremental calculations for each scenario.

Scenario 1 Scenario 2 Scenario 3 Scenario 4Quantification of GHG emissions in all scenarios (With project)

Total t CO2(eq) /year (Net) ‐23,274 ‐24,142 ‐16,225 ‐24,432

Quantification of GHG emissions in all scenarios (Without project)Total t CO2(eq) /year (Net) 12,797 12,797 12,797 12,797

Quantification of GHG emissions in all scenarios (Incremental approach=With‐Without project)

Total t CO2(eq) /year (Net) ‐36,072 ‐36,939 ‐29,023 ‐37,230

Scenario 4 is the recommended scenario, which includes: mechanical separation with recovery of Recyclables and RDF, dry fermentation with electricity and heat production and biostabilization of digestate.

Page 14: GHG from an Integrated Solid Waste System: The of Neretva ...uest.ntua.gr/athens2017/proceedings/presentations/Ieremiadi.pdf5th International Conference on Sustainable Solid Waste

5th International Conference on Sustainable Solid Waste Management,  Athens 2017

Analytical GHG Emission Calculations14Without Project Scenario

GHG emissions, avoided GHG emissions and Net GHG emissions (average 2020‐2044), in t CO2 (eq), for the different components of the waste management system in the baseline (without‐project) scenario.

WITHOUT PROJECT SCENARIOMixed Waste from HouseholdsGHG emissions from waste collection and transport (t CO2(eq)) 454GHG emissions from waste treatment (t CO2(eq)) 19GHG emissions from landfills (t CO2(eq)) 17,413GHG emissions avoided through recycling of materials recovered from waste (t CO2(eq)) ‐2,422GHG emissions avoided through recovery of energy from waste (t CO2(eq)) ‐Total net GHG emissions (t CO2(eq)) 15,463Bulky waste from householdsGHG emissions from waste collection and transport (t CO2(eq)) 27GHG emissions from waste treatment (t CO2(eq)) 251GHG emissions from landfills (t CO2(eq)) 12GHG emissions avoided through recycling of materials recovered from waste (t CO2(eq)) ‐2,957GHG emissions avoided through recovery of energy from waste (t CO2(eq)) ‐Total net GHG emissions (t CO2(eq)) ‐2,666Green waste from parks and gardens*Total net GHG emissions (t CO2(eq)) 0Mixed waste from markets*Total net GHG emissions (t CO2(eq)) 0TOTAL WITHOUT PROJECT SCENARIO GHG EMISSIONS (t CO2(eq)) 12,797

*Note: According CEA data for year 2013, in DNC there were no quantities of green waste and market waste

Page 15: GHG from an Integrated Solid Waste System: The of Neretva ...uest.ntua.gr/athens2017/proceedings/presentations/Ieremiadi.pdf5th International Conference on Sustainable Solid Waste

5th International Conference on Sustainable Solid Waste Management,  Athens 2017

Analytical GHG Emission Calculations15Without Project Scenario

GHG emissions for the mixed household 

waste and the bulky waste 

from households

Page 16: GHG from an Integrated Solid Waste System: The of Neretva ...uest.ntua.gr/athens2017/proceedings/presentations/Ieremiadi.pdf5th International Conference on Sustainable Solid Waste

5th International Conference on Sustainable Solid Waste Management,  Athens 2017

Analytical GHG Emission Calculations16With Project Scenario

GHG emissions, avoided GHG emissions and Net GHG emissions (average 2020‐2044), in t CO2 (eq), for the different components of the waste management system in the with‐project scenario (Sc4).

WITH PROJECT SCENARIO0Mixed Waste from HouseholdsGHG emissions from waste collection and transport (t CO2(eq)) 362GHG emissions from waste treatment (t CO2(eq)) 1,128GHG emissions from landfills (t CO2(eq)) 1,745GHG emissions avoided through recycling of materials recovered from waste (t CO2(eq)) ‐23,519GHG emissions avoided through recovery of energy from waste (t CO2(eq)) ‐1,483Total net GHG emissions (t CO2(eq)) ‐21,767Bulky waste from householdsGHG emissions from waste collection and transport (t CO2(eq)) 27GHG emissions from waste treatment (t CO2(eq)) 251GHG emissions from landfills (t CO2(eq)) 12GHG emissions avoided through recycling of materials recovered from waste (t CO2(eq)) ‐2,957GHG emissions avoided through recovery of energy from waste (t CO2(eq)) ‐Total net GHG emissions (t CO2(eq)) ‐2,666Green waste from parks and gardens*Total net GHG emissions (t CO2(eq)) 0Mixed waste from marketsTotal net GHG emissions (t CO2(eq))* 0TOTAL WITH PROJECT SCENARIO GHG EMISSIONS (t CO2(eq)) ‐24,432

