25
- Cornell Nanophotonics Group - nanophotonics.ece.cornell.edu GHz photonics on a Silicon Chip Michal Lipson School of Electrical and Computer Engineering Cornell University nanophotonics.ece.cornell.edu

GHz photonics on a Silicon Chip

  • Upload
    others

  • View
    5

  • Download
    0

Embed Size (px)

Citation preview

Page 1: GHz photonics on a Silicon Chip

- Cornell Nanophotonics Group - nanophotonics.ece.cornell.edu

GHz photonics on a Silicon Chip

Michal LipsonSchool of Electrical and Computer

EngineeringCornell University

nanophotonics.ece.cornell.edu

Page 2: GHz photonics on a Silicon Chip

- Cornell Nanophotonics Group - nanophotonics.ece.cornell.edu

Optical Devices in Si Structures• High index contrast – tight optical confinement

compact structures, much smaller than the wavelength dispersion engineering

• Massively parallel devices enable ultrahigh bandwidth processing

LightLight

High indexHigh indexcorecore

nn ~ 3.5 ~ 3.5

Low-index cladding cladding

nn ~ 1.5 ~ 1.5

300 X 500 nm

Page 3: GHz photonics on a Silicon Chip

- Cornell Nanophotonics Group - nanophotonics.ece.cornell.edu

Loss: Propagation and Bending

propagation loss:

waveguide: 445 nm X 220 nm, wavelength 1500 nm, TE-like

1.06.3 ± dB/cm Vlasov (IBM)

Page 4: GHz photonics on a Silicon Chip

- Cornell Nanophotonics Group - nanophotonics.ece.cornell.edu

Achieving Low Losses with EtchlessSilicon Waveguides

Si

SiO2

Si

SiO2

Si3N4

Si

SiO2

Si

SiO2

Si

SiO2

Si

SiO2

e-beamresist

Page 5: GHz photonics on a Silicon Chip

- Cornell Nanophotonics Group - nanophotonics.ece.cornell.edu

Dispersion-Engineered EtchlessWaveguides

• Etchless Si waveguides engineered for 0-GVD at 1550 nm.• Waveguides dimensions: 315-nm high by 1-µm wide.• Losses less than 0.3 dB/cm.

Example of thin (100-nm high) etchless siliconwaveguide profile cross-section

Page 6: GHz photonics on a Silicon Chip

- Cornell Nanophotonics Group - nanophotonics.ece.cornell.edu

Scanning electron micrograph of a ring resonator

Diameter = 12μm

Width = 450nm

Gap = 200nm

BOx: 3μm

Si: 250nm

Si Substrate

BOx: 3μm

Si Substrate

BOx: 3μm

Si Substrate

Width = 450nm

BOx: 3μm

Si Substrate

p+ (B) n+ (As)

Ebeam Lithography EBeam Resist

Oxide Deposition

Etching using RIE

Via Hole Etching and Ion Implantation

BOx: 3μm

Si Substrate

Contact MetallizationMicroscope image offabricated opticalmodulator withelectrical contacts

Fabrication

Page 7: GHz photonics on a Silicon Chip

- Cornell Nanophotonics Group - nanophotonics.ece.cornell.edu

Micrometer Scale Silicon ElectroopticModulator At 20 gbps

>9dB modulation depth!

PRBS 210-1

Q. Xu, M. Lipson, Optics Express Feb 2007

Page 8: GHz photonics on a Silicon Chip

- Cornell Nanophotonics Group - nanophotonics.ece.cornell.edu

Silicon substrate

Silicon Photonics

Buried oxide

Combining optics and electronics on asilicon chip

Silicon-on-Insulator (SOI)250 nm

450 nm

Silicon (n = 3.5)

Silicon dioxide (n = 1.5)

Commercial SOI wafer:

IBM:

Page 9: GHz photonics on a Silicon Chip

- Cornell Nanophotonics Group - nanophotonics.ece.cornell.edu

CMOS IntegrationIBM:

“Front end”transistor layer

“Back end”metal layers

Where does silicon photonics fit?

Vertical integrationDeposited silicon layer above the front end?

500 nm

Page 10: GHz photonics on a Silicon Chip

- Cornell Nanophotonics Group - nanophotonics.ece.cornell.edu

Deposited Silicon

Silicon dioxide

Side view

Crystalline grains: vertical, ~300 nm

Grain Boundaries: amorphous Si, ~1 nm thick

Grain size ≈ Device size

Cross-section TEM of crystallizedLPCVD film

Previously shown passive waveguides, filters Kimerling et al. (MIT)Lipson (Cornell)Baets (Belgium)

Now demonstrating active device electro-optic modulator

Page 11: GHz photonics on a Silicon Chip

- Cornell Nanophotonics Group - nanophotonics.ece.cornell.edu

Poly For Active Electro-optic Devices

Page 12: GHz photonics on a Silicon Chip

- Cornell Nanophotonics Group - nanophotonics.ece.cornell.edu

Poly For Active Electro-Optic Devices

• Carrier mobility µ = 100cm2/V·s (only a factor of10 less than crystallinesilicon

• 2.5GHz speed!

