95
Glaciotectonic Shear Zones: Surface Sample Bias and Clast Fabric Interpretation A Thesis Presented by Elliot Charles Klein to The Graduate School in Partial Fulfillment of the Requirements for the Degree of Master of Science in Department of Earth and Space Sciences State University of New York at Stony Brook May, 2002

Glaciotectonic Shear Zones: Surface Sample Bias and Clast ... · Daniel M. Davis, Advisor, Professor ... Long Island surface geology is diverse in glacial settings and glaciotectonic

  • Upload
    others

  • View
    3

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Glaciotectonic Shear Zones: Surface Sample Bias and Clast ... · Daniel M. Davis, Advisor, Professor ... Long Island surface geology is diverse in glacial settings and glaciotectonic

Glaciotectonic Shear Zones:Surface Sample Bias and Clast Fabric Interpretation

A Thesis Presented

by

Elliot Charles Klein

toThe Graduate School

in Partial Fulfillment of the Requirementsfor the Degree of

Master of Science

in

Department of Earth and Space Sciences

State University of New Yorkat Stony Brook

May, 2002

Page 2: Glaciotectonic Shear Zones: Surface Sample Bias and Clast ... · Daniel M. Davis, Advisor, Professor ... Long Island surface geology is diverse in glacial settings and glaciotectonic

State University of New York

at Stony Brook

The Graduate School

Elliot Charles Klein

We, the thesis committee for the above candidate for the Master of Science degree,

hereby recommend acceptance of this thesis.

_______________________________________Daniel M. Davis, Advisor, Professor

Department of Earth and Space Sciences

_______________________________________E. Troy Rasbury, Assistant Professor

Department of Earth and Space Sciences

_______________________________________William E. Holt, Professor

Department of Earth and Space Sciences

This thesis is accepted by the Graduate School

______________________________Dean of the Graduate School

ii

Page 3: Glaciotectonic Shear Zones: Surface Sample Bias and Clast ... · Daniel M. Davis, Advisor, Professor ... Long Island surface geology is diverse in glacial settings and glaciotectonic

Abstract of the Thesis

Glaciotectonic Shear Zones:

Surface Sample Bias and Clast Fabric Interpretation

by

Elliot Charles Klein

Master of Science

in

Department of Earth and Space Sciences

State University of New York

at Stony Brook

2002

Long Island surface geology is diverse in glacial settings and glaciotectonic

landforms. I present two models that elucidate the generation of glaciotectonic push moraines

with examples from eastern Long Island. One model, with prolonged glaciotectonic push-

from-behind, contracts glacial sediment and strata in a manner analogous to larger scale

processes in thin-skinned small-scale fold-and-thrust belts. In a prolonged glacial advance,

proglacial material shortens at the glacier margin into the form of a critical taper, a wedge

shaped packet of material containing the deformed structures in cross section. An alternative

model, with repeated glaciotectonic push-from-behind, deforms less proglacial material

since the ice, which is doing the pushing, melts back before the deforming sediment can

form a critical taper. Structures produced by repeated glaciotectonic push-from-behind are

iii

Page 4: Glaciotectonic Shear Zones: Surface Sample Bias and Clast ... · Daniel M. Davis, Advisor, Professor ... Long Island surface geology is diverse in glacial settings and glaciotectonic

generated by seasonal or annual readvance of the glacier margin during a period of overall

glacial retreat. Two field areas located within the Ronkonkoma Moraine of Long Island are

documented to provide clear examples of glaciotectonic push-from-behind. At the Ranco

Quarry site, measured sections suggest emplacement by prolonged glaciotectonic push-

from-behind. Ground penetrating radar (GPR), seismic studies, topographic analysis, and

measured sections at the Hither Hills site indicate emplacement by repeated glaciotectonic

push-from-behind.

Quantitative clast fabric analysis, despite its limitations, is a worthwhile analytical

tool in glacial diamict studies. More robust than graphical methods, clast fabric analysis

allows quantification of otherwise descriptive three-dimensional fabrics. In conjunction

with the orientation of the long-axes, short-axes preferred direction could further establish

the nature of shear, emplacement, and deposition in glacigenic settings. Field measurement

of clast orientation, however, produces a systematic sampling bias in favor of clasts normal

to outcrop surface. This surface sampling bias is a function of the orientation of outcrop

surface to the fabric and can affect the inferred fabric strength (eigenvalues) enough to

influence interpretation. I use simple calculations and computer generated random clast

populations to quantify this bias and I find that it is greatest for those clasts best suited to

fabric analysis (those that are rod-like in shape). True fabric strengths and orientations

(eigenvectors) are misrepresented due to the surface sampling bias. Fortunately, the sampling

bias effect upon strong fabric orientation is generally small.

iv

Page 5: Glaciotectonic Shear Zones: Surface Sample Bias and Clast ... · Daniel M. Davis, Advisor, Professor ... Long Island surface geology is diverse in glacial settings and glaciotectonic

Table of Contents

List of Figures…………………………………………………….………...…..…vi

List of Tables…………………………………………………………...……….viii

Acknowledgments……………………….…………………………..…………...ix

I. Push Moraine Glaciotectonics: Examples from Eastern Long Island 1

Introduction………………………………………………………….……………..1Setting……………………………………….……………………………………..6Rationale…………………………….……….…………………………………….9Glaciotectonic Deformation on Pleistocene Long Island….……………………..10Glacigenic Deposits of Long Island………………………….…………………...21Glaciotectonic Deformation Observed Within Eastern Long Island Moraines.….22References………………………………………………………………...……….34

II. Surface Sample Bias and Clast Fabric Interpretation 42

Abstract………………………………………………………....………………….42Clast Fabric Analysis in Glacial Sediment……………………...…………………42Surface Sample Bias………………………………………….…………………..57Quantifying the bias in limiting cases……………………….……………………61Implications for field studies……………………………….………...…………..62Conclusions………………………………………………….……………………70References………………………………………………….……………….…….71Appendix A………………………………………………….……………………74

v

Page 6: Glaciotectonic Shear Zones: Surface Sample Bias and Clast ... · Daniel M. Davis, Advisor, Professor ... Long Island surface geology is diverse in glacial settings and glaciotectonic

List of Figures

I. Push Moraine Glaciotectonics: Examples from Eastern Long Island

Figure 1. Map of Long Island………....……...…………………………...…….….2 Figure 2. (S

1, S

3) Eigenvalue Plot…......……...……...……………………...……...4

Figure 3. Last Glacial Maximum of the Laurentide Ice Sheet….......……………...7 Figure 4. Digital Elevation Model of Long Island………….......….......………..…8 Figure 5. Critical Wedge Built by Prolonged Glaciotectonic Push-From-Behind..12 Figure 6. Moraine Formation by Seasonal Glaciotectonic Push-From-Behind......13 Figure 7. Mechanical and Glaciotectonic Parameters of Push Moraines......……..16 Figure 8A. Applied Glacial Stress: Push-From-The-Rear……....…….....……...…17 Figure 8B. Applied Glacial Stress: Gravity-Spreading.………….………....…...…17 Figure 8C. Applied Glacial Stress: Compression-From-Within…….......……...….17 Figure 8D. Applied Glacial Stress: Gravity-Sliding…...........………………......….17 Figure 9A. Schematic Illustration of the Critical Taper……......……..………...….19 Figure 9B. Interpretive Cross-Section of the Western Taiwan Fold & Thrust Belt..19 Figure 10. Exposure at Ranco Quarry…….......……….....…......…………………23 Figure 11. Montage of Aerial Photos of Hither Hills….......……...……………….24 Figure 12. Hither Hills Ridge Orientation ‘Packets’…..…....……..………………25 Figure 13. Hither Hills Ridge Elevation Transect…….........……..……………….26 Figure 14A. Glaciotectonic Folds Exposed Along the Shoreline at Hither Hills........27 Figure 14B. Seismic Reflection Section of an Anticline-Cored Hill in Hither Hills..27 Figure 15. Map of the Power Line Cut in Hither Hills…..........…………………...28 Figure 16. 50 MHz Radargram of the Power Line Cut.……....………..………….29 Figure 17. Map of Rocky Point in Hither Hills….……...………………….……...31 Figure 18. 200 MHz Radargram of the Dominant Hill Structure at Rocky Point....32 Figure 19. Three Measured Sections at Rocky Point………………...……………33

II. Surface Sample Bias and Clast Fabric Interpretation

Figure 1. Map of Long Island....…..………………...…………………...…….…44 Figure 2. A South-Facing Sea Cliff at Ditch Plains………….......……………….45 Figure 3A. Rose Diagram of 150 long-axis Clast Orientations at Ditch Plains........46 Figure 3B. Equal-Area Stereonet of the same 150 long-axis Clast Orientations......46 Figure 3C. Contoured Equal-Area Stereonet of the long-axis Clast Orientations....46 Figure 4A. Equal-Area Stereonet of short-axis Clast Orientations at Ditch Plains...49 Figure 4B. Contoured Equal-Area Stereonet of the short-axis Clast Orientations....49 Figure 5A. (S

1, S

3) Eigenvalue Plot…….....………………………………...……...51

Figure 5B. Isotropy-Elongation Ternary Diagram….....………….......……………51 Figure 6A. (S

1, S

3) Eigenvalue Plot with Isotropy-Elongation Diagram labels........53

Figure 6B. Isotropy-Elongation Ternary Diagram with (S1, S

3) Eigenvalues...........53

Figure 7A. Isotropy-Elongation Ternary Diagram divided into Four Equal Areas...54

vi

Page 7: Glaciotectonic Shear Zones: Surface Sample Bias and Clast ... · Daniel M. Davis, Advisor, Professor ... Long Island surface geology is diverse in glacial settings and glaciotectonic

Figure 7B. Four Equal Areas Skewed on a (S1, S

3) Eigenvalue Plot…....................54

Figure 8. (S1, S

3) Eigenvalue Plot of Glacigenic Fabric Domains…....………….56

Figure 9. Cross-Section of an Ellipsoidal Clast Being Exposed With Time…..…58Figure 10A. Moraine Eroding in a Time Order Series: Erosion Begins…....……….59Figure 10B. Moraine Eroding in a Time Order Series: After time……….........…….59Figure 10C. Moraine Eroding in a Time Order Series: Erosion Continues.......…….59Figure 11. (S

1, S

3) Eigenvalue Plot of Computer Generated Clast Fabrics..............63

Figure 12. (S1, S

3) Eigenvalue Plot of Generated Clast Fabrics with a.r. = 2.5..…..64

Figure 13. Observed Eigenvectors for Strong Fabrics.............................................65Figure 14. Observed Eigenvectors for Moderate Fabrics........................................66

Figure 15. (S1, S

3) Eigenvalue Plot: Domains and Generated Clast Fabrics............69

vii

Page 8: Glaciotectonic Shear Zones: Surface Sample Bias and Clast ... · Daniel M. Davis, Advisor, Professor ... Long Island surface geology is diverse in glacial settings and glaciotectonic

List of Tables

Table 1. Eigenanalysis Results for Clast Orientations Recorded at Ditch Plains….........52Table 2. Computer Generated Random Clast Fabric Data Sets………….......………….67

viii

Page 9: Glaciotectonic Shear Zones: Surface Sample Bias and Clast ... · Daniel M. Davis, Advisor, Professor ... Long Island surface geology is diverse in glacial settings and glaciotectonic

Acknowledgments

This thesis would not be possible without the support of Dan Davis, my thesiscommittee, and the Department of Geosciences.

I could not thank my advisor, Dan Davis often enough for everything he has donefor me at Stony Brook. Besides making unintuitive concepts understandable, Dan guidedme with great care through the biggest transitions of my life. My background as a visualartist never impaired Dan’s view of my capabilities and he worked with me despite mydeficiencies in mathematical and scientific concepts. His lab and ideas have always beenfully open and shared with me and for this I am truly grateful. When I first approached Danfor some help on understanding the orientation tensor and its relationship to pebbleorientations, I remember Dan saying with a smile that he previously thought so little ofpebbles that he would, without much thought, gently toss them over his shoulder. Sincethat day Dan ‘Cosine is My Friend’ has continually enriched my life as well as my math andgeophysics knowledge.

I appreciate the time that Dan Davis, Bill Holt, and Troy Rasbury spent as mycommittee members reviewing my thesis. Their scientific insight and discussions werequite helpful in preparation for my defense.

I am grateful to Troy Rasbury and Bill Holt for helping me begin my graduate careerin geosciences. They have been great examples to me because of their success as scientists.Neither Troy nor Bill can stop questioning anything about geosciences or science in general.Plus they throw fun parties.

Bill Meyers allowed me to pursue undergraduate research in glacial diamict andclast fabric analysis when he knew that I lacked formal training in sedimentology. To thisday I often wonder why Bill gave me this research opportunity. I am truly indebted to him.Bill taught me how ask scientific questions with intelligence and purpose. I may neverforget some of his responses to my written words (e.g., huh!). Bill always mentioned that“good science requires a good write up”. I hope this thesis lives up to Bill’s expectations.

I give special thanks to Don Lindsley for supporting me in his experimental petrologylab during my second summer at Stony Brook where he continually encouraged me to finda way to conduct research in geosciences.

I thank Gil Hanson for sharing his general knowledge of glaciology and Long Islandgeology with me. I am also grateful to the Long Island Geologists because this organization(ran by Gil) provided me opportunities to submit papers and give oral presentation onglaciotectonics and clast orientation.

Lianxing Wen is thanked for graciously supplying me with desk, workstation, andinspiration to carry out this work.

ix

Page 10: Glaciotectonic Shear Zones: Surface Sample Bias and Clast ... · Daniel M. Davis, Advisor, Professor ... Long Island surface geology is diverse in glacial settings and glaciotectonic

Saad Haq ‘Do you have time for a game (of wiffleball)’ has been a superb lab mateand friend. He has been generous with his advice and time. Saad has literally saved mefrom embarrassing technical disasters as I prepared graduate circus talks and otherpresentations.

I have been very fortunate to be surrounded by great characters and maturinggeoscience graduate students. In particular Lucy Flesch and Andy Winslow have alwaysmade me laugh even if I was not in the mood. I thank Wen-Che Yu, Brian Hahn, and YiWang for bringing life and culture into our geophysics group.

My friends Rob Finkenthal and Ed Keegan each deserve a hearty thank you sincethese guys always stuck by me. They have supported me through thick and thin ever sinceI was a young boy. Gail Schaefer has lifted my confidence on many occasions and I amindebted to her. Yi-Ju Chen deserves mention for constantly encouraging me.

Of course my parents George and Marcy, brothers David and Louis, sister Diane,brother-in-law Rich, grandmother Sue, grandmother Adele, great aunts Olga and Charolette,aunt Rosy, uncle Lawernce, and ‘great uncle’ Paul all merit special thanks for their belief inme and for giving me unconditional support throughout my life.

x

Page 11: Glaciotectonic Shear Zones: Surface Sample Bias and Clast ... · Daniel M. Davis, Advisor, Professor ... Long Island surface geology is diverse in glacial settings and glaciotectonic

I. Push Moraine Glaciotectonics: Examples from Eastern Long Island

Introduction

Late Pleistocene Long Island landforms are a product of glacial sediment availabilityand glaciotectonic deformation when sea level was substantially lower (by 10’s of meters)than at present. Data obtained through geologic and geophysical studies, developed andrefined into landform evolution models, can help to elucidate the evolutionary path of LongIsland glacial landforms, and Pleistocene Long Island landforms can be compared withevolutionary path models for each distinct Quaternary glacial landform type. There are fewstudies of glacial deposits and structural features that present Long Island landform evolutionmodels, but it is clear that there is substantial local diversity in glacial settings andglaciotectonic landforms (e.g., Bernard, 1998; Meyers et al, 1998) (Fig. 1).

I have concentrated my effort in the interpretation of eastern Long Island glacigenicsediment and structure, as a first step in amassing the data necessary to develop landformevolution models. We consider the landforms at Hither Hills (Fig. 1) as a late Pleistoceneice marginal push moraine based on the results of interpreted (migrated and topographycorrected) ground penetrating radar radargrams, earlier topographic and seismic surveyanalyses (e.g., Bernard, 1998), correlation of ridges (spacing and amplitude) andglaciotectonic structural styles to modern push moraine analogs, and from detailed fieldanalysis of lateral variation in stratigraphy. There is also the evidence of syntectonicdeposition found in sediments exposed along the shoreline in sea cliffs. Future work in thissetting will, it is hoped, measure glaciotectonically-shortened features and report on theirchange in rate of contraction. The fieldwork effort that figures most prominently in thisthesis included the measurement macro-clast orientations within the stratified diamict atDitch Plains, Long Island (Fig. 1). Clast fabric analysis of the measured clasts indicates apreferred subhorizontal, slightly west of north, long-axis orientation consistent with subglacialshear due to ice advance from that direction.

Existence of potential sampling biases in clast orientation measurements collectedfrom outcrop surfaces led me to design numerical and analytic models testing the degree towhich clast axis ratios, outcrop surface orientations, and clast residence times in an erodingoutcrop influence resulting clast fabric analyses. The models incorporate uniform erosionof an outcrop from the outcrop exposure surface normal direction leading to preferentiallyover-sampled and under-sampled clast orientations. Favorably oriented clasts remainembedded in an outcrop as it erodes, producing over-sampled orientations. Meanwhile,other clasts roll out of the outcrop after a relatively short time and can not be measuredproducing under-sampled orientations, often dramatically distorting the results of clast fabricanalyses. Surface sampling bias modeling predicts that weakly anisotropic axial clast fabrics

1

Page 12: Glaciotectonic Shear Zones: Surface Sample Bias and Clast ... · Daniel M. Davis, Advisor, Professor ... Long Island surface geology is diverse in glacial settings and glaciotectonic

Fig

ure

1. M

ap o

f L

ong

Isla

nd.

Shad

ed in

gre

en a

re th

e H

arbo

r H

ill a

nd R

onko

nkom

a m

orai

nes.

D

itch

Plai

ns f

ield

stu

dy

loca

tion

is in

dica

ted

by th

e sm

all r

ed d

ot o

n th

e so

uth

fork

.

2

Page 13: Glaciotectonic Shear Zones: Surface Sample Bias and Clast ... · Daniel M. Davis, Advisor, Professor ... Long Island surface geology is diverse in glacial settings and glaciotectonic

measured and quantified from surface sampled clast orientations produce large observationerrors in eigenvalue strength and eigenvector direction compared with clast fabrics calculatedfrom the entire volume of clast orientations. Volumetric clast fabric analysis would includeclast orientations within the outcrop, instead of being limited to the clasts exposed at anoutcrop surface. A highly anisotropic clast fabric represents the statistical distribution ofclasts with a very strong preference for axial orientation in close alignment with one dominantdirection.

I find that the error in preferred fabric direction for sediments with a moderate orstrong fabric due to surface observation bias is small, indeed smaller than the error anticipatedfor field measured clast orientations. Unfortunately, my results also show that clast fabriceigenanalysis of surface clasts can lead to uncertainty in eigenvalues that is much largerthan the uncertainty in eigenvalue distributions associated with other sources in fieldmeasurement of clast orientations, and compares to typical differences between sedimentsfrom different glacial environments.

Application of eigenanalysis to quantifying glacial sediment fabrics and other geophyicalproblems (e.g., Watson, 1966; Anderson and Stephens, 1972; Mark, 1973; Woodcock 1977; Woodcockand Naylor, 1983) developed into a diagnostic tool intended to deduce the genetic origin of glacialdeposits (e.g., Mark, 1974, Lawson 1979; Dowdeswell et al., 1985; Rappol, 1985; Dowdeswell andSharp, 1986; Benn, 1994, Ham and Mickelson, 1994; Hicock et al., 1996; Larsen et al., 1999; Kjaeret al., 2001) (Fig. 2) and to infer relative strain within glacigenic sediments (e.g. Hicock, 1992; Hart,1994; Benn, 1995; Benn and Evans, 1996; Rijsdijk, 2001). Large-scale glacial landforms areinterpreted by a variety of means which often includes the quantitative clast fabric analyses ofglacial sediments which are then related to emplacement by sedimentary (e.g., Johnson and Gillam,1995; Mattsson, 1997; Karlstrom, 2000; Munro-Stasiuk, 2000; Ward 2000; Hambrey et al., 2001;Kjaer and Krüger, 2001) or deformational processes (e.g., Hicock and Dreimanis, 1992; Hambreyand Huddart, 1995; Zelcs and Dreimanis, 1996; Hart, 1997, 1998; Hart and Smith, 1997; Bennett etal, 1999a; Dreimanis, 1999; Hicock and Lian, 1999; Johnson and Hansel, 1999; Blake, 2000; Evans,2000; Cofaigh and Evans, 2001; Hart and Rose, 2001; Henriksen et al., 2001). Due to the growingimportance of quantitative clast fabric analysis in landform and ice sheet reconstructions, fundamentalquestions continue to be raised about the statistical reliability and accuracy of the eigenanalysismethod (e.g., Ringrose and Benn, 1997; Kjaer and Krüger, 1998; Krüger and Kjaer, 1999; Bennettet al, 1999b; Millar and Nelson, 2001a, 2001b; Benn and Ringrose, 2001). I find that the surfacesampling bias in clast fabric analysis does not affect inferences regarding ice-flow or shear directionfor strongly oriented fabrics, but it severely limits the usefulness of the technique as an indicator ofglacial sediment genesis. Future research aimed at producing Quaternary glacial landform evolutionmodels can still integrate directional data resulting from the eigenanalysis of clast orientations, butshould do so with caution.