*Note: According CEA data for year 2013, in DNC there were no quantities of green waste and market waste

Page 17: GHG from an Integrated Solid Waste System: The of Neretva ...uest.ntua.gr/athens2017/proceedings/presentations/Ieremiadi.pdf5th International Conference on Sustainable Solid Waste

5th International Conference on Sustainable Solid Waste Management,  Athens 2017

Analytical GHG Emission Calculations17With Project Scenario

GHG emissions for the mixed household 

waste and the bulky waste 

from households

Page 18: GHG from an Integrated Solid Waste System: The of Neretva ...uest.ntua.gr/athens2017/proceedings/presentations/Ieremiadi.pdf5th International Conference on Sustainable Solid Waste

5th International Conference on Sustainable Solid Waste Management,  Athens 2017

Analytical GHG Emission Calculations18Incremental Approach

INCREMENTAL APPROACHMixed Waste from HouseholdsTotal net GHG emissions (t CO2(eq)) ‐37,231Bulky waste from householdsTotal net GHG emissions (t CO2(eq)) 0Green waste from parks and gardens*

Total net GHG emissions (t CO2(eq)) 0Mixed waste from markets*

Total net GHG emissions (t CO2(eq)) 0

TOTAL INCREMENTAL GHG EMISSIONS (t CO2(eq)) ‐37,230

Incremental GHG emissions can be calculated if we subtract the GHG emissions in with project scenario from GHG emissions without project scenario.

*Note: According CEA data for year 2013, in DNC there were no quantities of green waste and market waste

Page 19: GHG from an Integrated Solid Waste System: The of Neretva ...uest.ntua.gr/athens2017/proceedings/presentations/Ieremiadi.pdf5th International Conference on Sustainable Solid Waste

5th International Conference on Sustainable Solid Waste Management,  Athens 2017

Analytical GHG Emission Calculations19Incremental Approach

Page 20: GHG from an Integrated Solid Waste System: The of Neretva ...uest.ntua.gr/athens2017/proceedings/presentations/Ieremiadi.pdf5th International Conference on Sustainable Solid Waste

5th International Conference on Sustainable Solid Waste Management,  Athens 2017

Conclusions/Summarized results20

In the context of the Feasibility Study for Development of an Integrated and Sustainable Waste Managementsystem in Dubrovnik‐Neretva County an option analysis for the Waste Management Centre Technology wasperformed and four main waste management scenarios have been defined.

The direct and indirect GHG emissions for the different components of the waste management system and for thealternative waste treatment technologies examined, were calculated.

The quantification of GHG emissions for each examined scenario of the project and also for the without projectscenario has been implemented taking into consideration the Carbon Footprint Methodology. The scenario thatranked as the better solution –Sc4‐ had the best performance regarding GHG emissions.

The percentage of reduction in year 2020 in greenhouse gas (GHG) emissions with the scenario of theimplementation of the project, compared by year 2013 year, has been calculated to 301%.

With Project Scenario 2013 2015 2020 2025 2030 2035 2040 2044

Net GHG emissions, t CO2‐eq

12,039 9,909 ‐24,222 ‐24,224 ‐24,405 ‐24,527 ‐24,638 ‐24,678

Total net GHG emissions from 2013 to 2044, from the present project which have been calculated by Jasper’s calculation model.

Page 21: GHG from an Integrated Solid Waste System: The of Neretva ...uest.ntua.gr/athens2017/proceedings/presentations/Ieremiadi.pdf5th International Conference on Sustainable Solid Waste

5th International Conference on Sustainable Solid Waste Management,  Athens 2017

21

Thank you for your attention

Eleni Ieremiadi [email protected]

Tel. +30 210 610 51 27