Page 13: GHz photonics on a Silicon Chip

- Cornell Nanophotonics Group - nanophotonics.ece.cornell.edu

Integration of Optical Interconnect

Page 14: GHz photonics on a Silicon Chip

- Cornell Nanophotonics Group - nanophotonics.ece.cornell.edu

4 1

@1.5

1.86 10Si m

dnK

dT µ

! !" #= $% &

' (

Ring Resonators for Switching

Dong, P., Preble, S.F., and Lipson ,M.., All-Optical Compact Silicon CombSwitch, Opt. Express, Vol. 15, No. 15, 23 July 2007

Page 15: GHz photonics on a Silicon Chip

- Cornell Nanophotonics Group - nanophotonics.ece.cornell.edu

Proposed Hitless Network

South

Input

East

Input

South

Output

East

Output

North

Output

North

Input

West

Input

West

Output

R1

R2 R3

R4R5

R6 R7

R8-Allows for parallel hitless routing-spatially non-blocking,-One dedicated waveguide for each input-output combination.

w/ Keren BergmanColumbia University

Page 16: GHz photonics on a Silicon Chip

- Cornell Nanophotonics Group - nanophotonics.ece.cornell.edu

Thermal Effects Max: 284.54

Min: 26.85

50

100

150

200

250

156.0Si

W

m K! =

"

2

1.4SiO

W

m K! =

"

Thermal coefficients

Heat is conducted two ordersmore efficiently in Si than SiO2

Efficient heating requiresproximity to heater.

Nearby rings experienceminimal thermal crosstalk

Si Ring

Heater

Page 17: GHz photonics on a Silicon Chip

- Cornell Nanophotonics Group - nanophotonics.ece.cornell.edu

Fabricated Network

Nicolás Sherwood-Droz, Howard Wang, Long Chen, Benjamin G. Lee, Aleksandr Biberman,Keren Bergman, Michal Lipson1, “Optical 4x4 Hitless Silicon Router for Optical Networks-

on-Chip (NoC)”, submitted for publication

Page 18: GHz photonics on a Silicon Chip

- Cornell Nanophotonics Group - nanophotonics.ece.cornell.edu

Network Performance

1553.4 1553.7 1554.0

-20

-10

0 R6 Switch Off R6 Switch On

No

rth

-Ea

st

(Th

rou

gh

-Po

rt)

No

rma

lize

d T

ran

sm

issio

n (

dB

)

Wavelength (nm)

1553.4 1553.7 1554.0

-20

-10

0 R5 Switch On R5 Switch Off

We

st-

Ea

st

(Sw

itch

-Po

rt)

No

rma

lize

d T

ran

sm

issio

n (

dB

)

Wavelength (nm)

< -20 dB crosstalk

Page 19: GHz photonics on a Silicon Chip

- Cornell Nanophotonics Group - nanophotonics.ece.cornell.edu

Nonlinear Optical Devices In Si Structures

• High index contrast – tight optical confinement compact structures, much smaller than the wavelength enhanced nonlinearity (1000 X silica) dispersion engineering

• Massively parallel devices enable ultra-high bandwidthprocessing.

LightLight

High indexHigh indexcorecore

nn ~ 3.5 ~ 3.5

Low-index cladding cladding

nn ~ 1.5 ~ 1.5

300 X 500 nm

Page 20: GHz photonics on a Silicon Chip

- Cornell Nanophotonics Group - nanophotonics.ece.cornell.edu

Phase-Matched Four-Wave Mixing

• Broad regions of FWM gain predicted.

Foster et al. (2006)Lin et al. (2006)

Page 21: GHz photonics on a Silicon Chip

- Cornell Nanophotonics Group - nanophotonics.ece.cornell.edu

Turner, Manolatou, Schmidt, Lipson, Foster, Sharping, and Gaeta, Opt. Express 14, 4357-4362 (2006).Dulkeith, Xia, Schares, Green, and Vlasov, Opt. Express 14, 3853 (2006).

Measurement of Anomalous-GVD In SOIWaveguides

Page 22: GHz photonics on a Silicon Chip

- Cornell Nanophotonics Group - nanophotonics.ece.cornell.edu

Four-Wave Mixing Amplification

• Frequency conversion with 5-dB gain.Foster, Turner, Sharping, Schmidt, Lipson,Gaeta, Nature 441, 960 (2006)

Page 23: GHz photonics on a Silicon Chip

- Cornell Nanophotonics Group - nanophotonics.ece.cornell.edu

Extremely Broadband Wavelength Conversion

• Pump wavelength 0.2 nm from zero-GVD point• 750-nm bandwidth

pump

prediction

Page 24: GHz photonics on a Silicon Chip

- Cornell Nanophotonics Group - nanophotonics.ece.cornell.edu

Broadband Wavelength Conversion

pump

• pump wavelength 1.5 nm from zero-GVDpoint

• 500-nm bandwidthFoster, Turner, Salim, Gaetra, Lipson, Opt Express, 15, 12949 (2007)

Page 25: GHz photonics on a Silicon Chip

- Cornell Nanophotonics Group - nanophotonics.ece.cornell.edu

Summary

AFOSR- Air Force Office of Sponsored Research, Gernot PomrenkeDarpa, MTO and DSO, NSF-National Science Foundation

-Nonlinearity in silicon waveguides-GHz silicon photonics-Networs on-chip-Poly-silicon for photonics on-chip