Detailed geologic and geophysical analyses of glacial landforms place vital constraints onspatial, temporal and climatic reconstructions of Pleistocene ice sheets and their settings. Recentstudies of contemporary glaciers worldwide has led to a more accurate understanding of thekinematics, physics, and mechanics involved in the evolution of glacial landforms by modern icesheetenvironments. Major advances in classifying sedimentary, structural, and geomorphologicalvariations at active glaciers corroborate the notion that landform assemblages are shaped by a varietyof complexly related depositional and structural processes that are dependent on the conditions thatexist during landform generation (e.g., Lawson, 1979; Bluemle and Clayton, 1984; Boulton, 1986;Hart and Boulton, 1991; Benn and Evans, 1996; Bennett et al., 2000; Boulton et al, 2001a; Bennett,2001; Houmark-Nielsen et al., 2001). The incorporation into models of what has been learned

ˇ

3

Page 14: Glaciotectonic Shear Zones: Surface Sample Bias and Clast ... · Daniel M. Davis, Advisor, Professor ... Long Island surface geology is diverse in glacial settings and glaciotectonic

Fig

ure

2. S

1 vs

S3

eige

nval

ue p

lot

of D

owde

swel

l et a

l., (

1985

) co

mpa

ring

the

stan

dard

dev

iatio

n an

d m

ean

eige

nval

ues

of

four

mod

ern

glac

igen

ic f

abri

c do

mai

ns w

ith d

ebri

s-ri

ch b

asal

ice.

Num

bere

d da

ta s

ets

repr

esen

t Sva

lbar

d til

lite

sam

ples

.

4

Page 15: Glaciotectonic Shear Zones: Surface Sample Bias and Clast ... · Daniel M. Davis, Advisor, Professor ... Long Island surface geology is diverse in glacial settings and glaciotectonic

about landform evolution at an active glacier is a primary way to delineate processes responsible forlandform generation in the Pleistocene epoch (e.g., Hambrey and Huddart, 1995; Boulton et al.,1996a, 1996b; Hart and Watts, 1997; Dreimanis, 1999; Evans, 2000; Bennett, 2001; Boulton et al,2001b; Hart and Rose, 2001; Russell et al, 2001).

A complementary approach to field identification of the kinematics and mechanicalconditions responsible glacial landform evolution should include laboratory scale analogmodeling comparable to that commonly used in structural geology and tectonics (e.g., Daviset al., 1983; Dahlen et al., 1984; Davis and Engelder, 1985), and finite difference and/orelement modeling (e.g., Hsui et al, 1990; Wang, 1996) to compile a set of modeling predictionsfor strain patterns as a function of the governing conditions, including the shape and velocityof the advancing mass and the yield/flow criteria and thickness of sediments. In this way alink between the recent classifications of modern glacial landform assemblages and thecorresponding predicted deformation patterns should then make it possible for fieldobservations of structures and fabrics to be used more effectively to draw conclusions aboutthe geologic and climatic conditions at the time of the deformation.

Deformation imprinted on glacial landforms covers a broad range of length scales,from tiny grain size particles (e.g., van Der Meer, 1993; van Der Meer, 1997b; Menzies etal, 1997) to thousands of square kilometers (e.g., Zelcs and Dreimanis, 1997; Hart andSmith, 1997; Boulton et al., 2001b). For example, strain can be observed in the microscopicfracturing and folding of glacial sediments (e.g., Lachniet et al., 1999; Van der Wateren,1999), in cm-to-meter scale glaciotectonic structures within the mass of deformed materials(e.g., Croot, 1987; Hart, 1990; Benn, 1995; Aber and Ruszczynska-Szenajch, 1997; Kleinand Davis, 1999; Schlücther et al., 1999; Boulton et al., 2001a) as well in the macroscopicform of entire landform assemblages (e.g., Bennett et al., 1999b; Evans et al., 1999; Bennand Clapperton, 2000; Bennett et al., 2000).

Landforms resulting from Pleistocene glaciations continue to be examined bytraditional geological analyses (i.e., sedimentary, stratigraphic, structural, aerial photographic,topographic, clast fabric, and micro-morphologic) and by geophysical field surveyingmethods (i.e., seismic refraction and reflection, ground penetrating radar, satellite imagery,downhole geophysical logging, magnetometer, and resistivity-meter measurements), whichyield data that can be incorporated into landform models. Comparisons made betweenrelative strain accumulation and strain pattern in microstructures, and macroscopicdeformation features within the same glacial landform can aid in constraining a particularlandform evolution model. Pleistocene glacial landform models can be compared withmodels of landform evolution by active glaciers with similar glaciological setting (e.g., Vander Wateren, 1985; Evans et al, 1999; Bennett, 2001, Khatwa and Tulaczyk, 2001; Piotrowskiet al., 2001) and with appropriate numerical and analog models in order to synthesize acollection of consistent and reliable Quaternary glacial landform models that will aid in thereconstruction of former ice sheets.

ˇ

´

5

Page 16: Glaciotectonic Shear Zones: Surface Sample Bias and Clast ... · Daniel M. Davis, Advisor, Professor ... Long Island surface geology is diverse in glacial settings and glaciotectonic

Setting

North America was repeatedly covered with continental glaciers in the PleistoceneEpoch. During the last glacial maximum, one of these massive ice sheets had an extendedsouthward advance from Artic North America to the southern shore of modern Long Island(e.g., Dyke, 2002) (Fig. 3). Other earlier Pleistocene ice sheets may also have extended asfar south as Long Island. Ice sheet lobes distributed glacigenic sediments and createdlandforms on Long Island before finally retreating. The erosion of bedrock in the LongIsland Sound basin, New York State, and in the southern New England region, during icesheet advances, produced and transported source materials ranging widely in particle sizeand lithology that ultimately became surface and near surface sediment deposits on theLong Island platform (e.g., Lewis and Stone, 1991) (Fig. 4).

The relatively warm climate of the Atlantic coastal plain, which included thelandlocked Long Island platform in the late Pleistocene, slowed the southward advance ofthe spreading ice sheet. The warmer coastal climate gradually weakened the basal couplingof the warm-based ice sheet and melted large volumes of ice. The local climate reduced thetotal glaciotectonic stress needed to overcome the basal shearing resistance, as the glaciercontinued its push forward onto the Long Island platform. The temperature became warmenough for the ablation rate at the ice margin to be nearly equal in magnitude to the iceadvance rate causing the ice sheets to nearly stall. Once the ablation rate overcame theforward advance rate of the glacier, the ice sheet melted back to the north off the LongIsland platform. Global ice melting allowed the sea level to rise slowly to its present daylevel. As a consequence, Long Island glacial sediments were exposed to direct ice contactat the glacier margin only for a limited amount of time (perhaps centuries), which stronglyinfluenced the strain histories, deformation styles, and geometric shapes of Long Islandglacial landforms. Geological dating of the Pleistocene glaciation or glaciations is not wellestablished for Long Island but deposition and deformation of the surface deposits aregenetically related to one or possibly more than one glacial cycle (e.g., Lewis and Stone,1991).

Small to moderate size temperature fluctuations at the ice sheet terminus contributedto lateral variations in stratigraphy and to complexities in glaciotectonic structure observedin Long Island moraine environments. Although Long Island was landlocked in the latePleistocene, it was still near the relatively warm waters of the Atlantic Ocean. The temperaturecontrast between the glacial ice and the ocean water caused a thermal gradient that locallyaltered ice flow and glaciation dynamics. The ice sheet terminus was influenced by themagnitude of the local temperature gradient so that prolonged periods of extreme cold andglacier advance must have been difficult to maintain and probably occurred infrequently.Therefore, the size, shape, location, and distribution of glacial lobes as well as the amountof sediment, ice, and water that these lobes carried, deposited, and deformed was primarilyfunction of local temperature variation with respect to time. The geomorphology of LongIsland was, in part, shaped by sudden surging of ice sheet advance during a period of overallglacial retreat and by relative motions between glacial lobes during a relatively short timespan. Such relatively sudden changes in ice flow dynamics probably occurred even onannual-to-decade-to-century time scales and were in direct response to change in magnitudeof the local temperature gradient.

6

Page 17: Glaciotectonic Shear Zones: Surface Sample Bias and Clast ... · Daniel M. Davis, Advisor, Professor ... Long Island surface geology is diverse in glacial settings and glaciotectonic

Figure 3. Last Glacial Maximum of the Laurentide Ice Sheet as defined by Dykes et al. (2002). Ice sheet margins are shaded white. Ice surface contours are based predominately on direct mapping of elevations along the Last Glacial Maximum ice margin and topographic high points that were overridden by ice.

7

Page 18: Glaciotectonic Shear Zones: Surface Sample Bias and Clast ... · Daniel M. Davis, Advisor, Professor ... Long Island surface geology is diverse in glacial settings and glaciotectonic

0

2

0

4

0

6

0

80

scal

e (k

m)

40 30' 41 00'

74 0

0'

7

3 3

0'

73 0

0'

7

2 3

0'

72 0

0'

LO

NG

ISL

AN

D

LO

NG

ISL

AN

D S

OU

ND

BA

SIN AT

LAN

TIC

OC

EAN

BA

SIN

Con

nect

icut

New

Yor

k

New

Jer

sey

Ron

konk

oma

Mor

aine

Har

bor

Hill

Mor

aine

-50

0

5

0

10

0

1

50

2

00

Fig

ure

4. D

igita

l ele

vatio

n m

odel

of

Lon

g Is

land

. B

ased

on

data

fro

m S

tern

er (

1994

).

elev

atio

n (m

)

8

Page 19: Glaciotectonic Shear Zones: Surface Sample Bias and Clast ... · Daniel M. Davis, Advisor, Professor ... Long Island surface geology is diverse in glacial settings and glaciotectonic

The elevated Rokonkoma and Harbor Hill moraines are the dominant topographicfeatures on Long Island (Fig. 4). The glacial margins of the Laurentide Wisconsinan icesheet of the late Pleistocene generated the Ronkonkoma moraine of central Long Island(Fig. 1). This thin moraine trends roughly WSW-ENE for nearly the entire length of theisland as a succession of numerous interconnected kilometer-scale lobate shaped ridges.The easternmost portion of the moraine meets the Atlantic Ocean, at Montauk Point on thesouth fork of Long Island. As the Laurentide Wisconsinan ice sheet retreated from LongIsland it likely stalled temporarily to create the WSW-ENE trending Harbor Hill moraine.This moraine is another narrow elevated landform made up of many interlinked lobateshaped ridges, on the scale of a few kilometers, that traverse the entire length of LongIsland, mainly along the northern shore, reaching Orient Point on the north fork. The morainesystems each contain segments formed by the Hudson, Connecticut and Connecticut-RhodeIsland lobes. Besides the two distinct moraines, the glaciers left Long Island with outwashplains, glaciotectonic hill-hole pairs, tunnel valleys, and deltaic sequences, each with distinctstructural and depositional features. Glaciotectonically deformed strata, in exposed sectionsof Long Island moraines, contain contracted strata shortened by folding and faulting processes(e.g., Merrill, 1986; Nieter et al., 1975; Fullerton et al., 1992). Little about the subsurfacegeometry of Long Island glaciotectonized folds or faults is known, so the mechanism oftheir emplacement or formation remains unclear. Only modest effort has thus far gone intoglaciotectonic analog or numerical models or to comparing them with contemporary andPleistocene landforms. This research is needed in order to differentiate ice sheet dynamicinfluences on the generation of Long Island landforms.

Rationale

Long Island glacial sediments are well suited for geological and geophysical fieldinvestigations. In addition to being geologically and economically important, the spatialarrangement of Long Island glacial sediments and associated glaciotectonic structures playsan important role in controlling hydrologic fluid flow paths. Improved analysis of landformgeomorphology and near-surface hydrology, through the investigation of three-dimensionalheterogeneities in glacial strata, will likely influence the next generation of Long Islandgroundwater flow models. Existing groundwater flow models do not adequately accountfor lateral variability in glacial sediments and neglect the inclusion of identified regions ofglaciotectonic folding or thrusting in Long Island deposits. Glaciotectonically altered strataand abrupt changes in the sedimentology of glacial strata often redirect groundwater flow(e.g. Sminchak, 1996; Beres et al., 1999; Boyce and Eyles, 2000; Gerber et al., 2001, Regliet al., 2002). Incorporating quantitative structural and sedimentological anisotropies intofuture Long Island groundwater and contaminant flow models is absolutely necessary giventhe large population (approximately 2.7 million) who directly depend on the groundwaterpumped from fragile aquifer systems as their sole water supply.

9

Page 20: Glaciotectonic Shear Zones: Surface Sample Bias and Clast ... · Daniel M. Davis, Advisor, Professor ... Long Island surface geology is diverse in glacial settings and glaciotectonic

Geologic studies characterizing sedimentary and structural field relationships inglacial diamict and associated sediments are fundamental in establishing glacigenic facies(e.g., Krüger and Kjaer, 1999). Measured sections at outcrops serve as ‘ground truth’ forLong Island glacigenic facies which represent the depositional and emplacement associationsfor the wide spectrum of deformed and undeformed sediment, strata, and structure that arefound within the deposits of glacigenic sediments (e.g., Meyers, 1998). Since not all ofthese glacigenic facies are documented, and others have not been correlated, Long Islandglacial strata, diamict and associated sediments, as well as glaciotectonic features shouldcontinue to be sedimentologically, structurally, and stratigraphically characterized at fieldsites. All known glacigenic facies ought to be integrated into sedimentological, glaciotectonic,and landform evolution models.

Application of geophysical instruments, imaging unconsolidated glacial sedimentson Long Island, has proven to be extremely valuable in shallow surface surveying becausethese tools provide representation of otherwise inaccessible deposits or structures (e.g.,Bernard, 1998; Davis et al., 2000). Geophysical survey methods such as seismic reflectionand refraction, ground penetrating radar (GPR), and resistivity-measurement can estimateand differentiate physical property variations in glacial sediments at a wide range of depthsand resolutions. This is especially useful in terrain that is not well exposed, providing twoor three-dimensional images of the near subsurface (e.g., Hansen et al., 1997; Ramage et al,1998; Beres et al., 1999; Penttinen et al., 1999; Gerber et al., 2001; Overgaard and Jakobsen,2001; Williams et al., 2001). Combining geophysical investigations and geologic fieldworkstudies, particularly at outcrop exposures or at excavated sites, strengthens correlationbetween ground penetrating radar, resistivity, seismic, and glacial facies (e.g., Harris et al.,1997; Davis et al., 2000; Eden and Eyles, 2001; Ékes and Hickin, 2001; Salem, 2001; Regliet al., 2002).

Glaciotectonic Deformation on Pleistocene Long Island

On Long Island, the Harbor Hill moraine ridge topography often exceeds 60 m andfrequently the Ronkonkoma moraine ridges top 90 m, attaining maximum elevation at roughly128 m above sea level (Fig. 4). Glacial erosion and transport of Long Island Sound basinbedrock material by ice sheets were the chief sedimentological processes contributing tothe deposition of the enormous supply of sediments that evolved into glaciotectonicallythickened and deformed Long Island moraine landforms. The emplacement mechanismsand landform evolution paths of moraines on Long Island, though still poorly understood,included subglacial and proglacial deposition and deformation processes. The range ofglaciotectonic structures, evident at a variety of scales, provides insight into the developmentof Long Island landforms, as well as other Quaternary landforms built by similar warmbased, weakly coupled glacier marginal systems. Therefore, documenting the distributionsand complexities of glaciotectonic structures within the landforms of Long Island is necessary.

10

Page 21: Glaciotectonic Shear Zones: Surface Sample Bias and Clast ... · Daniel M. Davis, Advisor, Professor ... Long Island surface geology is diverse in glacial settings and glaciotectonic

At present, I believe that two principal glaciotectonic mechanisms are responsiblefor generating much of the deformed proglacial structures on Pleistocene Long Island. Thesestructures were generated glaciotectonically by either a prolonged push-from-behind, aseasonal push-from-behind, or a mix of these two mechanisms. This is consistent withmany of the commonly observed deformation features found in Long Island proglacialsediments (e.g., Meyers, 1998; Bernard, 1998; Klein and Davis; 1999). Prolongedglaciotectonic push-from-behind thin-skinned deformation shortens glacial strata byproducing fold-and-thrust structures that must be accommodated by a décollement, a weakaccommodating layer at depth in which there develops a shear zone, typically with a strongshear-related fabric (Fig. 5). The glacial sediments and structures involved in prolongedglaciotectonic push-from-behind often contract into the form of a critical taper (e.g.,Schlüchter et al., 1999; Williams et al., 2001) a wedge shaped packet of material in crosssection containing the deformed structures. This has been documented on a larger scale inthin-skinned small-scale fold-and-thrust belts (e.g., Davis et al., 1983; Dahlen et al., 1984).Seasonal glaciotectonic push-from-behind thin-skinned contraction is not capable of foldingand thrusting as much sediment since the ice, which is doing the pushing, melts back andretreats before the deforming sediment can form a critical taper (Fig. 6). The spatial andtemporal patterns associated with push-from-behind glaciotectonic deformation events thatcontracted Long Island glacial sediments are still uncertain. This is particularly true interms of discriminating deformation patterns involving newer glaciotectonic structuresoverriding previously deformed structures regardless of how any of the structures wereglaciotectonically emplaced.

The descriptive terms used to characterize proglacial glaciotectonic deformationare subdivided by size differentiations that are often arbitrarily defined (e.g., Aber et al.,1989; Hambrey and Huddart, 1995; Benn and Evans, 1998). Bennett (2001), clarifies someof the confusion in taxonomy by using the term ‘push moraine’ to define the product ofconstruction by the deformation of ice, sediment, and/or rock to produce a ridge, or ridges,oblique or transverse to the direction of ice flow at, in front of, or beneath and ice margin.The formation of a moraine by advance of the glacier margin is thus what defines pushmoraines, not whether or not the moraines were formed by seasonal or prolongedglaciotectonic push. In push moraine systems sediment displacements and dislocations canrange from a few meters to several kilometers horizontally and up to 200 m verticallyproducing larger and thicker moraine sizes with more distinctive internal tectonic style asdisplacement of pushed sediment progresses (e.g., Boulton, 1986; Hart and Boulton, 1991;Lehmann, 1993; Boulton and Caban, 1995, Boulton et al., 1999). Included in the definitionsof push moraine by Bennett (2001) are thrust moraines, thrust-block moraines, compositeridges and hill-hole pairs as long as they can be clearly linked to have occurred at, or closeto an ice margin. My thesis adopts the push moraine definition of Bennett (2001) andrecognizes that glaciotectonic push-from-behind, whether seasonal or prolonged, terrestrialor marine, generated by gravity spreading or glaciodynamic pushing forces, was the pushingmechanism which drove the deformation producing push moraine ridges, regardless ofgenerated ridge amplitude, ridge spacing, or the state (whether lithified or frozen) of thepushed sediment.

Small push moraines built by annual or seasonal push-from-behind glaciotectonicmechanisms at contemporary glacier margins develop into annual or seasonal push moraines

11

Page 22: Glaciotectonic Shear Zones: Surface Sample Bias and Clast ... · Daniel M. Davis, Advisor, Professor ... Long Island surface geology is diverse in glacial settings and glaciotectonic

43

21

5

43

21

Fig

ure

5. I

llus

trat

ion

in ti

me

sequ

ence

of

the

grow

th o

f a

crit

ical

wed

ge in

a p

rolo

nged

gla

ciot

ecto

nic

push

-fro

m-b

ehin

d se

ttin

g.

The

you

nges

t def

orm

atio

n is

con

cent

rate

d to

war

d th

e di

stal

end

of

the

wed

ge.

Not

e th

at th

e an

ticl

ines

are

typi

call

y co

red

by

imbr

icat

e th

rust

fau

lts.

12

Page 23: Glaciotectonic Shear Zones: Surface Sample Bias and Clast ... · Daniel M. Davis, Advisor, Professor ... Long Island surface geology is diverse in glacial settings and glaciotectonic

54

32

43

21

43

21 1

Fig

ure

6.

Thr

ee s

chem

atic

cro

ss-s

ectio

ns (

in t

ime

sequ

ence

) ill

ustr

atin

g on

e po

ssib

le m

odel

for

the

for

mat

ion

of a

sea

sona

l gl

acio

tect

onic

pus

h-fr

om-b

ehin

d m

orai

ne.

Sed

imen

ts c

an v

ary

grea

tly o

ver

shor

t di

stan

ces.

N

ote

how

sed

imen

ts f

rom

an

impo

unde

d la

ke b

etw

een

the

glac

ier

and

prev

ious

ly f

orm

ed r

idge

s ar

e em

plac

ed i

n th

e ne

xt-f

orm

ed r

idge

. I

n th

is m

odel

, ri

dges

yo

ung

tow

ard

the

ice,

in th

e op

posi

te d

irec

tion

than

in a

cri

tical

wed

ge.

13

Page 24: Glaciotectonic Shear Zones: Surface Sample Bias and Clast ... · Daniel M. Davis, Advisor, Professor ... Long Island surface geology is diverse in glacial settings and glaciotectonic

that usually form ridges ≤ 5 m in height (e.g., Boulton, 1986; Bennett, 2001). Large pushmoraines generated by prolonged or large-scale glaciotectonic push-from-behind at glaciermargins produce ridges with heights ≥ 5 m in a sustained glacial advance often due to achange in glacier mass balance (e.g., Boulton, 1986; Bennett, 2001; Russell et al, 2001).The main distinction is not the size of the moraine, since the 5 m height is an arbitrarycutoff, but whether the moraine was produced by seasonal or annual readvance or by a moresustained advance at the glacier margin. When significant deformation has been transmittedhorizontally beyond the glacier margin, multi-crested push moraines are generated withdeformation style usually involving, multiple folds, fans of listric thrusts, fans of imbricatethrusts, or superimposed sub-horizontal nappes produced by overthrusting (e.g., Bennett,2001).

The glaciotectonic process responsible for the initiation, excavation and elevationof proglacial materials is similar for either size push moraine: the main difference betweenthe two can characterized by the amount of deformed outwash fan sediment present at theglacier margin (e.g., Boutlon, 1986; Benn and Evans, 1998; Bennett, 2001; Russell et al.,2001). Small push moraines grow by a glaciotectonic push and deformation of the proximaloutwash fan slopes of the glacier margin. Large push moraines, on the other hand, grow notonly by glaciotectonically shoving the proximal outwash fan slopes, but also by pushingmuch or the entire outwash fan. Asymmetric ridges that have steep distal and shallowproximal flanks tend to be formed in small push moraines (e.g., Sharp, 1984). Additionally,the moraine ridges may push their own pretectonic and syntectonic outwash sediment aswell as override subglacially lain tills, if there are any, during a readvance of the glaciermargin (e.g., Boulton, 1986; Bennett, 2001). Ridge amplitude is predominately controlledby sedimentological factors such as sediment character and availability as well as the durationof a glacial advance. Small glacial advances commonly produce 1 to 2 m ridge heightamplitudes such as those formed by the seasonal readvances of the Breidamerkurjökullglacier ice margins, in Iceland between 1965 and 1981 (e.g., Boulton, 1986). Small pushmoraines are associated with the formation flute and show variation in pattern of sedimentaryactivity along the ice margin (e.g., Boulton, 1986; van der Meer, 1997a; Bennett, 2001). Inthe glaciotectonic development of small push moraines, the ice advance is often annual andproceeds much like an oversized bulldozer blade plowing through loose, water saturatedsediments that deform into a series of ridges. When a glacier ablates, water, ice and debrisare sloughed off the snout to build up outwash fans and glaciofluvial streams. Duringreadvances the glacier pushes and partially overrides the fans. The forward moving glacieroversteepens the distal slopes of the fans which receive a new layer of debris when theglacier retreats. Sediment that was overridden in an advance is incorporated into thesubglacial environment where it is deformed into a thickening wedge of till beneath themargin. Both large and small push moraine systems preserve of at least 25% of theglaciotectonic structures involved in the push-from-behind deformation process and thesyntectonic plus pretectonic proglacial materials make up over 25% of a moraine systemunit area (e.g., Benn and Evans, 1998).

The extent of proglacial deformation resulting from push-from-behindglaciotectonics is highly variable, but in general is a function of time, climate, and glaciermargin environment. For example, if an advancing glacial margin begins to deform proximalmaterials but stalls after a short period (e.g. one season) then that glaciotectonic push will

14

Page 25: Glaciotectonic Shear Zones: Surface Sample Bias and Clast ... · Daniel M. Davis, Advisor, Professor ... Long Island surface geology is diverse in glacial settings and glaciotectonic

not have deformed much material. On the other hand, if instead of stalling, the glacialmargin continued for a prolonged advance (e.g. multiple seasons) then much more proglacialmaterial will be glaciotectonically pushed and deformed. Some important parametersaffecting the deformation front and the growth of a critical taper include seasonal temperatureand moisture variation, porewater pressure gradient, coupling of basal ice with the subglacialbed, glacial lobe height and its basal area, and the rate of glacial advance and ablation.Other factors influencing the magnitude of the push-from-behind deformation are sedimentsize, state, and type, local topographic relief, friction on the décollement, and availability ofstanding water and outwash materials. Proglacial environment and climate conditions directlyaffecting physical characteristics of the glacial margin including local pore fluid pressure,evolution of drainage, sediment and glacier bed state, aspect ratio of foreland wedge, forelandrheology and strength, basal shear traction, depth and slope of the décollement (e.g., Bluemleand Clayton, 1984; van der Wateren, 1985, 1986; Boulton, 1986; Hart and Boulton, 1991;Boulton and Caban, 1995, Etzelmüller et al., 1996; Dell’Isola and Hunter, 1998; Boulton etal, 1999; Schlüchter et al., 1999; Bennett et al, 2000, 2001, Boulton et al, 2001a). (Fig. 7)

The growth of push moraines relies on the large-scale displacement of proglacialmaterials within shear zones due to stresses imposed by the gravity spreading of a glacier(Fig. 8A). The gravity spreading model demonstrates that the total glaciotectonic stressneeded to push glacial material from behind, permitting proglacial sediment failure andglaciotectonic thrusting, is obtained by the translation of compressive stress due to the weightof a spreading ice mass (e.g., van der Wateren, 1985; Aber et al., 1989; Benn and Evans,1998; Bennett, 2001). Important components of the total glaciotectonic stress field includethe glaciodynamic stress (basal shear stress) and the horizontal cumulative compressivestress transferred from the normal stress (glaciostatic stress) generated by the static weightof the ice over a given area. Failure can take place on a plane when the total glaciotectonicstress exceeds or equals the shear resistance. Push-from-the-rear, gravity sliding, andcompression-from-within models represent other mechanical ways to produce push moraines(e.g., Bennett, 2001) (Fig. 8B,C,D). Glaciotectonically deforming sediment blocks are foldedand thrust into push moraine systems by the gravity sliding of surging glacial ice movingdown a slope by the driving force of its ownweight. The laterally compressive push-from-the-rear mechanism directly shoves, foldsand thrusts sediment wedges by the forward motion of glacial ice into the foreland.Compression from within the terminal zone of the glacier occurs if there is deceleration ofice flow, strongly coupled subglacial and proglacial zones which behave as a single unitthat is deformed by listric faults, and a décollement which lies below both the glacier and itsforeland (e.g., Hart, 1990; Hambrey and Huddart, 1995; Bennett, 2001). Development ofglaciotectonic clast fabrics within internal structures of push moraines has the possibility ofshedding light on wedge propagation and paleo-ice flow directions as well as potentiallydistinguishing amongst glacial stress fields and seasonal or prolonged push deformationstyles (e.g., Sharp, 1984). The main section of this thesis concentrates on the applicabilityof clast fabric analysis as an interpretative tool in glacial settings based on clast orientationsmeasured from surfaces of outrcrop exposures.

In the glaciotectonic evolution of large push moraines, the recently deformedsediments are in contact with and are actively shoving the more distal sediments as thesystem advances forward. The geomorphology of a moraine ridge generally reflects the

15

Page 26: Glaciotectonic Shear Zones: Surface Sample Bias and Clast ... · Daniel M. Davis, Advisor, Professor ... Long Island surface geology is diverse in glacial settings and glaciotectonic

Sche

mat

icm

odel

show

ing

how

som

epu

shm

orai

nes

may

rela

teto

sele

cted

vari

able

sus

edto

defi

nea

broa

dm

atri

x.

)

Fig

ure

7. I

mpo

rtan

t mec

hani

cal a

nd g

laci

otec

toni

c pa

ram

eter

s in

volv

ed in

the

stru

ctur

al d

evel

opm

ent o

f pu

sh m

orai

nes.

Sch

emat

ic m

odel

aft

er B

enne

tt (2

001)

.

16

Page 27: Glaciotectonic Shear Zones: Surface Sample Bias and Clast ... · Daniel M. Davis, Advisor, Professor ... Long Island surface geology is diverse in glacial settings and glaciotectonic

Fig.

18.M

odel

sof

appl

ied

glac

ials

tres

s.F

igur

e 8.

M

odel

s of

pus

h m

orai

ne s

truc

tura

l ev

olut

ion

and

mor

phol

ogy

due

to t

he

effe

ct o

f ap

plie

d gl

acia

l st

ress

as

show

n by

Ben

nett

(200

1).

A.

Pus

h-fr

om-t

he-r

ear.

B

. G

ravi

ty-s

prea

ding

. C

. C

ompr

essi

on-f

rom

-with

in.

D.

Gra

vity

-slid

ing.

A DCB

17

Page 28: Glaciotectonic Shear Zones: Surface Sample Bias and Clast ... · Daniel M. Davis, Advisor, Professor ... Long Island surface geology is diverse in glacial settings and glaciotectonic

shape of the thrusting glacier margin, and individual ridge crests correspond to the crests ofinternal folds (e.g., Boulton, 1986; Aber et al., 1989; Benn and Evans, 1998). One push-from-behind, glaciotectonic model for building a push moraine is the glacial analog of thethin-skinned wedge model of tectonic deformation, which produces a critical taper inmountain belts (e.g., Davis et al., 1983; Dahlen et al., 1984) (Fig. 9A,B). Glaciotectonicpush-from-behind compression that has evolved into a small-scale thin-skinned fold-and-thrust belt often exhibits multiple thrust sequences with piggyback structures being themost common of the glaciotectonic structure produced (e.g., Van der Wateren, 1985;Schlüchter et al., 1999).

In some push moraine systems the largest ridge is the most proximal to the glaciermargin and was produced first. As the ice continued to push, a new ridge formed in front ofthe previously formed ridge so that ridges are youngest in the forward direction of theadvancing ice. Newer ridges are more distal and are somewhat less elevated than thoseridges formed earlier, so ridge amplitudes decay with distance away from the glacial margin(e.g., Croot, 1987; Hambrey and Huddart, 1995; Boulton, et al., 1999). The cross-sectionaltaper of a growing wedge-shaped mass of overthrust material is dependent upon the cohesivestrength of the deforming material at the time of deformation, its thickness, and the strengthof its coupling to the base (e.g., Davis et al., 1983; Schlüchter et al., 1999; Williams et al,2001) (Fig. 5). If a glacier margin is pinned at the margin front but continues to advancefrom the rear, the shortening within the mass of sediments increases causing folds to bepushed or pinched-out. The most internally shortened structures and the shortest wavelengthsbetween ridges are closest to the glacial margin since the cumulative shortening of thepushed sediments is the furthest distance from the distal extremity of the push moraine(e.g., Boulton et al., 1999). If on Long Island the glacier moved in a sustained advance byprolonged push then one should observe diminishing ridge heights in cross-sectional shape(a critical taper) as one moves away from the suspected glacial margin. One would alsofind a décollement, a gradient in strain magnitude (more intense in the ‘hinterland’ to thenorth), a gradation in syntectonic deposition (finer, more distal facies to the south), littlelateral variation in glacial stratigraphy, and a general northward sweeping in the dips ofsediments and thrust faults.

Proglacial glaciotectonic deformation through seasonal or annual meters-scale glaciermargin surges or thrusts generates push moraines during a period of overall ice sheet retreat.The timing of the advance and the deformation it causes can be seasonal-to-annual, ordecadal, but if the precise time intervals of the surges are unknown then the glaciotectonicprocess is simply referred to as annual or seasonal push but probably ought to be calledrepeated push. Repeated (seasonal or annual) push glaciotectonic deformation is suspectedin the growth of push moraine structures at Hither Hills, Long Island and has likely contributedto the creation of other portions of Long Island push moraines (e.g., Klein and Davis, 1999).Local climate regime and temperature fluctuation at the glacier margin, over relatively shortperiods, can promote repeated push glaciotectonic deformation which influences pushmoraine ridge geometries and internal structures, as well as the hydrogeology of the pushmoraine foreland.

Unlike prolonged glaciotectonic push-from-behind where contractional deformationis sustained over many seasons without retreat, repeated glaciotectonic push-from-behindinvolves push from the rear during almost every ice advance season (typically, winter)

18

Page 29: Glaciotectonic Shear Zones: Surface Sample Bias and Clast ... · Daniel M. Davis, Advisor, Professor ... Long Island surface geology is diverse in glacial settings and glaciotectonic

A B

Fig

ure

9. A

. Sch

emat

ic il

lust

ratio

n of

for

ce b

alan

ce c

alcu

latio

n us

ed in

der

ivin

g th

e cr

itica

l tap

er a

nd th

e or

ient

atio

ns o

f th

e pr

inci

pal

stre

ss a

xes

thro

ugho

ut a

wed

ge o

f m

ater

ial e

very

whe

re o

n th

e ve

rge

of f

ailu

re a

s sh

own

by D

avis

et a

l., (

1983

). A

n el

emen

t of

wed

ge

is s

ubje

ct to

str

esse

s du

e to

bod

y fo

rces

fro

m th

e si

de a

nd a

t its

bas

e, a

s w

ell a

s gr

avia

tiona

l str

esse

s .

B. I

nter

pret

ive

cros

s-se

ctio

n th

roug

h th

e fo

othi

lls o

f th

e w

este

rn T

aiw

an f

old

& th

rust

bel

t (e.

g., D

avis

et a

l., 1

983)

. N

ote

the

over

all w

edge

tape

r an

d st

acki

ng o

f th

rust

she

ets

over

the

déco

llem

ent.

19

Page 30: Glaciotectonic Shear Zones: Surface Sample Bias and Clast ... · Daniel M. Davis, Advisor, Professor ... Long Island surface geology is diverse in glacial settings and glaciotectonic

glaciotectonically deforming the glacial margin. The seasonal or annual ice marginal advanceis immediately followed by an ice ablation season (typically, summer) where the glacialmargin retreats so this coupled with ice marginal advance and ablation form a repeatingpattern over multiple seasons (or years) deforming and elevating substantial push morainetopography. The seasonal ice advances and retreats resulting in push moraine ridges arethought to be due to thermally activated changes in ice flow dynamics that stimulate rapidsurge forward of the glacial margin that later melts back close to its original position priorto the advance. Repeated glaciotectonic push develops new push moraine ridges becausethe glacier in overall retreat deposits sediments in front of the glacier during a warm periodwhen ablation is most rapid, and then internally folds those sediments during a partial re-advance stimulated by a colder period (e.g., Boulton, 1986; Hart and Watts, 1997; Bennett,2001).

The repeated push glaciotectonic deformation process, once initiated, shoves andcontracts proximal subglacial and proglacial sediments by high-angle thrusting and foldingthat develop into a push moraine ridge during the ice advance (Fig. 6). After the first iceadvance the glacier stalls and eventually retreats depositing new sediment loads. The nextglacial advance imparts further compressive deformation to the previously formed ridgeand generates a new ridge. Over time, repeated glaciotectonic push-from-behind is capableof developing extensive push moraine ridge systems (e.g., Hart and Watts, 1997). Repeatedpush or surge of the ice sheet provides the stress necessary to shorten or extend nearbylandforms and allow the opportunity for substantial variation in depositional environments.With the seasonal ablation of the ice sheets, lowlands open up between the most recentlygenerated ridge and retreating glacial margin trapping ice, sediment, and melt-water to formproglacial lakes and outwash fan systems. If the glacier margin did propagate by repeatedglaciotectonic push-from-behind, then one would observe non-systematic variation of ridgeamplitude in cross-section throughout the push moraine ridge system. In other words, therewould be no through going décollement or obvious critical taper of the push moraine ridges.One would also expect to find asymmetric internal folding and substantial lateral variationin glacial stratigraphy and syntectonic deposition (e.g., Sharp, 1984; Boulton, 1986; Hartand Watts, 1997). Along with geologic dating techniques such as lichenometry used byHart and Watts (1997), the evaluation of clast fabrics within the internal structures of pushmoraines can, in principle, be used to distinguish seasonal or prolonged glaciotectonic push-from-behind deformation styles.

20

Page 31: Glaciotectonic Shear Zones: Surface Sample Bias and Clast ... · Daniel M. Davis, Advisor, Professor ... Long Island surface geology is diverse in glacial settings and glaciotectonic

Glacigenic Deposits of Long Island

Classification of glacial sediments and the description of glacial facies are interpretiveand frequently controversial due to the enormous varieties of glacial deposit types and thecomplex stratigraphic and structural relationships present in glacial environments (e.g.,Dreimanis, 1989; Meyers et al., 1998, Krüger and Kjaer, 1999; Ruszczynska-Szenajch,2001). Rapid changes in deposition and deformation rates at the glacier margin cansyntectonically thicken glaciotectonic structures and drastically affect vertical and lateralstratigraphic sequences over short distances. The glacial facies system describes the productsof glaciation by classifying and organizing glacigenic sediments, spatially and temporally,at a wide range of scales, with the purpose of genetically relating glacial deposition anddeformation to glacier erosion, transport, and melt. Descriptions of glacial facies rely onprocess assemblages to reflect the variety of processes that were active in the arrangementof a particular glacial environment over a range of length scales and time spans (e.g., Bennand Evans, 1998).

Sedimentary deposits of unknown genetic origin called diamicts exist in the HarborHill and Ronkonkoma moraines and because glaciation is thought to be responsible foralmost all shallow surface sedimentation on Long Island these sediments are referred to asglacial diamicts. Diamict deposits (glacial or non-glacial) contain a broad mix of particlesvarying in shape and angularity that range in size from mud to boulder all incorporated intoa poorly sorted matrix. Important Long Island glacial diamicts, genetically known asprimary tills (or primary glacigenic deposits), can be produced by either deformation,lodgement, or melt-out processes, but most primary tills are made from a mixture of thesetill producing processes. Other genetic glacial sediment on Long Island, known as secondarytills, are sediments which have been remobilized by some form of non-glacial process thathas reworked the primary tills (e.g., Lawson, 1982). Glacial diamicts and associatedsediments produced either by subglacial, proglacial, or combined processes can not beidentified by only one diagnostic criterion so observing a set of sedimentary characteristicsmay aid in differentiating the genesis of diamict depositions (e.g., Hicock, 1990; Krügerand Kjaer, 1999; Kjaer et al., 2001).

Glacial diamict deposits include oriented clasts within stratified or massivestratigraphic units or within isolated lumps, lenses, or layers contained within a glacigenicsedimentary unit or bounded by one or more glacigenic units. Clast fabric analysis statisticallyrepresents the fabric shape, as a frequency distribution of oriented clasts by chosen axialdirection (i.e., long-axis). Eigenanalysis (Chapter 2) performed on a group of clastsquantitatively describes clast fabric shapes by normalized eigenvalues, corresponding to atleast one eigenvector, describing the likelihood that any clast axis (i.e., long-axis) from thegroup of clasts is potentially pointed in one of three mutually orthogonal minimum,intermediate, and most preferred eigenvector directions. Clast fabrics of glacigenic sedimentsmay reveal the sense of motion in a shear zone and indicate the relative strain but fails toadequately delineate types of glacial diamict.

21

Page 32: Glaciotectonic Shear Zones: Surface Sample Bias and Clast ... · Daniel M. Davis, Advisor, Professor ... Long Island surface geology is diverse in glacial settings and glaciotectonic

Glaciotectonic Deformation Observed Within Eastern Long Island Moraines

Long Island glacigenic sedimentation processes were often complex so thatinterpreting the history of these deposits, especially for the Harbor Hill and Ronkonkomamoraines, has been problematic. Geophysical surveys and geological fieldwork studies ofthese moraines conform both the stratigraphic and structural complexities of these settings.Much of the sediment deposition and deformation occurred in front of and beneath glacierice so that most Long Island glacial sediments have under gone some glaciotectonic pushing,shearing, or folding, and may have experienced syntectonic deposition or re-deposition.

In the exposed sediments at Ranco Quarry (Fig. 1) within the Ronkonkoma moraine,coherent glaciotectonic thrust blocks have been mapped for several tens of meters aboveand hundreds of meters or more laterally from their source, with gravel-rich thrust zones asindirect evidence for the sediment having been permafrost (e.g., Meyers et al., 1998) (Fig.10). Glaciotectonic deformation studies in the Ronkonkona moraine of eastern Long Islandwere conducted in Hither Hills State Park, (Fig. 1) revealing very different sediments andstructures than found 75 km southwest at Ranco Quarry.

Sedimentary, structural, seismic, and GPR surveying at Hither Hills show evidenceof syntectonic deposition, folded strata, cm-scale faulting, and lateral variation of sedimentarylayers. Aerial photographs reveal dozens of ridges with nearly parallel strike directions(fig. 11). Topographic analysis of the Hither Hills region grouped ridges of similar height,spacing, and orientation into ‘packets’ with consistent azimuths (Fig. 12). Transects oftypical ridge successions indicate either a slight increases in maximum ridge heights fromnorth to south or no obvious ridge elevation pattern (e.g., Bernard, 1998) (Fig. 13).Photographs of sea cliff exposures and seismic data obtained from ridges in the state parkby common mid-point seismic reflection, after stacking, revealed glaciotectonic structuresin the moraine (Fig. 14A,B). After processing, seismograms depict a gently folded antiformallayer beneath a shorter and more tightly folded antiformal piggyback structure. Theseshallow surface folds are a few meters beneath the surface and have amplitudes in metersand wavelengths that are tens of meters long (e.g., Bernard, 1998) (Fig. 14B). In general,Long Island glacigenic sediments and glaciotectonicstructures are poorly exposed and are often difficult to evaluate with more traditionalgeophysical techniques such as seismic reflection surveying.

Ground penetrating radar, another geophysical tool appropriate for use in glacigenicsediment, was employed to acquire radar data at the power line cut in Hither Hills (Fig. 15).Radar data are processed and analyzed in a manner similar to seismic reflection data, allowingthe establishment of radar facies, which, like seismic facies, describe distinct structural andstratigraphic changes in depositional sequences. GPR surveys at Hither Hills reproducedthe shallow structures inferred from the seismic study of Benard (1998) but also revealmany more antiformal folds and piggyback structures at greater depths than achieved byseismic techniques (Fig. 16). The radargrams obtained with the 50, 100, and 200 MHzantennas provide complementary and far more complex images of the folded strata previouslydetected by the seismic reflection survey. The Hither Hills radargrams also provide higherresolution to a greater penetration depth (as deep as 45 m) than accomplished with theseismic reflection survey. In detail, the Hither Hills radargrams imaged many folded stratahaving an appearance resembling imbricate thrust systems. Some of these imbricate thrusts

22

Page 33: Glaciotectonic Shear Zones: Surface Sample Bias and Clast ... · Daniel M. Davis, Advisor, Professor ... Long Island surface geology is diverse in glacial settings and glaciotectonic

Fig

ure

10.

Coh

eren

t thr

ust s

heet

s ex

pose

d in

a q

uarr

y in

cen

ral-

east

ern

Lon

g Is

land

, NY

(e.

g., M

eyer

s et

al.,

199

8).

Uni

t 4 is

a m

arin

ebe

ach/

barr

ier

sand

that

can

be

dem

onst

rate

d to

hav

e be

en tr

ansp

orte

d, a

lbei

t fol

ded

and

mic

rofr

actu

red,

ove

r a

long

dis

tanc

e. N

ote

the

clas

sic

fold

-thr

ust b

elt r

amp-

flat

geo

met

ry, t

ypic

al o

f cr

itica

l wed

ge f

old

and

thru

st b

elts

.

23

Page 34: Glaciotectonic Shear Zones: Surface Sample Bias and Clast ... · Daniel M. Davis, Advisor, Professor ... Long Island surface geology is diverse in glacial settings and glaciotectonic

1 k

m0

km2

km

Fig

ure

11.

Mon

tage

of

aeri

al im

ages

of

Hith

er H

ills.

The

rid

ges

stri

ke r

ough

ly S

W-N

E.

The

rid

ges

do n

ot s

how

the

clea

r N

-S s

ize

prog

ress

ion

expe

cted

for

cri

tical

wed

ges.

The

re a

re tw

o si

tes

(ind

icat

ed in

red

) th

at h

ave

been

doc

umen

ted

with

GPR

. M

any

ridg

esar

e ex

pose

d by

bea

ch e

rosi

on a

long

the

nort

h sh

ore.

Pow

er L

ine

Cut

Roc

ky P

oint

24

Page 35: Glaciotectonic Shear Zones: Surface Sample Bias and Clast ... · Daniel M. Davis, Advisor, Professor ... Long Island surface geology is diverse in glacial settings and glaciotectonic

Fig

ure

12.

Plei

stoc

ene

glac

iote

cton

ic r

idge

sys

tem

s lik

e H

ither

Hill

s in

eas

tern

Lon

g Is

land

, NY

(e.

g., K

lein

and

Dav

is, 1

999)

ca

n co

ver

seve

ral s

quar

e km

and

con

tain

larg

e nu

mbe

rs o

f pa

ralle

l rid

ges.

Ana

lysi

s of

Hith

er H

ills

ridg

e he

ight

s, s

paci

ng a

nd

orie

ntat

ions

sho

ws

that

the

ridg

es a

re g

roup

ed in

to 'p

acke

ts' o

f si

mili

ar s

ize

with

con

sist

ent m

ean

azim

uths

(ty

pica

lly ±

5 )

.

25

Page 36: Glaciotectonic Shear Zones: Surface Sample Bias and Clast ... · Daniel M. Davis, Advisor, Professor ... Long Island surface geology is diverse in glacial settings and glaciotectonic

0

20

40

60

80

100

120

090

180

270

360

450

540

630

720

Posi

tion

Alo

ng T

rans

ect (

ft)

NS

Ele

vati

on A

long

a T

rans

ect

in H

ithe

r H

ills

050

010

0015

0020

00

Elevation (ft)

Fig

ure

13.

Typ

ical

S-N

ele

vatio

n tr

anse

ct o

f a

ridg

e su

cces

sion

at

Hith

er H

ills.

E

leva

tions

wer

e de

term

ined

on

the

basi

s of

5 f

t co

ntou

r in

terv

als

prov

ided

by

a to

pogr

aphi

c m

ap o

f th

e re

gion

(e.

g., B

erna

rd, 1

998)

.

26

Page 37: Glaciotectonic Shear Zones: Surface Sample Bias and Clast ... · Daniel M. Davis, Advisor, Professor ... Long Island surface geology is diverse in glacial settings and glaciotectonic

Fig

ure

13 A

) G

laci

otec

toni

c fo

lds

in th

e R

onko

nkom

a m

orai

ne, e

xpos

ed a

long

the

shor

elin

e at

Hith

er H

ills,

NY

. E

ach

antic

line

corr

espo

nds

to o

ne o

f a

seri

es o

f su

bpar

alle

l rid

ges

(fig

ure

12),

and

is b

elie

ved

on th

e ba

sis

of m

appi

ng a

nd g

eoph

ysic

al d

ata

to c

onta

in a

thru

st f

ault

belo

w p

rese

nt-d

ay s

ea

leve

l (e.

g., K

lein

and

Dav

is, 1

999)

. B

) S

eism

ic r

efle

ctio

n se

ctio

n fr

om B

erna

rd e

t al.,

(19

98)

of a

n an

ticlin

e-co

red

hill

in H

ither

Hill

s, s

how

ing

a sh

allo

w r

efle

ctor

(a

fold

ed b

ed).

The

sei

smic

sur

vey

line

is o

n a

ridg

e fl

ank

that

dip

s to

the

left

(no

rth)

at 7

, so

the

bed

dips

18

to th

e ho

rizo

ntal

at l

eft

(N)

and

4 o

n th

e ri

ght (

sout

h) li

mb.

The

re is

littl

e or

no

vert

ical

exa

gger

atio

n. T

his

fold

is s

imili

ar in

wav

elen

gth,

am

plitu

de, a

nd s

hape

to th

at in

(A

).

A)

B) 4.

.

.

CD

P L

ocat

ion

(m)

Time (sec)

27

Page 38: Glaciotectonic Shear Zones: Surface Sample Bias and Clast ... · Daniel M. Davis, Advisor, Professor ... Long Island surface geology is diverse in glacial settings and glaciotectonic

1000

fee

t

Figure 15. GPR survey (red line) conducted with 50 MHz antennas along a power line cut in Hither Hills (figure 11). Seismic survey of Bernard et al., (1998) begins at the southern end of the GPR survey profile. Note topographic contours indicate the number of feet above sea level.

power line cut power line cut

power line cutpower line cut

28

Page 39: Glaciotectonic Shear Zones: Surface Sample Bias and Clast ... · Daniel M. Davis, Advisor, Professor ... Long Island surface geology is diverse in glacial settings and glaciotectonic

Fig

ure

16.

Topo

grap

hy c

orre

cted

and

mig

rate

d 50

MH

z ra

darg

ram

of

a 15

0 m

N-S

por

tion

of t

he p

ower

lin

e cu

t at

Hith

er

Hill

s (f

igur

e 15

). D

ashe

d pu

rple

line

s in

dica

te d

ip-d

omai

ns in

sed

imen

ts, a

nd h

eavy

red

das

hed

lines

indi

cate

pos

sibl

e fa

ults

.

Dis

tanc

e (m

)

050

100

150

0 10 403020

Depth (m)

29

Page 40: Glaciotectonic Shear Zones: Surface Sample Bias and Clast ... · Daniel M. Davis, Advisor, Professor ... Long Island surface geology is diverse in glacial settings and glaciotectonic

core the ridges and exhibit an over-printed geometry consistent with a push-from-behindglaciotectonic mechanism being responsible for the ridge formations found at this locationin the Ronkonkoma moraine. The GPR survey using the 50 MHz antennas overlapped theseismic line of Bernard et al., (1998) along the power line cut in Hither Hills and extendedto the north for an additional 150 meters (Fig. 15). Interpreted radargrams of the HitherHills shallow subsurface indicate substantial sequences of syntectonic depositions sinceradar reflectors (dip domains) thicken away from fold hinges and the cores of the imagedridge structures are more tightly folded than is the overlaying topography (Fig. 16).

Hither Hills Radargrams processed from radar data acquired near Rocky Point (Fig.17), show the presence of complexly folded glacigenic strata of wavelength and amplitudesimilar to those seen in exposed sea cliffs along the north coast of the park (Fig. 18). Thisis consistent with my measured stratigraphic sections (e.g., Klein and Davis, 1999) alongthe north shore of Hither Hills that document lateral variation of stratigraphy on the scale of10’s to 100’s of meters (Fig. 19). Seismic reflection and refraction studies, measured sections,topographic analyses, ridge transects, and GPR surveys have led to the conclusion thatseasonal glaciotectonic push-from-behind (e.g., Boulten, 1986; Bennett, 2001) is the mostviable explanation for the development of the push moraine features observed at HitherHills.

As described early in the next chapter of this thesis, clast fabric analysis along theshoreline at Ditch Plains clearly shows a fabric consistent with glacial advance from theNNW. In conjunction with future Long Island geophysical surveys, measured sections andclast orientations should be recorded. Careful geologic and geophysical studies will continueto elucidate a more complete picture of the dynamic strain histories and complexsedimentation processes associated with glaciotectonic deformation. Long Island is currentlyloaded with a wide variety of glacial diamict deposits generated by Pleistocene continentalice sheets justifying continued emphasis on quantitative methods for establishing local iceflow direction based on clast orientation.

30

Page 41: Glaciotectonic Shear Zones: Surface Sample Bias and Clast ... · Daniel M. Davis, Advisor, Professor ... Long Island surface geology is diverse in glacial settings and glaciotectonic

Col

umn

C. -

Sm

all A

ntic

line

Col

umn

C. -

Sm

all A

ntic

line

Col

umn

B. -

Roc

ky P

oint

Col

umn

B. -

Roc

ky P

oint

Col

umn

Col

umn

A. -

Dom

inan

t Hill

Str

uctu

re. -

Dom

inan

t Hill

Str

uctu

re 00m

0

10

Fig

ure

17.

Loc

atio

n of

a G

PR s

urve

y (r

ed li

ne)

cond

ucte

d w

ith 2

00 M

Hz

ante

nnas

acr

oss

the

dom

inan

t hill

str

uctu

re a

t Roc

ky

Poin

t, H

ither

Hill

s (f

igur

e 11

).

The

pos

ition

s of

thr

ee m

easu

red

stra

tigra

phic

sec

tions

at

sea

clif

f ex

posu

res

are

indi

cate

d. N

ote

topo

grap

hic

cont

ours

indi

cate

the

num

ber

of f

eet a

bove

sea

leve

l.

31

Page 42: Glaciotectonic Shear Zones: Surface Sample Bias and Clast ... · Daniel M. Davis, Advisor, Professor ... Long Island surface geology is diverse in glacial settings and glaciotectonic

Fig

ure

18.

Topo

grap

hy c

orre

cted

, mig

rate

d, a

nd in

terp

rete

d 20

0 M

Hz

rada

rgra

m.

The

rad

argr

am s

ampl

ed 1

30 m

of

the

dom

inan

t hi

ll st

ruct

ure

at R

ocky

Poi

nt, H

ither

Hill

s (f

igur

e 17

).

Cha

nges

in

surv

eyin

g di

rect

ion

are

indi

cate

d in

de

gree

s. I

nter

pret

ed r

adar

fac

ies

of th

is c

ompl

icat

ed r

idge

str

uctu

re a

re s

how

n in

col

or.

32

Page 43: Glaciotectonic Shear Zones: Surface Sample Bias and Clast ... · Daniel M. Davis, Advisor, Professor ... Long Island surface geology is diverse in glacial settings and glaciotectonic

clay

- b

ould

ercl

ay -

bou

lder

clay

- b

ould

ercl

ay -

bou

lder

clay

sand

diam

ict

cove

r

root

sof

fset

2 m

4 m

6 m

8 m

10 m

clay

- b

ould

ercl

ay -

bou

lder

Fig

ure

19.

Thr

ee m

easu

red

stra

tigra

phic

sec

tions

spa

ced

abou

t 10

0 m

(ab

out

one

ridg

e w

avel

engt

h) a

part

in

the

sea

clif

fs e

xpos

ed a

long

the

nor

thea

st c

oast

of

Hith

er H

ills

(fig

ure1

6).

Not

e th

e th

in c

lay

in c

olum

n C

. (s

mal

l ant

iclin

e) a

nd th

e gr

eat v

aria

tion

in s

edim

ento

logy

and

str

atig

raph

y be

twee

n th

e se

ctio

ns.

Col

umn

Col

umn

A. -

dom

inan

t hill

str

uctu

re. -

dom

inan

t hill

str

uctu

reC

olum

n C

. - s

mal

l ant

iclin

eC

olum

n C

. - s

mal

l ant

iclin

eC

olum

n B

. - R

ocky

Poi

ntC

olum

n B

. - R

ocky

Poi

nt

33

Page 44: Glaciotectonic Shear Zones: Surface Sample Bias and Clast ... · Daniel M. Davis, Advisor, Professor ... Long Island surface geology is diverse in glacial settings and glaciotectonic

References

Aber, J.S., D.G. Croot, and M.M. Fenton, Glaciotectonic Landforms and Structures, KluwerAcademic Publisher, 1989.

Aber, J.S., and Ruszczynska-Szenajch H., Origin of Elblag Upland, northern Poland, andglaciotectonism in the southern Baltic region, Sedimentary Geology, 111, 119-134,1997.

Anderson, T.W., and Stephens M.A., Test for randomness of directions against equatorialand bimodal alternatives, Biometrika, 59, 613-621, 1972.

Benn, D.I., Fabric shape and the interpretation of sedimentary fabric data, Journal ofSedimentary Petrology, A64, 910-915, 1994.

Benn, D.I., Fabric signature of subglacial till deformation, Breidamerkurjökull, Iceland,Sedimentology, 42, 735-747, 1995.

Benn, D.I., and Clapperton, C.M., Pleistocene glacitectonic landforms and sediments aroundcentral Magellan Strait, southernmost Chile: evidence for fast outlet glaciers withcold-based margins, Quaternary Science Reviews, 19, 591-612, 2000.

Benn, D.I., and D.J. A. Evans, The interpretation and classification of subglacially-deformedmaterials, Quaternary Science Reviews, 15, 23-52, 1996.

Benn, D.I., and Evans D.J.A., Glaciers & Glaciation, 734 p., Arnold Publishers, New York,1998.

Benn, D.I., and Ringrose, T.J., Random variation of fabric eigenvalues: implications for theuse of A-axis fabric data to differentiate till facies, Earth Surface Processes andLandforms, 26, 295-306, 2001.

Bennett, M. R., The morphology, structural evolution and significance of push moraines,Earth-Science Reviews, 53, 197-236, 2001.

Bennett, M.R., Hambrey, M.J., Huddart, D., Glasser, N.F., and Crawford, K. The landformand sediment assemblage produced by a tidewater glacier surge in Kongsfjorden,Svalbard, Quaternary Science Reviews, 18, 1213-1246, 1999a.

Bennett, M.R., Waller, R.I., Glasser, N.F., Hambrey, M.J., and Huddart, D., Glacigenicclast fabrics: genetic fingerprint or wishful thinking? Journal of Quaternary Science,14, 125-135, 1999b.

Bennett, M.R., Huddart, D., and McCormick, T., An integrated approach to the study ofglaciolacustrine landforms and sediments: a case study Hagavatn, Iceland, QuaternaryScience Reviews, 19, 633-665, 2000.

Bernard, M., 1998, Shallow Seismic Studies in Glaciotectonic Hither Hills, Long Island[M.S. thesis]: State University of New York at Stony Brook, 81 p.

Beres, M., Huggenberger, P., Green, A.G., and Horstmeyer, H., Using two- and three-dimensional georadar methods to characterize glaciofluvial architecture, SedimentaryGeology, 129, 1-24, 1999.

Blake, K.P., Common origin for De Geer moraines of variable composition in Raudvassdalen,northern Norway, Journal of Quaternary Science, 15, 633-644, 2000.

Bluemle, J.P., and Clayton, L., Large-scale glacial thrusting and related processes in NorthDakota, Boreas, 13, 279-299, 1984.

Boulton, G.S., Push-moraines and glacier-contact fans in marine and terrestrial environments,Sedimentology, 33, 677-698, 1986.

´

34

Page 45: Glaciotectonic Shear Zones: Surface Sample Bias and Clast ... · Daniel M. Davis, Advisor, Professor ... Long Island surface geology is diverse in glacial settings and glaciotectonic

Boulton, G.S., The origin of till sequences by subglacial sediment deformation beneathmid-latitude ice sheets, Annals of Glaciology, 22, 75-84, 1996a.

Boulton, G.S., Theory of glacial erosion, transport and deposition as a consequence ofsubglacial sediment deformation, Journal of Glaciology, 42, 43-62, 1996b.

Boulton, G.S., and Caban P., Groundwater flow beneath ice sheets: part II — its impact onglacier tectonic structures and moraine formation, Quaternary Science Reviews, 14,563-587, 1995.

Boulton, G.S., Van der Meer, J.J.M., Hart, J.K., Beets, D., Ruegg, G.H.J., Van der Wateren,D.F.M., and Jarvis, J., Till and moraine emplacement in a deforming bed surge — anexample from a marine environment, Quaternary Science Reviews, 15, 961-987, 1996.

Boulton, G.S., Dobbie, K. E., and Zatsepin, S., Sediment deformation beneath glaciers andits coupling to the subglacial hydraulic system, Quaternary International, 86, 3-28,2001a.

Boulton, G.S., Dongelmans, P., Punkari, M., and Broadgate, M., Palaeoglaciology of an icesheet through a glacial cycle:; the European ice sheet through the Weichselian,Quaternary Science Reviews, 20, 591-625, 2001b.

Boulton, G.S., van der Meer, J.J.M., Beets, D.J., Hart, J.K., and Ruegg, G.H.J., Thesedimentary and structural evolution of a recent push moraine complex:Holmstrømbreen, Spitsbergen, Quaternary Science Reviews, 18, 339-371, 1999.

Boyce J.I. and Eyles N., Architectural element analysis applied to glacial deposits: internalgeometry of a late Pleistocene till sheet, Ontario, Canada, Geological Society of AmericaBulletin, 112, 98-118, 2000.

Cofaigh, C.Ó., and Evans D.J.A., Sedimentary evidence for deforming bed conditionsassociated with a grounded Irish Sea, glacier, southern Ireland, Journal of QuaternaryScience, 16, 435-454, 2001.

Croot, D.G., Glacio-tectonic structures: A mesoscale model of thin-skinned thrust sheets?,Journal of Structural Geology, 9, 797-808, 1987.

Croot, D.G., Glaciotectonics: Forms and processes, 212 p., A.A. Balkema, Rotterdam, 1988.Dahlen, F. A., Suppe, J., and Davis, D., Mechanics of fold-and-thrust belts and accretionary

wedges: Cohesive Coulomb theory, Journal of Geophysical Research, 89, 10,087-10,101, 1984.

Davis D.M., Winslow III, F.D., Klein, E.C., and Holt, W.E., Contrasting radar signals insand and till: an example from Grandifolia Sandhills, eastern LI, Conf. On Geology ofLong Island and Metropolitan NY, http://pbisotopes.ess.sunysb.edu/lig/Conferences/

Program_4_00.htm (April 2000).Davis, D., Suppe, J., and Dahlen, F.A., Mechanics of fold-and-thrust belts and accretionary

wedges, Journal of Geophysical Research, 88, 1153-1172, 1983.Davis, D., and Engelder, R., The role of salt in fold & thrust belts, Tectonophysics, 119, 67-

88, 1985.Dell’Isola, F., Hutter, K., What are the dominant thermomechanical processes in the basal

sediment layer of large ice sheets? The Royal Societyof London Proceedings:Mathematical, Physical and Engineering Sciences,454, 1169-1195, 1998.

Dowdeswell, J.A., Hambrey, M.J., and Wu, R., A comparison of clast fabric and shape inlate Precambrian and modern glacigenic sediments, Journal of Sedimentary Petrology,55, 691-704, 1985.

35

Page 46: Glaciotectonic Shear Zones: Surface Sample Bias and Clast ... · Daniel M. Davis, Advisor, Professor ... Long Island surface geology is diverse in glacial settings and glaciotectonic

Dowdeswell, J.A., and Sharp, M.J. Characterization of pebble fabrics in modern terrestrialglacigenic sediments, Sedimentology, 33, 699-710, 1986

Dreimanis, A., Tills: their genetic terminology and classification. In: Goldthwait, R.P., Matsch,C.L. (Eds.), Genetic Classification of Glacigenic Deposits, Balkema, Rotterdam, 17-83, 1989.

Dreimanis, A., Need for three-dimensional analysis of structural elements in glacial depositsfor determination of direction of glacier movement, Geological Society of America,Special Paper 337, 59-67, 1999.

Dyke, A.S., Andrews, J.T., Clark, P.U., England, J.H., Miller, G.H., Shaw, J., and Veillette,J.J., The Laurentide and Innuitian ice sheets during the Last Glacial Maximum,Quaternary Science Reviews, 21, 9-31, 2002.

Eden, D.J., and Eyles, N., Description and numerical model of Pleistocene iceberg scoursand ice-keel turbated facies at Toronto, Canada, Sedimentology, 48, 1079-1102, 2001.

Ékes, C., and Hickin, E.J., Ground penetrating radar facies of the paraglacial Cheekye Fan,southwestern British Columbia, Canada, Sedimentary Geology, 143, 199-217, 2000.

Etzelmüller, B., Hagen, J.O., Vatne, G., Ødegård, R.S., and Sollid, J.L., Glacier debrisaccumulation and sediment deformation influenced by permafrost: examples fromSlavbard, Annals of Glaciology, 22, 53-62, 1996.

Evans, D.J.A., Quaternary geology and geomorphology of the Dinosaur Provincial Parkarea and surrounding plains, Alberta, Canada: the identification of former glacial lobes,drainage diversions and meltwater flood tracks, Quaternary Science Reviews, 19, 931-958, 2000.

Evans, D.J.A., Lemmen, D.S., and Rea, B.R., Glacial landsystems of the southwest LaurentideIce Sheet: modern Icelandic analogues, Journal of Quaternary Science, 14, 673-691,1999.

Eybergen, F.A., 1986, Glacier snout dynamics and contemporary push moraine formationat the Turtmannglacier, Wallis, Switzerland. In: Van der Meer, J.J.M., (Ed.), Tills andGlaciotectonics. Balkema, Rotterdam, 217-231, 1987.

Fullerton, D.S. and 9 others, Quaternary Map of the Hudson River 4° x 6° Quadrangle,United States and Canada, Map I-1420, U.S. Department of the interior, U.S.G.S.,1992.

Gerber, R.E., Boyce, J.I., and Howard, K.W.F., Evaluation of heterogeneity and field-scalegroundwater flow regime in a leaky till aquitard, Hydrogeology Journal, 9, 60-78,2001.

Ham, N.R., and Mickelson, D.M., Basal till fabric and deposition at Burroughs Glacier,Glacier Bay, Alaska, Geological Society of America Bulletin, 106, 1552-1559, 1994.

Hambrey, M.J., Davies, J.R., Glasser N.F., Waters, R.A., Dowdeswell, J.A., Wilby, P.R.,Wilson D., and Etienne, J.L., Devensian glacigenic sedimentation and landscapeevolution in the Cardigan area of southeast Wales, Journal of Quaternary Science, 16,455-482, 2001.

Hambrey, M.J., and D. Huddart, Englacial and proglacial glaciotectonic processes at thesnout of a thermally complex glacier in Svalbard, Journal of Quaternary Science, 10,313-326, 1995.

Hansen, L.A., Jensen, J.B., and Mads, T., Pleistocene sedimentary record of the Falsterselvarea, Jameson Land, East Greenland, Geology of Greenland Survey Bulletin, 176, 84-

36

Page 47: Glaciotectonic Shear Zones: Surface Sample Bias and Clast ... · Daniel M. Davis, Advisor, Professor ... Long Island surface geology is diverse in glacial settings and glaciotectonic

88, 1997.Harris, C., Williams, G., Brabham, P., Eaton, G., and McCarroll, D., Glaciotectonized

quaternary sediments at Dinas Dinlle, Gwynedd, North Wales, and their bearing onthe style of deglaciation in the Eastern Irish sea, Quaternary Science Reviews, 16,109-127, 1997.

Hart, J.K., Proglacial glaciotectonic deformation and the origin of the Cromer Ridge pushmoraine complex, North Norfolk, England, Boreas, 19, 165-180, 1990.

Hart, J.K., Till fabric associated with deformable beds, Earth Surface Processes andLandforms, 19, 15-32, 1994.

Hart, J.K., The relationship between drumlins and other forms of subglacial glaciotectonicdeformation, Quaternary Science Reviews, 16, 93-107, 1997.

Hart, J.K., The deforming bed/debris-rich basal ice continuum and its implications for theformation of glacial landforms (flutes) and sediments (melt-out till), Quaternary ScienceReviews, 17, 737-754, 1998.

Hart, J.K., and G.S. Boulton, The interrelation of glaciotectonic and glaciodepositionalprocesses within the glacial environment, Quaternary Science Reviews, 10, 335-350,1991.

Hart, J, and Rose, J., Approaches to the study of glacier bed deformation, QuaternaryInternational, 86, 45-58, 2001.

Hart, J.K., and Smith, B., Subglacial deformation associated with fast ice flow, from theColumbia Glacier, Alaska, Sedimentary Geology, 111, 177-197, 1997.

Hart, J.K., and Watts, Robert J., A comparison of the styles of deformation associated withtwo recent push moraines, south Van Keulenfjorden, Svalbard, Earth Surface Processesand Landforms, 22, 1089-1107, 1997.

Henriksen, M., Mangerud, Jan., Maslenikova, O., Matiouchkov, A., and Tveranger, J.,Weichselian stratigraphy and glaciotectonic deformation along the lower Pechora River,Arctic Russia, Global and Planetary Change, 31, 297-319, 2001.

Hicock, S.R., Genetic till prism, Geology, 18, 517-519, 1990.Hicock, S.R., Lobal interactions and rheologic superposition in subglacial till near Bradtville,

Ontario, Canada, Boreas, 73-88, 1992.Hicock, S.R., and Dreimanis, A., Deformation till in the Great-Lakes region - implications

for rapid flow along the south-central margin of the Laurentide Ice Sheet, CanadianJournal of Earth Sciences, 29, 1565-1579, 1992.

Hicock, S.R., Goff, J.R., Lian, O.B., and Little, E.C., On the interpretation of subglacial tillfabric, Journal of Sedimentary Research, 66, 928-934, 1996.

Hicock, S.R., and Lian, O.B., Cordilleran Ice Sheet lobal interactions and glaciotectonicsuperposition through stadial maxima along a mountain front in southwestern BritishColumbia, Canada, Boreas, 28, 531-542, 1999.

Hsui, A.T., Wilkerson, S.M., and Marshak, S., Topographically driven crustal flow and itsimplication to the development of pinned oroclines, Geophysical Research Letters,17, 2421-2424, 1990.

Houmark-Nielsen, M., Demidov, I., Funder, S., Grøsfjeld, K., Kjær, K.H., Larsen, E.,Lavrova, N., Lyså, A., and Nielsen J. K., Early and Middle Valdaian glaciations, ice-dammed lakes and periglacial interstadials in northwest Russia: new evidence fromthe Pyoza River area, Global and Planetary Change, 31, 215-237, 2001.

37

Page 48: Glaciotectonic Shear Zones: Surface Sample Bias and Clast ... · Daniel M. Davis, Advisor, Professor ... Long Island surface geology is diverse in glacial settings and glaciotectonic

Johnson, M.D., and Gillam, M.L., Composition and construction of late Pleistocene endmoraines, Durango, Colorado, Geological Society of America Bulletin, 107, 1241-1253, 1995.

Johnson, W.H., and Hansel, A.K., Wisconsin episode glacial landscape of central Illinois: aproduct of subglacial deformation processes?, Geological Society of America, SpecialPaper 337, 121-135, 1999.

Karlstrom, E.T., Fabric and origin of multiple diamictons within the pre-Illinoian KennedyDrift east of Waterton-Glacier International Peace Park, Alberta Canada, and Montana,USA, Geological Society of America Bulletin, 112, 1496-1506, 2000.

Khatwa, A., and Tulaczyk, S., Microstructural interpretations of modern and Pleistocenesubglacially deformed sediments: the relative role of parent material and subglacialprocesses, Journal of Quaternary Science, 16, 507-517, 2001.

Kjær, K.H., Demidov, I., Houmark-Nielsen, M., and Larsen, E., Distinguishing betweentills from Valdaian ice sheets in the Arkhangelsk region, Northwest Russia, Globaland Planetary Change, 31, 201-214, 2001.

Kjær, K.H., and Krüger, J., Does clast size influence fabric strength?, Journal of SedimentaryPetrology, 68, 746-749, 1998.

Kjær, K.H., and Krüger, J., The final phase of dead-ice moraine development: processesand sediment architecture, Kötlujökull, Iceland, Sedimentology, 48, 935-952, 2001.

Klein, E. C., and Davis, Dan M., Glaciotectonic process and glacigenic sediments on easternLong Island, in Geology of Long Island and Metropolitan New York, SUNY StonyBrook, p. 36-43, 1999.

Krüger, J., and Kjær, K.H., A data chart for field description and genetic interpretation ofglacial diamicts and associated sediments – with examples from Greenland, Iceland,and Denmark, Boreas, 28, 386-402, 1999.

Lachniet, M.S., Larson, G.J., Strasser, J.C., Lawson, D.E., Evenson, E.B., and Alley, R.B.,Geological Society of America, Special Paper 337, 45-57, 1999.

Larsen, E., Lyså, A., Demidov, I., Funder, S., Houmark-Nielsen, M., Kjær, K.H., and Murray,A.S., Age and extent of the Scandinavian ice sheet in northwest Russia, Boreas, 28,115-132, 1999.

Lawson, D.E., A comparison of the pebble orientations in and deposits of the MatanuskaGlacier, Alaska, Journal of Geology, 87, 629-645, 1979.

Lawson, D.E., Mobilization, movement and deposition of active subaerial sediment flows,Matanuska Glacier, Alaska, Journal of Geology, 90, 279-300, 1982.

Lehmann, R., The significance of permafrost in the formation and appearance of pushmoraines, Cheng Guodong (chairperson), Permafrost; Sixth international conferenceproceedings, International Conference on Permafrost, Proceedings, 6, Vol. 1, p. 374-379, 1993., Beijing, China, July 5-9, 1993.

Lewis, R.S., and Stone, J.R., Late Quaternary stratigraphy and depositional history of theLong Island Sound Basin: Connecticut and New York, Journal of Coastal Research,1-23, 1991.

Mark, D.A., Analysis of axial orientation data, including till fabrics, Geological Society ofAmerica Bulletin, 84, 1369-1374, 1973.

Mark, D.A., On the interpretation of till fabrics, Geology, 2, 101-104, 1974.Mattsson, Å., Glacial striae, glacigenous sediments and Weichselian ice movements in

38

Page 49: Glaciotectonic Shear Zones: Surface Sample Bias and Clast ... · Daniel M. Davis, Advisor, Professor ... Long Island surface geology is diverse in glacial settings and glaciotectonic

southernmost Sweden, Sedimentary Geology, 111, 285-311, 1997.Menzies, J., Zaniewski, K., and Dreger, D., Evidence, from microstructures, of deformable

bed conditions within drumlins, Chimney Bluffs, New York State, SedimentaryGeology, 111, 161-175, 1997.

Merrill, F.J.H., On the geology of Long Island, Annals New York Academy of Sciences, 3,341-364, 1886.

Meyers, W.J., Boguslavsky, S., Dunne, S., Keller, J., Lewitt, D., Lani, M., McVicker, A.,and Cascione, Matituck Cliffs and Ranco Quarry: Models for Origin of Roanoke Pointand Ronkonkoma Moraines?, Conf. On Geology of Long Island and Metropolitan NY,83-90, April 1998.

Millar, S.W.S., and Nelson, F.E., Sampling-surface orientation and clast macrofabric inperiglacial colluvium, Earth Surface Processes and Landforms, 26, 523-529, 2001a.

Millar, S.W.S., and Nelson, F.E., Clast fabric in relict periglacial colluvium, Salamanca re-entrant, southwestern New York, USA, Geografiska Annaler, 83A, 145-156, 2001b.

Munro-Stasiuk, M.J., Rhythmic till sedimentation: evidence for repeated hydraulic liftingof a stagnant ice mass, Journal of Sedimentary Research, 70, 94-106, 2000.

Nieter, W., B. Nemickas, E.J. Koszalka, and W.S. Newman, The Late Quaternary Geologyof the Montauk Peninsula, Montauk Point to Southampton, Long Island, New York, p.129-1553, in New York State Geological Association Guidebook, 47th Annual Meeting,1975.

Overgaard, T., and Jakobsen, P.R., Mapping of glaciotectonic deformation in an ice marginalenvironment with ground penetrating radar, Journal of Applied Geophysics, 47, 191-197, 2001.

Penttinen, S., Sutinen, R, and Hänninen, P., Determination of Anisotropy of tills by meansof azimuthal resistivity and conductivity measurements, Nordic Hydrology, 30, 317-332, 1999.

Piotrowski, J.A., Mickelson, D.M., Tulaczyk, S., Krzyszkowski, D., and Junge, F.W., Weredeforming subglacial beds beneath past ice sheets really widespread?, QuaternaryInternational, 86, 139-150, 2001.

Ramage, J.M., Gardner, T.W., and Sasowsky I.D., Early Pleistocene Glacial Lake Lesley,West Branch Susquehanna River valley, central Pennsylvania, Geomorphology, 22,19-37, 1998.

Rappol, M., Clast-fabric strength in tills and debris flows compared for differentenvironments, Geologie en Mijnbouw, 64, 327-332, 1985.

Regli, C., Huggenberger, P., and Rauber, M., Interpretation of drill core and georadar dataof coarse gravel deposits, Journal of Hydrology, 255, 234-252, 2002.

Rijsdijk, K.F., Density-driven deformation structures in glacigenic consolidated diamicts:examples from Traeth Y Mwnt, Cardiganshire, Wales, U.K., Journal of SedimentaryResearch, 71, 122-135, 2001.

Ringrose, T.J., and Benn, D.I., Confidence regions for fabric shape diagrams, Journal ofStructural Geology, 12, 1527-1536, 1997.

Russell, A. J., Knight, P. G., and Van Dijk, T. A. G. P., Glacier surging as a control on thedevelopment of proglacial, fluvial landforms and deposits, Skei∂arársandur, Iceland,Global and Planetary Change, 28, 163-174, 2001.

Ruszczynska-Szenajch, “Lodgement till” and “deformation till”, Quaternary Science´

´

39

Page 50: Glaciotectonic Shear Zones: Surface Sample Bias and Clast ... · Daniel M. Davis, Advisor, Professor ... Long Island surface geology is diverse in glacial settings and glaciotectonic

Reviews, 20, 579-581, 2001.Salem H.S., Modeling of lithology and hydraulic conductivity of shallow sediments from

resistivity measurements using schlumberger vertical electrical soundings, EnergySources, 23, 599-618, 2001

Schlüchter, C., Gander, P., Lowell, T.V., and Denton, G.H., Glacially folded outwash nearLago Llanquihue, Southern Lake District, Chile, Geografiska Annaler, 81A, 347-358,1999.

Sharp, M., Annual moraine ridges at Skálafellsjökull, south-east Iceland, Journal ofGlaciology, 30, 82-93, 1984.

Sminchak, J.R., Dominic, D.F., Ritzi, R.W.Jr., Indicator geostatiscal analysis of sandinterconnections within a till, Ground Water, 34, 1125-1131, 1996.

Sterner, R., “Hudson Canyon”, http://fermi.jhuapl.edu/states/maps2/hudson_canyon/

hudson_canyon.html (1994).Thomas, G.S.P., The origin of the glacio-dynamic structure of the Bride Moraine, Isle of

Man, Boreas, 13, 355-364, 1984.van der Meer, J.J.M., Microscopic evidence of subglacial deformation, Quaternary Science

Reviews, 12, 553-587, 1993.van der Meer, J.J.M., Short-lived streamlined bedforms (annual small flutes) formed under

clean ice, Turtmann Glacier, Switzerland, Sedimentary Geology, 111, 107-118, 1997.van der Meer, J.J.M., Particle and aggregate mobility in till: microscopic evidence of

subglacial processes, Quaternary Science Reviews, 16, 827-831, 1997b.Van der Wateren, D.F.M., A model of glacial tectonics, applied to the ice-pushed ridges in

the Central Netherlands, Bulletin of the Geological Society of Denmark, 34, 55-74,1985.

Van der Wateren, D.F.M., 1986, Structural geology and sedimentology of the Dammer Bergepush moraine, FRG, INQUA symposium on the Genesis and Lithology of GlacialDeposits, Amsterdam, In: Tills and Glaciotectonics, A.A. Balkema, Rotterdam, 157-182, 1987.

Van der Wateren, D.F.M., Structural geology and sedimentology of push moraines: processesof soft sediment deformation in a glacial environment and the distribution ofglaciotectonic styles, Mededelingen Rijks Geologische, 54, 1 – 168, 1995.

Van der Wateren, D.F.M., Structural geology and sedimentology of the Heiligenhafen tillsection, Northern Germany, Quaternary Science Reviews, 18, 1625-1639, 1999.

Wang, W.-H. and Davis, D.M., Sandbox model simulation of forearc evolution and noncriticalwedges, Journal of Geophysical Research,101, 11329-11339, 1996.

Ward, B., and Rutter, N., Deglacial valley fill sedimentation, Pelly river, Yukon territory,Canada, Quaternary International, 68-71, 309-328, 2000.

Watson, G.S., The statistics of orientation data, Journal of Geology, 74, 786-797, 1966.Williams, G.D., Brabham, P.J., Eaton, G.P., and Harris, C., Late Devensian glaciotectonic

deformation at St. Bees, Cumbria: a critical wedge model, Journal of the GeologicalSociety of London, 158 part 1, 125-135, 2001.

Woodcock, N.H., Specification of fabric shapes using eigenvalue method, Geological Societyof America Bulletin, 88, 1231-1236, 1977.

Woodcock, N.H., and Naylor, M.A., Randomness testing in three-dimensional orientationdata, Journal of Structural Geology, 5, 539-548, 1983.

40

Page 51: Glaciotectonic Shear Zones: Surface Sample Bias and Clast ... · Daniel M. Davis, Advisor, Professor ... Long Island surface geology is diverse in glacial settings and glaciotectonic

Zelcs, V., and Dreimanis, A., Morphology, internal structure and genesis of the Burtnieksdrumlin field, Northern Vidzeme, Latvia, Sedimentary Geology, 111, 73-90, 1997.

ˇ

41

Page 52: Glaciotectonic Shear Zones: Surface Sample Bias and Clast ... · Daniel M. Davis, Advisor, Professor ... Long Island surface geology is diverse in glacial settings and glaciotectonic

II. Surface Sample Bias and Clast Fabric Interpretation

Abstract

Quantitative clast fabric analysis, despite its limitations, is a useful analytical tool inglacigenic sediment studies. More powerful than graphical methods, eigenanalysis allowsquantification of otherwise descriptive three-dimensional fabrics. In conjunction with theorientation of the long-axes, short-axes preferred direction could further establish the natureof shear, emplacement, and deposition in glacigenic settings. Field measurement, however,produces a systematic sampling bias in favor of clasts normal to outcrop surface. Thissampling bias is a function of the orientation of outcrop surface to the fabric and can affectthe perceived fabric strength (eigenvalues) enough to influence interpretation. I use simplecalculations and numerically generated random clast populations to quantify this bias and Ifind that it is greatest for those clasts best suited to fabric analysis (those that are rod-like inshape). The effect of this surface bias can be mitigated with careful sampling andinterpretation. Fortunately, its effect upon strong fabric orientation (eigenvectors) is generallysmall.

Clast Fabric Analysis in Glacial Sediment

Glacial deposits typically incorporate a very broad range of particle sizes that reflectthe source and quantity of sediment supplied to the glacier. One way glacial diamict canevolve is when glacially entrained rock, bedrock fragments, and sediments are crushed,ground, deformed and mixed while being carried in the ice and particle rich basal zone of aglacier, producing deposit types which include a heterogeneous (clay to boulder) mixture ofpoorly sorted particles (e.g., Alley et al., 1999). Prolonged glacial transport modifies thetextural maturity of glacial sediments, so clast roundness and sphericity are functions of thedistance the clast has been transported (e.g. Boulton, 1978; Boulton, 1996).

Moraine landforms are often composed of relatively large volumes of glacial diamictdeposits. In these settings, diamict units can be massive, stratified, laminated, imbricated,reworked, resedimented, sheared, and they can include clast pavements. Diamicts includeeither isolated or graded clasts within a matrix of finer material or an interstitial matrix offiner material within supporting clasts (e.g. Benn and Evans, 1998; Krüger and Kjaer, 1999).A clast fabric defines a distribution of clasts by the degree to which clast axes orientationsare clustered. Such fabrics range from very weak (nearly isotropic) to very strong (highly

42

Page 53: Glaciotectonic Shear Zones: Surface Sample Bias and Clast ... · Daniel M. Davis, Advisor, Professor ... Long Island surface geology is diverse in glacial settings and glaciotectonic

directional).The manner in which glacigenic clasts are arranged provides outcrop-scale

information that may help to constrain the physical dimensions of stratigraphic units andalso provides clues to the nature and sequence of glaciotectonic and depositional processes(e.g., Hicock, 1990). A quantitative description of a clast fabric, defining the degree ofpreferred orientation observed in exposed diamict settings, is obtained by a combination offield measurement and vector analysis (e.g., Mark, 1974). The statistical description of aglacigenic sediment clast fabric reflects the effect of both depositional conditions and thesubsequent strain, in principle enabling the differentiation of the structural contrasts recordedin glaciotectonic shear zones. Published research (e.g., Lawson, 1979; Dowdeswell et al.,1985; Dowdeswell and Sharp, 1986) on a variety of glacial diamict deposits has shown abroad range of preferred clast orientations, producing fabrics of strengths that differ withdepositional setting. The glacigenic settings which produce these differing results rangefrom weakly organized clast orientations (e.g., water-lain glacigenic sediment) preservedduring outwash deposition to highly uniform lineations (e.g., subglacial melt-out till)generated by well-developed shear zones that are later preserved during subglacial melt-outdeposition from motionless glacial ice. The magnitude of clast orientation preference is ameasure of the degree to which all preserved and observed clasts measured are alignedsubparallel to a unique direction. Strongly organized, highly anisotropic clast orientationsderived from subglacial-meltout or lodgment processes are typically subparallel with localice flow direction (e.g., Lawson, 1979; Dreimanis, 1999). Fabric strength generally decreasesas water content in the sediment-ice mixture increases. Clast fabric is not uniquely indicativeof sediment genesis, but can be an indicator of relative strain within a stratigraphic unit(e.g., Bennett, et al. 1999; Karlstom, 2000).

I have studied glacigenic sediments at a site within the Ronkonkoma Moraine ofLong Island, New York. My field area, Ditch Plains, roughly 5 kilometers west of MontaukPoint on the south fork of eastern Long Island (Fig. 1), is spaced along several kilometers ofthe shoreline. Bluffs and vertical exposures outcrop at heights as great as 10 to 15 meters,as the Ronkonkoma Moraine resists erosion caused by ocean surf and other weatheringprocesses. I interpret the general stratigraphy to include two distinctive glacial diamictdeposits. A massive upper diamict unit (Dmm) overlies a stratified diamict unit (Dms) (Fig.2), (e.g., Klein, et. al., 1998, 2001). The preferred direction of the long axes for the rod-shaped clasts (subhorizontal N-S direction) is evident within the stratified diamict unit. Thenorth-south long axis orientation of most clasts in this unit is consistent with shear due toglacial advance from the north.

One way to distinguish differences in fabric strength is with a rose diagram. Thisgraphical method plots frequency distribution versus bearing. The number of clasts plottedfor a given range of bearings corresponds simply to the number of clasts with a particularaxis (e.g., long) pointed within a narrow range of bearing (commonly ±5º) of that direction.A major drawback in using rose diagrams for fabric descriptions is their inability todifferentiate between shallowly and steeply plunging clast axes, which limits the usefulnessof physical interpretation based on rose diagrams alone. Plotted on a rose diagram are thelong axis bearings of 150 clast orientations collected from the stratified diamict unit atDitch Plains (Fig. 3A). The rose petal in figure 3A, pointing to the northeast between 340ºto 350º defines the bearing direction for 23% of the measured long axes.

43

Page 54: Glaciotectonic Shear Zones: Surface Sample Bias and Clast ... · Daniel M. Davis, Advisor, Professor ... Long Island surface geology is diverse in glacial settings and glaciotectonic

Fig

ure

1. M

ap o

f L

ong

Isla

nd.

Shad

ed in

gre

en a

re th

e H

arbo

r H

ill a

nd R

onko

nkom

a m

orai

nes.

D

itch

Plai

ns f

ield

stu

dy

loca

tion

is in

dica

ted

by th

e sm

all r

ed d

ot o

n th

e so

uth

fork

.

44

Page 55: Glaciotectonic Shear Zones: Surface Sample Bias and Clast ... · Daniel M. Davis, Advisor, Professor ... Long Island surface geology is diverse in glacial settings and glaciotectonic

1 m

Fig

ure

2.

The

sou

th-f

acin

g se

a cl

iff

at D

itch

Plai

ns

(Fig

ure

1).

M

ost

of t

he 1

0 m

exp

osur

e co

nsis

ts o

f a

stra

tifie

d di

amic

t, te

ntat

ivel

y in

terp

erte

d as

a m

elt-

out

till.

The

top

part

of

the

expo

sure

is a

mas

sive

dia

mic

t w

hich

is

prob

ably

a f

low

till

. I

nser

t is

a t

ypic

al 1

m

squa

re c

last

ori

enta

tion

sam

plin

g ar

ea (

red

squa

re).

Dm

sD

ms

stra

tifi

ed d

iam

ict

stra

tifi

ed d

iam

ict

(mel

t-out

till

?)(m

elt-

out

till

?)

Dm

mD

mm

mas

sive

dia

mic

tm

assi

ve

dia

mic

t

(flo

w t

ill?

)(f

low

til

l?)

Cover

edC

over

ed

45

Page 56: Glaciotectonic Shear Zones: Surface Sample Bias and Clast ... · Daniel M. Davis, Advisor, Professor ... Long Island surface geology is diverse in glacial settings and glaciotectonic

N

A

C

B

Figure 3. A. A rose diagram showing the 150 long axis clast orientations recorded in the stratified diamict unit (Dms) at Ditch Plains. The rose diagram perimeter corresponds to 23%. B. Equal-area stereonet projection of the same 150 clast orientations C. Equal-area stereonet projection of the same 150 clast orientations contoured at 2% intervals for 1% area. The contour plot of these clast orientations unambiguously suggests a subhorizontal preferred direction just west of north. Note, north is located at the top of each of the diagrams in the figure.

46

Page 57: Glaciotectonic Shear Zones: Surface Sample Bias and Clast ... · Daniel M. Davis, Advisor, Professor ... Long Island surface geology is diverse in glacial settings and glaciotectonic

Equal-area stereonet projection is a more commonly used graphical method thatexpresses three-dimensional clustering in direction of a specified clast axis. In this projection,each point represents the bearing and plunge of one clast. In figures 3B and 3C, I presentthe same clast data from the lower stratified diamict unit projected and contoured on equal-area stereonets. The 150 long axes cluster at shallow plunge near a bearing of 345°. Unlikerose diagrams, stereonets are capable of graphically establishing a three-dimensionalmaximum preferred orientation for a single axis (e.g. long-axis) distribution where onemight also be able to infer the least and intermediate preferred directions. Eigenanalysis, amore formal quantitative technique, can statistically establish three mutually orthogonal(most, intermediate, and least) preferred directions for a single axial data set, but its advantageis greater resolution and more precision than stereonet projection.

In clast fabric analysis, each individual clast may be approximated by a triaxialellipsoid with three mutually orthogonal principal axes. It is convenient to determine suchprincipal axes for each clast by first measuring the length and orientation of the longest axisthrough the clast center. The lengths and orientations of two mutually perpendicular andorthogonal axes to the established long axis orientation can then be established and recorded.I record the orientation (bearing and plunge) of any two of these principal axes, from whichI can calculate the third. The bulk fabric information gleaned from in-situ measurement ofaxial orientations for a given number of clasts (vectors) in a clast distribution is transformableinto a three-dimensional orientation tensor (e.g., Mark, 1973; Woodcock, 1977). The elementsof the orientation tensor, defined in a 3 x 3 symmetric matrix, indicate the degree to whicha particular clast axis (this technique is usually applied to the long axis) tends to align in agiven direction. Clast shape can play a significant role in the determination of a clastorientation. Rod-like clast shapes, however, have an obvious long axis orientation, allowingthem to contribute to a more robust orientation tensor.

The analytical solution obtained by eigenanalysis determines three normalizedeigenvalues (a maximum, an intermediate, and a minimum) and assigns one eigenvalue toeach one of three mutually perpendicular preferred eigenvector directions. These eigenvectorscan be thought of as the most, intermediate, and least preferred clast-vector directions (allmutually perpendicular). The corresponding normalized eigenvalues describe the degreeof preference for each of these directions. For example, a normalized eigenvalue equal toone would mean that all axes point exactly that way, while an eigenvalue of zero wouldindicate that they are all 90° from that direction. Three-dimensional eigenvalue analysis inglacially-derived diamicts has been used by a number of researchers studying clast fabricsas a diagnostic tool intended to deduce the genetic origin of glacial deposits (e.g., Mark,1974, Lawson 1979; Dowdeswell et al., 1985; Rappol, 1985; Dowdeswell and Sharp, 1986;Benn, 1994, Ham and Mickelson, 1994; Hicock et al., 1996; Larsen et al., 1999; Kjaer et al.,2001) and to infer relative strain within glacigenic sediments (e.g., Hicock, 1992; Hart,1994; Benn, 1995; Benn and Evans, 1996; Rijsdijk, 2001). Clast shapes affect the natureand strength of the clast orientation fabric. If a is the long axis, b the intermediate axis, andc is the short axis for a particular clast, then the clast shape is defined as a rod if a>b≈c, adisc if a≈b>c, a blade if a>b>c, or a spheroid if a≈b≈c (e.g., Zingg, 1935; Sneed and Folk,1958). Spheres have infinite combinations of three mutually perpendicular axes so spheroidalclasts make a very weak fabric, have no preferred directions, and indicate little aboutemplacement or strain. Glacigenic deposits composed exclusively of sediment of extreme

47

Page 58: Glaciotectonic Shear Zones: Surface Sample Bias and Clast ... · Daniel M. Davis, Advisor, Professor ... Long Island surface geology is diverse in glacial settings and glaciotectonic

textural maturity are therefore the poorest targets for clast fabric analysis. Rod-like clastsare often the easiest shapes in the field to measure, so they are the most ideal for thedetermining long axis orientation.

A more complete description of clast fabric includes the clast short-axis directionssince it is equally possible to study the distribution of long or short axes, although theliterature emphasizes long axis orientations, particularly for blunt rods (aspect ratio a/b ofat least 3/2) (e.g., Bennett et al., 1999; Kjaer and Krüger, 1998; Krüger and Kjaer, 1999;Millar and Nelson, 2001a,b). To this date there is limited reporting of measured short axisorientation distributions in glacigenic sediment studies. Combining long axis and shortaxis orientations of the same set of clasts may permit clearer discernment of the nature ofshear responsible for emplacement of the clasts. A clast fabric describing short axisorientations for a set of blade-like (triaxial) clasts (a>b>c) may help in identifying pureshear uniaxial shortening. For example, if a randomly oriented clast set is subjected to pureuniaxial compression, then the clasts long axes will tend to girdle in orientations radiallynormal to the compression direction and the clasts short axes orientations will be apt tocluster subparallel to the compression direction. For simple shear, long axes tend to clusterin the shear direction (e.g., Dreimanis, 1999), although some studies describe quasiperoidicbehavior (e.g., Lindsay, 1968).

The short axis direction of the clasts measured at Ditch Plains have a great propensityfor being aligned nearly vertical. This, like the long axis orientation, is consistent withemplacement and subsequent shear from the north due to glacial advance. The short axes of141 of the 150 Ditch Plains clasts cluster on a stereonet in a near-vertical orientation moretightly aligned than the long axes (Fig. 4). The distribution of the long and short axialorientations of the Ditch Plains clasts is suggestive of a well-developed fabric, enhanced byconsiderable shear.

The orientation of the long axis of a single clast is usually described in terms of avector with a given bearing and plunge. It is also possible, however, to describe that vectorin terms ofthe angle it makes with respect to each of the three coordinate axes (x, y, z) or (E,N, vertical). The three direction cosines (m, l, n) are simply the cosines of the angles fromthat pebble axis vector to the positive x, y, and z-axis directions, respectively. They can alsobe thought of as the x, y, and z components of a unit vector pointing in the same direction asthe pebble axis, with values of +1 or -1 (if pointing along a given axis) and 0 if perpendicularto that axis.

Following the example of other workers, (e.g., Mark, 1973; Woodcook, 1977), I usethe direction cosines (l, m, n) of measured pebble axis vectors to produce a symmetricmatrix that describes the direction and intensity of the overall pebble fabric. This matrix,called the orientation tensor, is the sum over all N pebbles of sets of products of the directioncosines. It is written formally as

The contribution of a single clast to the xx-component (axx) is simply the first

Σli

2

Σmili

Σnili

Σmi

2

Σlimi

Σnimi

Σni

2

Σmini

Σlini[ ]A =

1

N(1)

48

Page 59: Glaciotectonic Shear Zones: Surface Sample Bias and Clast ... · Daniel M. Davis, Advisor, Professor ... Long Island surface geology is diverse in glacial settings and glaciotectonic

A

B

Figure 4. A. Equal-area stereonet projection of 141 short axis clast orientations recorded in the stratified diamict unit at Ditch Plains. B. Equal-area stereonet projection of the same 141 clast orientations contoured at 2% intervals for 1% area. Note, north is located at the top of each of the steronet diagrams in the figure.

49

Page 60: Glaciotectonic Shear Zones: Surface Sample Bias and Clast ... · Daniel M. Davis, Advisor, Professor ... Long Island surface geology is diverse in glacial settings and glaciotectonic

direction cosine of the axis (usually the long axis being considered), l, multiplied by itself.Similarly, the other components along the diagonal (ayy and azz) are squares of those directioncosines. The off-diagonal terms are simply products of the corresponding pairs of directioncosines. For example, axy and ayx are each the products of the x- and y-axis directioncosines, l, and m. For this reason, the matrix is symmetric (axy = ayx, axz = azx, and ayz =azy). Such a matrix can be written for an individual clast. By summing the values of eachmatrix component over all N measured clasts (the subscript i is a counter for individualclasts) and then normalizing by that value N, one arrives at the normalized orientationmatrix A (e.g., Mark, 1973; Woodcock, 1977). This matrix contains information about thestatistics of clast axes – the frequency to which they point in any given direction.

The normalized orientation matrix A is written with respect to the x-, y-, and z-axes.The mutually orthogonal set of axes corresponding to the fabric (the directions in whichclasts most and least strongly point) can be oriented at any arbitrary angles to that (x, y, z)coordinate frame. Ideally, I would like to rewrite the normalized orientation matrix withrespect to a reference frame that has a physical meaning for the clast fabric, rather than thearbitrary (x, y, z) axis reference frame. The diagonalization of the matrix A does just that.

The eigenvectors of the matrix are simply vectors indicating the mutually orthogonalaxes that define that natural reference frame. One of these axes, written as vector V1, is themost preferred direction for clast axes. The degree of that preference is given by a scalarvalue – the greatest eigenvalue S1. The least preferred direction, V3, is an eigenvector thatis normal to the V1 axis, and its corresponding eigenvalue is called S3. A third direction,V2, is perpendicular to both the V1 and V3 directions and has an eigenvalue S2 that indicatesthe relative propensity of clasts to align in that direction. If, as in my calculations, theeigenvalues are normalized to one, I have S1+S2+S3=1, with S1 ≥ S2 ≥ S3. When the matrixhas been rewritten in diagonalized form, in which it is defined with respect to the fabricaxes (eigenvectors), the off-diagonal terms are all zero. The three remaining non-zero terms,along the diagonal, then correspond to the three eigenvalues.

Fabric strengths derived from eigenvalue analysis in the literature have been depictedgraphically in two distinct ways. Both (S1,S3) eigenvalue plots (Fig. 5A) and isotropy-elongation ternary plots (Fig. 5B) encompass the entire range of possible sets of eigenvalues,defined by the relations S1+S2+S3=0 and 0≤S3≤S2≤S1≤1 (e.g., Benn, 1994). The two typesof plots can be 1:1 mapped onto each other.

In an (S1,S3) eigenvalue plot (Fig. 5A), the horizontal axis corresponds to the magnitudeof the largest eigenvalue (S1) and the vertical axis indicates the smallest eigenvalue (S3).Each point on the plot corresponds to a unique (S1,S2,S3) set, since the third eigenvalueS2=1-S1-S3 is uniquely determined in terms of the other two. All possible (S1,S2,S3)combinations are contained within a skewed triangular region, bounded on the bottom bythe S3=0 line, at left by the S2=S1 line and at top by the S2=S3 line.

In an isotropy-elongation ternary diagram (Fig. 5B) the set of all fabric eigenvalues isplotted within an equilateral triangular region, as in any other ternary diagram. The vertical(isotropy) axis measures the ratio (S3/S1). When this ratio equals one, all three eigenvaluesare equal and the fabric is purely isotropic. When the isotropy (S3/S1) equals zero, 0=S3≤S2≤ S1, and the fabric lies somewhere between a girdle (S3=0 ; S2=S1=.5) and a cluster(S3=S2=0 ; S1=1.0). The elongation axis, 60° clockwise of the isotropy axis, measures thevalue 1-(S2/S1). The third axis value in a ternary diagram, in this case (S2-S3)/S1, is

50

Page 61: Glaciotectonic Shear Zones: Surface Sample Bias and Clast ... · Daniel M. Davis, Advisor, Professor ... Long Island surface geology is diverse in glacial settings and glaciotectonic

.33 .40 .50 .60 .70 .80 .90 1.0

isotropipicpic

clustergird

le

S3

S1

22

SS3==

1SS

2 ==

.3333

.3303

.2202

.101

000

Figure 5. A. (S1, S3) eigenvalue plot. Note that possible eigenvalue combinations can fall only within the triangular area of the plot bounded by the lines S1=S2, S2=S3, and S3 = 0.0 with S1 eigenvalues ranging from 0.50 to 1.0 respectively. B. Isotropy-elongation ternary diagram. Ideal fabric shapes (isotropic, girdle, cluster) indicated at the apices of the useable triangle in the (S1, S3) eigenvalue plot and in the isotropy-elongation ternary diagram.

A

B

0

0.2

1.0

0.8

0.6

0.4

Elo

ngat

ion

1-

(S /S

)2

1

Isotropy (S /S )

3 1

0

0.2

1.0

0.8

0.6

0.4

cluster

isotropic

girdle

51

Page 62: Glaciotectonic Shear Zones: Surface Sample Bias and Clast ... · Daniel M. Davis, Advisor, Professor ... Long Island surface geology is diverse in glacial settings and glaciotectonic

redundant because the three coordinate values sum to one and are thus not mutuallyindependent.

Although the mapping between the two diagrams is 1:1, their relative scaling is notuniform. The eigenvalue plot stretches the lower right-hand (cluster) area of the plot (Fig.6A,B), so that the extreme corner of the plot (where S1→1) is scaled up in area by a factorof 4.5:1 compared to the ternary plot. Likewise, the top of the ternary diagram exaggeratesthe near-isotropic region (where S3 →S1) by a factor of 6:1 compared to the eigenvalueplot. Thus, equal-area regions near the isotropic and cluster extremes of one of these diagramswill appear on the other diagram to encompass corresponding regions of greatly differentsize, differing by a factor of up to 27 at the far corners of the diagrams. Although thisdifference in scaling is less extreme for larger regions that extend away from the corners, itremains significant. For example, the ternary diagram can be divided into four equal areas,corresponding to sets of eigenvalues that tend toward being roughly isotropic, clustered, orgirdle-like, plus those that fall in between (Fig. 7A). Plotted on an eigenvalue diagram,however, those four regions are skewed and far from equal in area (Fig. 7B). The nearlyisotropic 20% of the ternary diagram (shaded dark in Fig. 7A) occupies only 1/12th of thetotal area on the eigenvalue diagram (5 times smaller than the nearly-clustered region, whichalso covers 20% of the ternary diagram). Thus it may not be surprising that relatively fewpublished observations fall in the near-isotropic region. Also, existence of naturally occurringtruly isotropic fabrics is thought to be extremely rare due to the influence of depositional ormechanical boundary conditions such as surface and stress field orientations that oftenpromote particle alignment (e.g., Benn and Ringrose, 2001). Particular care must beexercised in evaluating data points that plot close to the boundaries in eigenvalue diagrams,where at least two eigenvalues are nearly equal in strength. Such a condition can lead tomisinterpretation of the preferred orientation of a clast fabric. Random sampling can easilycause nearly equal eigenvalues to reverse their magnitude order, leading to a dramatic andspurious change (one axis for another) in eigenvector direction (e.g., Ringrose and Benn,1997; Benn and Ringrose, 2001). In fact, as I will show, there is an additional reason.There is anobservational bias that tends to produce spurious measurements away from thisregion even when the true clast fabric is indeed quite isotropic.

Various authors have attempted to associate fabric domains in (S1, S3) space withthe mode of genesis of glacial till in modern glacigenic sediments, although in relativelyfew cases are there such data where sedimentary processes are unambiguously observed(e.g., Lawson, 1979; Dowdeswell et al., 1985). The Ditch Plains sediment orientation datagive well-determined eigenvalues and eigenvectors (Table 1) that can be placed on an S3versus S1 eigenvalue plot.

Table 1. Eigenanalysis results for long and short axis clast orientations recorded at Ditch Plains.

short-axis eigenvalues short-axis eigenvectors

S1 = .911

S2 = .051

S3 = .038

V1 = (003°, 73°)

V2 = (260°, 04°)

V3 = (169°, 16°)

long-axis eigenvalues long-axis eigenvectors

S1 = .792

S2 = .150

S3 = .058

V1 = (342°, 06°)

V2 = (072°, 01°)

V3 = (178°, 84°)

52

Page 63: Glaciotectonic Shear Zones: Surface Sample Bias and Clast ... · Daniel M. Davis, Advisor, Professor ... Long Island surface geology is diverse in glacial settings and glaciotectonic

Figure 6. Illustration of 1:1 mapping and non uniform scaling between the (S1, S3) eigenvalue plot and the isotropy-elongation ternary diagram. A. The useable triangular domain of the (S1, S3) eigenvalue plot mapped to and labeled with isotropy-elongation ternary diagram eigenvalue ratio combinations. B. Isotropy-elongation ternary diagram mapped to and labeled with (S1, S3) eigenvalue plot eigenvalue ratio combinations. Ideal fabric shapes (isotropic, girdle, cluster) indicated at the apices of both diagrams.

A

B

Elongation

1-(S

/S )

2 1

.50

.90.80

.40

.30

.20

.10

.60

.70

S 1

1.0cluster

isotropic

girdle

0

S3

isotro

pic

clustergirdle

1.0

0.90

0.80

0.700.60

0.500.400.300.200.100.01.00.900.800.700.600.50

0.400.30

0.200.10

0.0

Isotropy (S /S )3 1

53

Page 64: Glaciotectonic Shear Zones: Surface Sample Bias and Clast ... · Daniel M. Davis, Advisor, Professor ... Long Island surface geology is diverse in glacial settings and glaciotectonic

.33 .40 .50 .60 .70 .80 .90 1.0

isotropipicpic

clustergird

le

S3

S1

222

SS

1SS

2 ==

.3333

.3303

.2202

.101

000

0

0.2

1.0

2

12

Isotropy

3 1

0

0.2

0.8

0.6

iisotropici

girdl

girdle

girdl

Figure 7. A. Isotropy-elongation ternary diagram divided into four equal area regions that correspond to general fabric shape domains. B. The equal area general fabric shape domains of the isotropy-elongation ternary diagram are skewed substantially in area on the (S1, S3) eigenvalue plot.

A

B

54

Page 65: Glaciotectonic Shear Zones: Surface Sample Bias and Clast ... · Daniel M. Davis, Advisor, Professor ... Long Island surface geology is diverse in glacial settings and glaciotectonic

The Ditch Plains long axis stratified diamict clast fabric falls into the lower right-hand region of the plot, near where Lawson (1979) and Dowdeswell et al. (1985) plotsediments with strong fabrics, such as lodgement and subglacial melt-out tills (Fig. 8). Theresult of calculated by eigenanalysis is consistent with the rose diagram (Fig. 3A) and thelong-axis stereonet plots diagram (Fig. 3B,C) depicting the majority of the measured pebblesaligned subhorizontally with north-south direction. Each of the fabric domains describedby an ellipse on an eigenvalue plot (S3 versus S1) denotes a genetic type of glacial sedimentrecorded in-situ (Fig. 8), but glacial facies or the degree of glaciomechanical influence onfabric development should not be interpreted based on fabric

Although glacial ice might be responsible for clast fabric generation and thesubsequent deposition of lodgement, deformation, and subglacial-meltout tills from its basalzone, direct evidence for regional ice movement can not easily be delineated by fabricgeometry exclusively. For instance, ice-marginal moraines formed by many locally smalland structurally complex ice tongues may introduce so much genetic (modal) and directionalvariability that it is often not possible to establish a single local ice movement direction(e.g., Dreimanis, 1999). Inferring strain accumulation during the emplacement of glacialdiamicts is a formidable challenge. Many kilometers of ice may, before melting, shear pasta point very near the front of the moraine, leaving no further trace. An indeterminate amountof that shear may occur in the ice, as opposed to the sediments. For these reasons, absolutestrain levels may not be recorded clearly in sediments. Therefore, clast fabric analysis isbest suited as a relative (as opposed to absolute) strain indicator within a single set of glacialsediment deposits (e.g., Bennett et al., 1999).

The strength of the clast fabric and the magnitude of bulk strain do not necessarilyhave a one-to-one relationship: quite different deformation ellipsoids (and eigenvalues) canresult, depending upon whether the clasts undergo passive (March) rotation with the matrix,or make a more independent (Jefferey) rotation in response to force couples resolved acrossthem (e.g., Jeffrey, 1922; Benn and Evans, 1996; Hooyer and Iverson, 2000). In somesediments, fabric strength may even be cyclical with strain (e.g., Lindsay, 1968). Manydifferent processes can produce similar clast fabrics (e.g., Bennett, et al., 1999; Krüger andKjaer, 1999; Karlstrom, 2000; Benn and Ringrose, 2001; Kjaer, 2001), so one must also useother sediment properties to classify till.

Reconstruction of shear as recorded in quantitative clast fabric analysis opens upthe possibility of mapping patterns of glaciomechanical strain. It is possible witheigenanalysis to map the directional changes associated with ice movements and to relatesediment emplacements to depositional processes that are evident in more traditionalexamination of the outcrop. Researchers (e.g., Hart, 1998) have sought to correlatequantitative measures of clast fabrics with shear zones.

In most subglacial tills, preferred direction is parallel with the movement of ice andthe clasts preferentially plunge upglacier (e.g., Krüger, 1970; Dreimanis, 1999). The preferredlong axis eigenvector (342°, 06°) obtained by eigenanalysis (Table 1.) for the stratifieddiamict unit at Ditch Plains suggests that the pebble orientation in that unit may be subparallelwith the Pleistocene ice flow direction believed to be from the NNW (Klein and Davis,2001). The short axes of these clasts predominately plunge steeply north (upglacier) whichsuggests that the long and short axes directions are not orthogonal. I infer that the stratifieddiamict unit originated by subglacial melt-out deposition in the local direction of glacier

55

Page 66: Glaciotectonic Shear Zones: Surface Sample Bias and Clast ... · Daniel M. Davis, Advisor, Professor ... Long Island surface geology is diverse in glacial settings and glaciotectonic

1.0cluster

S3

Wat

erla

in G

laci

gen

ic S

edim

ent Subgla

cial

Deb

ris-

rich

Mel

t-out

Til

l

Bas

al I

ce

Flo

w T

ill

0.4

0.5

0.6

0.7

0.8

0.9

0.0

0.1

0.2

0.3

S1

girdle

Lodgem

ent

Til

l

isotropic

Fig

ure

8.

Mod

ifie

d S 1

vs

S 3 e

igen

valu

e pl

ot

of D

owde

swel

l et

al.,

(19

85)

com

pari

ng t

he s

tand

ard

devi

atio

n an

d m

ean

eige

nval

ues

of f

our

mod

ern

glac

igen

ic f

abri

c do

mai

ns w

ith d

ebri

s-ri

ch b

asal

ice

. N

ote

that

po

ssib

le S

1 vs

S3

eige

nval

ue

com

bina

tions

can

onl

y fa

ll w

ithin

the

whi

te tr

iang

ular

are

a of

the

plot

.

56

Page 67: Glaciotectonic Shear Zones: Surface Sample Bias and Clast ... · Daniel M. Davis, Advisor, Professor ... Long Island surface geology is diverse in glacial settings and glaciotectonic

movement based on the strongly preferred orientations of the long and short axes.A clast fabric is a bulk volume property requiring careful sampling acquisition and

statistical interpretation. Randomness of the sample is assumed when performingeigenanalysis and the resultant eigenvectors obtained from the analysis are constrained tobe orthogonal although the most and least preferred directions do not need to be normal toeach other. Furthermore, because nearly equal eigenvalues yield a girdle of unresolvedvectors making impossible a distinction of orthogonal directional preference, the eigenvalueS

3 found for long axes eigenanalysis is not necessarily the preferred direction (S

1) for the

short axes.

Surface Sample Bias

Since clast fabrics are a bulk volume property, one ideally measures all clasts in adefined volume of an outcrop. This, however, is usually not possible. More commonly,clast orientations recorded from, at, and near an outcrop surface plane are assumed to representstatistically the clast fabric of an associated unit volume (e.g., Benn and Ringrose, 2001).Clast orientations more likely will be preserved in a cohesive matrix containing a highproportion of clay and silt-size particles with relatively tightly packed pore spaces. Thebest outcrops for measuring clast orientation are quite hard, making them resistant to lateslumping and facilitating accurate determination of orientations. Unfortunately, hardnessalso makes deep excavation difficult. Therefore, measurements are often constrained to atand near exposed surfaces.

Investigators commonly sample as many clast orientations as possible in order tomaximize data sets and minimize random measurement errors, but do so with limitedexcavation. Such surficial (rather than volumetric) sampling can lead to a systematic samplingbias (e.g., Millar and Nelson, 2001a,b). Furthermore, the surface sampling bias can skewby a large degree (dependent on true eigenvalue) the eigenvalues reported in eigenvaluestudies of fabric shape. Eigenvectors determined by eigenanalysis are much less susceptibleto this bias than are eigenvalues especially if S

1>>S

2. The likelihood of sampling an individual

clast depends on the angle that its long-axis makes with the plane of an exposed outcropsurface. As a diamict outcrop erodes, more and more clasts are gradually exposed (Fig. 9).The long axis of a rod-like clast aligned parallel to the strike direction of an eroding outcropsurface will fall out of an outcrop significantly sooner after first exposure than would theequivalent clast with its long-axis direction oriented normal to the exposed surface. Thedetermination of clast fabric strength from clast orientations recorded at an outcrop surfacetherefore contains an intrinsic bias, because elongated clasts aligned parallel with an erodingoutcrop surface will be undersampled and elongated clasts oriented normal to the erodingsurface will be oversampled (Fig. 10). Clast orientation sampling can be termed volumetricif outcrop material is excavated to a distance much greater than the mean particle size of theclasts being measured. Absent such excavation, the bias inherent in surface sampling will

57

Page 68: Glaciotectonic Shear Zones: Surface Sample Bias and Clast ... · Daniel M. Davis, Advisor, Professor ... Long Island surface geology is diverse in glacial settings and glaciotectonic

X

Y

φ

φD

a

c

time

eroding outcrop surface

P (xp,yp)

N

n

Figure 9. A cross-section of an ellipsoidal clast in the (X, Y) plane being exposed with time by an eroding outcrop surface. The clast is centered at the origin of the (X, Y) plane and is positioned with its long-axis, a, parallel to the X-axis and its short-axis, c, parallel to the Y-axis. The eroding surface, a plane containing the Z-axis oriented normal to the (X, Y) plane, appears as a trace in the cross-section at some angle, φ, to

the Y-axis. As the outcrop surface begins to erode a point, P (xp,yp) is exposed on the ellipsoidal clast. The vector normal, N, and the unit vector, n, orignate at the point P (xp,yp). The length, D, is the shortest distance from the center of the ellipsoidal clast to the eroding surface. The magnitude of D, thus indicates how much erosion and time are required before the clast is half exposed. This is used an approximate indicator of the clasts exposed lifetime.

58

Page 69: Glaciotectonic Shear Zones: Surface Sample Bias and Clast ... · Daniel M. Davis, Advisor, Professor ... Long Island surface geology is diverse in glacial settings and glaciotectonic

mor

aine

air

Cla

sts

orie

nted

pa

ralle

l to

erod

ing

surf

ace

Cla

sts

orie

nted

no

rmal

to

erod

ing

surf

ace

Surf

ace

eros

ion

begi

ns

Exp

osed

sur

face

aft

er ti

me

AB

C

Fig

ure

10.

Thr

ee c

ross

sec

tions

of

a m

orai

ne e

rodi

ng f

rom

rig

ht t

o le

ft i

n a

time

orde

red

seri

es.

As

the

outc

rop

surf

ace

grad

ually

ero

des

clas

ts o

rien

ted

norm

al t

o th

e ex

pose

d su

rfac

e ar

e ov

er-s

ampl

ed, w

hile

cla

sts

orie

nted

par

alle

l to

the

sur

face

ar

e un

der-

sam

pled

. A

. E

rosi

on b

egin

s at

the

ver

tical

sur

face

of

an o

utcr

op s

low

ly e

xpos

ing

the

clas

ts o

f a

wea

kly

orie

nted

fa

bric

tha

t is

com

pose

d of

equ

ival

ent

shap

ed c

last

s. B

. Aft

er t

ime,

an

indi

vidu

al c

last

with

a l

ong-

axis

ori

enta

tion

clos

ely

para

llel w

ith th

e er

odin

g su

rfac

e fa

lls o

ut o

f th

e ou

tcro

p w

hile

the

othe

r cl

asts

rem

ain

embe

dded

in th

e m

orai

ne C

. As

eros

ion

cont

inue

s, a

noth

er c

last

fal

ls o

ut o

f th

e ou

tcro

p ex

posu

re. T

hree

cla

sts

orie

nted

app

roxi

mat

ely

norm

al t

o th

e er

odin

g su

rfac

e re

mai

n ca

ntile

veri

ng o

ut f

rom

the

mor

aine

, and

wou

ld b

e ov

er-s

ampl

ed if

rec

orde

d. T

he tw

o cl

asts

ori

enta

tions

that

had

bee

n or

ient

ed n

earl

y pa

ralle

l to

the

outc

rop

surf

ace

wou

ld b

e un

der-

sam

pled

sin

ce th

ese

orie

ntat

ions

cou

ld n

o lo

nger

be

reco

rded

.

59

Page 70: Glaciotectonic Shear Zones: Surface Sample Bias and Clast ... · Daniel M. Davis, Advisor, Professor ... Long Island surface geology is diverse in glacial settings and glaciotectonic

inevitably appear in the data. The magnitude of the surface sampling bias and its effect onthe apparent strength of a long-axis clast fabric is not only a function of the angle madebetween the preferred volumetric long-axis direction of the recorded clast orientations andthe orientation of the eroding outcrop surface but it is also a function of the average clastaspect ratio measured therein.

Sphere-like clasts have no bias, but they also convey no directional information.Elongate rods with aspect ratio approaching infinity (c≈b<<a) are the ideal clasts to indicatelineation fabric (e.g. Millar and Nelson, 2001b). Because of erosion, rods parallel to outcropsurface erode away almost as soon as they appear, but those with long axes normal to theoutcrop surface are preferentially exposed. Waterlain glacigenic sediments and flow tillsare deposits that are particularly vulnerable to the affect of sampling bias. These settingsproduce weak fabrics (e.g., Lawson, 1979) which could be misidentified as moderatelywell-developed fabrics if the sample of elongated clasts are limited to those visible at ornear the outcrop surface.

The probability of a clast being observed in situ depends upon the period of timeover which it is exposed at the surface. Clasts with their shortest axes normal to the erodingoutcrop surface will be removed by erosion quite soon after they are first exposed. Relativelyfew such clasts will be observed at any given time. Conversely, pebbles with their longaxes normal to the eroding outcrop surface will be exposed over an extended period timebefore they are removed. They will be relatively over-represented in field studies. I willassume that each clast is ellipsoidal and that it remains embedded in the outcrop until somefraction of its volume (here, I assume 1/2) is exposed (Fig. 9). Results seem to depend onlyweakly upon this assumption. The degree to which clasts of a given orientation are over- orunder-represented in a surficial sample can then be calculated as a function of the orientationof its axes with respect to the surface. If the erosion rate is either constant or random overtime, I can calculate this degree of preference simply by determining the projection of thepebble normal to the outcrop surface (the distance D in Figure 9).

The surface of an ellipsoidal clast is given by the equation.

[ x2/a2 + y2/b2 + z2/c2 ] = 1 (2)

I can define a function

F(x,y,z) = (1/a2) x2 + (1/b2) y2 + (1/c2) z2 - 1 (3)

such that the ellipsoid is the locus of points F(x,y,z)=0. Thus, N is a vector normal to theellipsoid at location (x,y,z).

N = (Nx, Ny, Nz) = 2 [ x /a2 , y /b2 , z /c2 ] = Kn = K( nx , ny , nz ) (4)

In general, N is not the unit normal n, but a normal vector of some length k. So

n = ( nx , ny , nz ) = 2/K [ x /a2 , y /b2 , z /c2 ] (5)

The vector P to a point on an ellipsoid of this family is

60

Page 71: Glaciotectonic Shear Zones: Surface Sample Bias and Clast ... · Daniel M. Davis, Advisor, Professor ... Long Island surface geology is diverse in glacial settings and glaciotectonic

P(x,y,z) = (Ka2nx /2 , Kb2ny /2 , Kc2nz /2 ) (6)

Because the point falls on the ellipsoid, this must satisfy eqn. 2. Therefore,

[ (Ka2nx /2)2/a2 + (Kb2ny /2)2/b2 + (Kc2nz /2)2 /2)2/c2 ] = 1 (7)

and

4/K2 = a2nx2 + b2ny2 + c2nz2 (8)so

K = 2 [ a2nx2 + b2ny2 + c2nz2 ]-1/2 (9)

The component of P in the n direction is simply the projection D of the clast in the directionof the outcrop surface, so D = n• P = (Ka2nx2/2) + (Kb2ny2/2) + (Kc2nz2/2)

D = (K/2) [ (a2nx2) + (b2ny2) + (c2nz2) ]

Or D = [ a2nx2 + b2ny2 + c2nz2 ]1/2 (10)

Quantifying the bias in limiting cases

I use numerical methods and “Monte Carlo” calculations to quantify the samplebias due to recording clast orientations from an outcrop surface. For simplicity, it is assumedthat clasts are sufficiently widely spaced so that their interactions can be ignored. Eachclast is treated as an ellipsoid of rotation, (either b=a or b=c), in which case D (eqn. 10)gives the relative exposure ‘duration’ of a clast. Larger clasts are obviously exposed longestbut for any given size clast, shape and orientation also matter. For more nearly spheroidalclasts (a≈c), D is less strongly a function of axial orientation, but for geologically significantaspect ratios a>>c, D is a rather strong function of axial orientation leading to a significantsample bias.

In Monte Carlo calculations, I randomly ‘create’ thousands of rod-like clasts pernumerical experiment. For each experiment I assume a uniform clast size and aspect ratio(a/c), as well as a prescribed true anisotropy in clast orientation introduced by modifyingthe random statistics to produce a ‘preferred’ fabric. I then define an outcrop surfaceorientation anywhere from normal to parallel to the fabric axis. I calculate the true eigenvaluesand eigenvectors of this synthetic clast data set, as if observed by deep excavation.Simultaneously, I carry out the same calculations for the population of pebbles exposed atan outcrop surface, using D (eqn. 10) for each pebble to determine its relative likelihood of

61

Page 72: Glaciotectonic Shear Zones: Surface Sample Bias and Clast ... · Daniel M. Davis, Advisor, Professor ... Long Island surface geology is diverse in glacial settings and glaciotectonic

appearing on the surface. For each experiment, I calculate for a population of 5000 pebblesand compare eigenvalues: the true S

1, S

2, S

3 vs. the ‘observed’ S

1', S

2', S

3'.

As a limiting case, I performed a set of numerical experiments with a true eigenvalueisotropic distribution (S

1 = S

2= S

3 = 1/3) by numerically generating clasts of aspect ratio a/c

approaching infinity (thin rods). This produced an ‘observed’ fabric of S1 = 0.5 and S

2= S

3

= 0.25. Thus, even a totally isotropic distribution composed of elongated clasts can lookanisotropic. The effect of the bias on the fabric depends on the angular separation (θ)between the most preferred eigenvector direction of the ‘true’ fabric with the orientation ofthe sampling surface. In addition, the effect is smaller with smaller a:c aspect ratio (Fig. 11)but still produces a significant sampling bias on clasts with realistic aspect ratios of a:c ≈2.5 (Fig. 12). The results of surface sampling ‘experiments’ show that the sampling biashas very little impact on ‘observed’ eigenvectors of strong fabrics (Fig. 13), which remainfairly stable even though the ‘observed’ eigenvalues are distributed widely. Moderate andweakly preferred surface sampled fabrics can have extreme observational errors in calculatedeigenvector direction (Fig. 14). These large errors are reproducible and cast serious doubton the accuracy of interpreted eigenvector directions that result from clast orientation datasets measured at poorly excavated field sites. ‘True’ eigenvalues of clast fabrics can not bereproduced from surface sampled clast orientations (Fig. 13,14, Table 2, Appendix A) but insome instances the eigenvalue ratios of both ‘true’ and ‘observed’ eigenvalues areserendipitously about equal, due to trade-offs among sets of eigenvalue combinations.

Implications for field studies

The sampling bias associated with clast axes measured in situ has very little impact onreliable eigenvector determination for strong fabrics. This bias causes deviations from truefabric directions (by a few degrees) that are smaller than the typical uncertainties due tovarious inevitable observational errors. The effect of the bias on direction is more pronouncedfor increasingly weak fabrics but is not large (tens of degrees) except for those fabricswhich very nearly isotropic. Extremely weak fabrics are inherently variable, giving littlepreferred orientation information, so they would not typically be used as directional indicatorswhen reconstructing former ice sheet movement even if they were not effected by such abias.

The sampling bias effect always skews the true eigenvalue distribution. Nearlyisotropic distributions can be falsely perceived as only a moderate lineated fabric if observedat a surface that is nearly parallel to the preferred clast long axis. Likewise, moderatelyclustered lineations can be misidentified either as nearly isotropic fabrics or as fabrics ofgreater than their true strength. Variability in flow strength and direction is undoubtedlyresponsible for the large eigenvalue range found for the flow till domain (Fig. 15). Thesurface sampling bias is by itself, capable of producing spurious results that vary by amountslarger than typically cited sizes of genetic till domain ranges (e.g., Dowdeswell et al., 1985).Figure 15, illustrates the effective eigenvalue range produced by the bias on several data

62

Page 73: Glaciotectonic Shear Zones: Surface Sample Bias and Clast ... · Daniel M. Davis, Advisor, Professor ... Long Island surface geology is diverse in glacial settings and glaciotectonic

Fig

ure

11. (

S 1,

S 3)

eige

nval

ue p

lot

of c

ompu

ter

gene

rate

d ra

ndom

cla

st f

abri

c ei

genv

alue

dat

a se

ts f

or v

olum

e m

easu

red

fabr

ics

(sin

gle

data

poi

nts)

alo

ng w

ith s

urfa

ce s

ampl

e bi

as r

elat

ed e

igen

valu

e ob

serv

atio

n er

rors

. T

hese

eig

enva

lue

obse

rvat

ion

erro

rs a

re a

fun

ctio

n of

cla

st a

spec

t ra

tio (

a.r

= a

/c)

and

angu

lar

sepa

ratio

n, θ

, be

twee

n th

e m

ost

pref

erre

d ei

genv

ecto

r di

rect

ion

of t

he v

olum

e m

easu

red

fabr

ic a

nd t

he o

rien

tatio

n of

the

sam

plin

g su

rfac

e.

The

bia

s re

late

d ob

serv

atio

n er

rors

plo

t as

indi

vidu

al c

urve

s lin

king

eig

enva

lue

data

poi

nts

calc

ulat

ed w

ith v

alue

s of

θ =

90°,

60°,

45°,

30°,

and

0° (s

mal

l do

ts f

rom

lef

t to

rig

ht o

n ea

ch c

urve

).

The

asp

ect

ratio

for

eac

h cu

rve

link

data

poi

nts

that

are

ind

icat

ed b

y sm

all

blac

k do

ts f

or a

.r. =

5.0

and

sm

all

colo

red

dots

for

a.r.

= 2

.5.

In

addi

tion,

we

plot

com

pute

r ge

nera

ted

clas

t fa

bric

da

ta in

ord

er to

test

the

robu

stne

ss o

f fi

eld

data

obt

aine

d by

sur

face

sam

plin

g th

e st

ratif

ied

diam

ict u

nit a

t Ditc

h Pl

ains

.

63

Page 74: Glaciotectonic Shear Zones: Surface Sample Bias and Clast ... · Daniel M. Davis, Advisor, Professor ... Long Island surface geology is diverse in glacial settings and glaciotectonic

Fig

ure

12. (

S 1,

S 3)

eige

nval

ue p

lot

pres

entin

g th

e a.

r. =

2.5

com

pute

r ge

nera

ted

rand

om c

last

fab

ric

eige

nval

ue d

ata

sets

of

figu

re 1

1, f

or v

olum

e m

easu

red

fabr

ics

(sin

gle

data

poi

nts)

alo

ng w

ith s

urfa

ce s

ampl

e bi

as r

elat

ed e

igen

valu

e ob

serv

atio

n er

rors

. T

he b

ias

rela

ted

obse

rvat

ion

erro

rs p

lot

as i

ndiv

idua

l cu

rves

lin

king

eig

enva

lue

data

poi

nts

calc

ulat

ed w

ith v

alue

s of

θ

= 90

°, 60

°, 45

°, 30

°, an

d 0°

(sm

all d

ots

from

left

to r

ight

on

each

cur

ve).

64

Page 75: Glaciotectonic Shear Zones: Surface Sample Bias and Clast ... · Daniel M. Davis, Advisor, Professor ... Long Island surface geology is diverse in glacial settings and glaciotectonic

°

Fig

ure

13. D

etai

l of

(S1,

S 3)

eige

nval

ue p

lot s

how

n in

fig

ure

12, a

long

with

eig

enve

ctor

obs

erva

tion

erro

rs.

In

stro

ng f

abri

cs, s

urfa

ce s

ampl

ed e

igen

vect

ors

are

appr

oxim

atel

y eq

ual t

o th

e tr

ue p

opul

atio

n (v

olum

e m

easu

red)

ei

genv

ecto

rs.

Thu

s, ic

e fl

ow d

irec

tion

can

be in

ferr

ed f

rom

eig

enve

ctor

dir

ectio

ns o

f st

rong

cla

st f

abri

cs.

65

Page 76: Glaciotectonic Shear Zones: Surface Sample Bias and Clast ... · Daniel M. Davis, Advisor, Professor ... Long Island surface geology is diverse in glacial settings and glaciotectonic

.33

.4

0

.5

0

.60

.70

S 3

S 1S 1

S 2=

.20

.10

0.0

Fig

ure

14. D

etai

l of

(S1,

S3)

eig

enva

lue

plot

sho

wn

in f

igur

e 12

, alo

ng w

ith e

igen

vect

or

obse

rvat

ion

erro

rs.

In

fab

rics

of

mod

est

stre

ngth

, su

rfac

e sa

mpl

ed e

igen

vect

ors

are

sign

ific

antly

dis

plac

ed f

rom

the

true

pop

ulat

ion

(vol

ume

mea

sure

d) e

igen

vect

or.

S2

3=

S

Obs

erva

tion

erro

rO

bser

vatio

n er

ror

Out

crop

ori

enta

tion

Obs

erva

tion

erro

rO

bser

vatio

n er

ror

1°±1

°O

utcr

op o

rien

tatio

n

Gen

erat

ed d

ata

(vol

ume

mea

sure

d fa

bric

)

8484°±

3°90

°

90°

60°

60°

45°

45°

30°

30°

41 41°±

3°28 28

°±2° 1919

°±2°

0°±1

°

0°±0

°5°

±1°

8°±1

°9°

±0°

66

Page 77: Glaciotectonic Shear Zones: Surface Sample Bias and Clast ... · Daniel M. Davis, Advisor, Professor ... Long Island surface geology is diverse in glacial settings and glaciotectonic

Table 2. Computer generated random clast fabric data sets for volume measured fabrics (eigenvaluesand eigenvectors) along with observational errors and standard deviations due to the surface samplingbias. Surface measured eigenvalues and observation errors are based on clast aspect ratio, a/c, (a.r.= 2.5 and a.r. = 5.0) and the angular separation, θ, (0°, 30°, 45°, 60°, and 90°) between the preferredeigenvector direction of the volume measured fabric and the orientation of the outcrop surfaceresponsible for creating the sample bias.

s1 s3 s1 s3 θ (°) AVG (˚) ST DEV (˚) AVG (˚) ST DEV (˚)0.38 0.30 0.47 0.26 0 1.2 1.2 1.2 1.00.38 0.30 0.46 0.27 30 18.7 2.4 21.6 1.90.38 0.30 0.44 0.27 45 29.9 2.6 32.8 2.70.38 0.30 0.42 0.27 60 42.4 2.9 47.7 4.00.38 0.30 0.40 0.27 90 85.1 3.5 85.7 3.40.40 0.24 0.49 0.21 0 3.9 2.0 1.8 3.70.40 0.24 0.48 0.21 30 24.1 5.1 12.3 6.40.40 0.24 0.47 0.21 45 36.7 4.8 18.8 4.50.40 0.24 0.46 0.21 60 52.4 5.6 23.1 4.40.40 0.24 0.45 0.21 90 84.0 4.8 12.8 10.00.40 0.20 0.49 0.18 0 1.1 2.2 4.1 3.50.40 0.20 0.47 0.19 30 8.1 1.7 25.8 5.80.40 0.20 0.45 0.20 45 13.5 5.9 40.5 5.00.40 0.20 0.42 0.23 60 15.1 4.3 55.7 6.40.40 0.20 0.37 0.27 90 7.2 19.9 84.7 3.80.45 0.11 0.54 0.10 0 39.7 26.1 42.5 29.10.45 0.11 0.54 0.10 30 46.3 28.3 51.9 24.90.45 0.11 0.54 0.10 45 50.8 25.6 43.8 24.20.45 0.11 0.54 0.10 60 37.7 26.6 42.9 29.20.45 0.11 0.54 0.10 90 51.9 23.4 32.8 21.90.50 0.20 0.59 0.17 0 0.3 0.5 0.5 0.50.50 0.20 0.57 0.17 30 11.4 0.5 14.1 0.90.50 0.20 0.54 0.17 45 17.2 0.7 21.8 0.60.50 0.20 0.51 0.18 60 22.4 1.0 31.7 1.20.50 0.20 0.43 0.19 90 4.4 2.7 84.0 4.20.50 0.15 0.59 0.15 0 0.2 0.4 0.3 0.50.50 0.15 0.57 0.15 30 4.5 0.5 6.2 0.40.50 0.15 0.55 0.15 45 6.7 0.5 9.4 0.60.50 0.15 0.52 0.15 60 7.6 0.6 12.4 0.50.50 0.15 0.46 0.15 90 0.6 0.5 0.7 0.80.50 0.10 0.59 0.09 0 1.2 1.1 1.5 0.80.50 0.10 0.58 0.09 30 18.7 1.8 21.4 1.80.50 0.10 0.56 0.09 45 28.3 1.9 32.6 2.50.50 0.10 0.53 0.09 60 41.2 3.1 47.4 2.60.50 0.10 0.49 0.09 90 84.2 3.1 86.3 2.80.51 0.00 0.60 0.00 0 39.5 26.5 49.3 26.10.51 0.00 0.60 0.00 30 35.3 25.8 46.3 25.80.51 0.00 0.60 0.00 45 53.4 24.8 54.9 28.50.51 0.00 0.60 0.00 60 46.1 25.5 52.9 24.10.51 0.00 0.60 0.00 90 43.9 28.2 43.7 24.10.55 0.05 0.64 0.04 0 0.9 0.9 0.9 0.70.55 0.05 0.62 0.05 30 15.6 1.0 18.2 1.10.55 0.05 0.60 0.05 45 24.5 1.7 28.8 1.30.55 0.05 0.57 0.05 60 33.9 2.1 42.2 2.30.55 0.05 0.50 0.05 90 83.1 6.1 87.2 2.10.60 0.20 0.68 0.16 0 0.0 0.0 0.1 0.30.60 0.20 0.66 0.17 30 5.4 0.5 6.7 0.50.60 0.20 0.63 0.17 45 7.7 0.5 10.5 0.50.60 0.20 0.60 0.18 60 9.1 0.3 14.5 0.60.60 0.20 0.54 0.19 90 0.4 0.5 1.1 0.90.60 0.15 0.68 0.15 0 0.0 0.0 0.2 0.40.60 0.15 0.66 0.15 30 3.8 0.4 5.0 0.20.60 0.15 0.64 0.15 45 5.6 0.5 7.9 0.30.60 0.15 0.60 0.15 60 6.7 0.5 10.4 0.50.60 0.15 0.54 0.15 90 0.2 0.4 0.7 0.60.60 0.10 0.68 0.08 0 0.2 0.4 0.3 0.40.60 0.10 0.66 0.09 30 9.1 0.4 10.8 0.40.60 0.10 0.63 0.09 45 13.4 0.5 17.4 0.60.60 0.10 0.59 0.09 60 16.7 0.9 24.7 1.00.60 0.10 0.51 0.10 90 1.4 1.0 15.2 11.60.65 0.15 0.72 0.15 0 0.3 0.4 0.2 0.40.65 0.15 0.71 0.15 30 4.8 0.4 6.0 0.40.65 0.15 0.68 0.15 45 6.9 0.3 9.5 0.50.65 0.15 0.64 0.15 60 8.2 0.4 12.9 0.50.65 0.15 0.58 0.15 90 0.4 0.5 1.0 0.6

volume surface obs. error (a.r. = 2.5) obs. error (a.r. = 5.0)

67

Page 78: Glaciotectonic Shear Zones: Surface Sample Bias and Clast ... · Daniel M. Davis, Advisor, Professor ... Long Island surface geology is diverse in glacial settings and glaciotectonic

s1 s3 s1 s3 θ (°) AVG (˚) ST DEV (˚) AVG (˚) ST DEV (˚)0.65 0.05 0.73 0.05 0 0.0 0.0 0.0 0.00.65 0.05 0.72 0.05 30 1.0 0.0 1.3 0.40.65 0.05 0.70 0.05 45 1.8 0.4 2.2 0.40.65 0.05 0.68 0.05 60 2.0 0.0 3.2 0.40.65 0.05 0.63 0.05 90 0.1 0.3 0.3 0.40.70 0.15 0.77 0.11 0 0.0 0.0 0.1 0.20.70 0.15 0.75 0.12 30 3.3 0.4 4.0 0.30.70 0.15 0.73 0.13 45 4.7 0.5 6.6 0.50.70 0.15 0.70 0.14 60 5.7 0.5 8.7 0.50.70 0.15 0.64 0.15 90 0.1 0.3 0.4 0.60.70 0.10 0.77 0.08 0 0.2 0.4 0.1 0.30.70 0.10 0.75 0.08 30 4.3 0.5 5.8 0.40.70 0.10 0.73 0.08 45 6.8 0.4 8.9 0.40.70 0.10 0.69 0.09 60 8.0 0.4 12.4 0.60.70 0.10 0.62 0.10 90 0.2 0.4 0.9 0.40.70 0.06 0.77 0.05 0 0.2 0.4 0.3 0.50.70 0.06 0.75 0.05 30 5.7 0.5 7.1 0.20.70 0.06 0.72 0.05 45 8.2 0.4 11.0 0.40.70 0.06 0.68 0.06 60 9.8 0.6 15.1 0.60.70 0.06 0.61 0.06 90 0.3 0.5 1.2 0.80.70 0.00 0.77 0.00 0 0.2 0.4 0.5 0.50.70 0.00 0.75 0.00 30 7.7 0.5 9.4 0.60.70 0.00 0.72 0.00 45 11.1 0.3 14.6 0.50.70 0.00 0.68 0.00 60 13.8 0.6 20.4 0.60.70 0.00 0.60 0.00 90 0.8 0.8 3.5 2.70.75 0.05 0.81 0.04 0 0.0 0.0 0.0 0.00.75 0.05 0.80 0.04 30 1.0 0.0 1.2 0.40.75 0.05 0.79 0.05 45 1.4 0.5 2.0 0.00.75 0.05 0.77 0.05 60 1.9 0.4 3.0 0.00.75 0.05 0.72 0.07 90 0.0 0.0 0.1 0.20.79 0.06 0.84 0.04 0 0.2 0.4 0.1 0.30.79 0.06 0.83 0.05 30 2.9 0.3 3.9 0.40.79 0.06 0.81 0.05 45 4.1 0.3 5.8 0.40.79 0.06 0.78 0.05 60 5.0 0.3 7.7 0.50.79 0.06 0.72 0.06 90 0.2 0.4 0.6 0.50.80 0.10 0.85 0.07 0 0.1 0.2 0.1 0.20.80 0.10 0.84 0.08 30 2.0 0.2 2.3 0.50.80 0.10 0.82 0.08 45 2.9 0.4 3.8 0.40.80 0.10 0.80 0.09 60 3.1 0.2 5.1 0.20.80 0.10 0.75 0.11 90 0.1 0.2 0.5 0.50.80 0.03 0.85 0.03 0 0.0 0.0 0.0 0.00.80 0.03 0.83 0.03 30 3.1 0.3 4.0 0.30.80 0.03 0.81 0.03 45 4.6 0.5 6.2 0.40.80 0.03 0.78 0.03 60 5.7 0.5 8.7 0.50.80 0.03 0.72 0.04 90 0.3 0.5 0.8 0.40.90 0.05 0.93 0.04 0 0.0 0.0 0.0 0.00.90 0.05 0.92 0.04 30 1.0 0.0 1.0 0.00.90 0.05 0.91 0.04 45 1.0 0.0 1.9 0.40.90 0.05 0.90 0.05 60 1.5 0.5 2.1 0.20.90 0.05 0.87 0.06 90 0.0 0.0 0.2 0.40.90 0.02 0.93 0.01 0 0.1 0.2 0.0 0.00.90 0.02 0.92 0.01 30 1.2 0.4 1.9 0.30.90 0.02 0.91 0.02 45 2.0 0.0 2.7 0.50.90 0.02 0.89 0.02 60 2.4 0.5 3.7 0.50.90 0.02 0.85 0.02 90 0.0 0.0 0.4 0.50.94 0.03 0.96 0.02 0 0.0 0.0 0.0 0.00.94 0.03 0.95 0.02 30 0.5 0.5 0.5 0.50.94 0.03 0.95 0.02 45 1.0 0.2 1.0 0.00.94 0.03 0.94 0.03 60 1.0 0.0 1.0 0.00.94 0.03 0.92 0.03 90 0.0 0.0 0.1 0.20.98 0.01 0.98 0.01 0 0.0 0.0 0.0 0.00.98 0.01 0.98 0.01 30 0.0 0.0 0.0 0.00.98 0.01 0.98 0.01 45 0.0 0.0 0.0 0.00.98 0.01 0.98 0.01 60 0.0 0.0 0.1 0.30.98 0.01 0.97 0.01 90 0.0 0.0 0.0 0.0

obs. error (a.r. = 5.0)volume surface obs. error (a.r. = 2.5)

68

Page 79: Glaciotectonic Shear Zones: Surface Sample Bias and Clast ... · Daniel M. Davis, Advisor, Professor ... Long Island surface geology is diverse in glacial settings and glaciotectonic

Fig

ure

15. (

S 1, S

3) e

igen

valu

e pl

ot o

f gl

acig

enic

dia

mic

t fa

bric

dom

ains

by

stan

dard

dev

iatio

n el

lipse

s (e

.g.,

Dow

desw

ell

et a

l., 1

985)

. I

n ad

ditio

n, t

he p

lot

cont

ains

the

a.r.

= 2

.5 c

ompu

ter

gene

rate

d ra

ndom

cla

st f

abri

c ei

genv

alue

dat

a se

ts

show

n in

fig

ure

12,

for

volu

me

mea

sure

d fa

bric

s (s

ingl

e da

ta p

oint

s) a

long

with

sur

face

sam

ple

bias

rel

ated

eig

enva

lue

obse

rvat

ion

erro

rs.

The

sur

face

sam

ple

bias

ob

serv

atio

n er

rors

plo

t as

ind

ivid

ual

curv

es

with

ran

ge i

n S 1

and

S3

mag

nitu

des

prod

uced

by

the

sam

ple

bias

that

oft

en e

xcee

ds th

e st

anda

rd c

ited

size

s of

gla

cige

nic

diam

ict f

abri

c do

mai

ns.

69

Page 80: Glaciotectonic Shear Zones: Surface Sample Bias and Clast ... · Daniel M. Davis, Advisor, Professor ... Long Island surface geology is diverse in glacial settings and glaciotectonic

points with aspect ratio a:c = 2.5 and how the magnitude of the eigenvalue bias is largerthan the standard deviation ellipses of genetic glacial diamict domains. Thus, ‘observed’eigenvalues vary greatly because of the surface sampling bias and cannot be relied upon todistinguish genetic glacial diamicts.

Conclusions

Studying glacigenic sediments using clast fabric analysis allows quantification ofotherwise descriptive fabrics. Eigenanalysis results of short-axis and long-axis orientationsobtained from the same set of clasts may establish a more complete picture of strain inglacigenic settings. Clast measurement in a poorly excavated outcrop produces a samplingbias in favor of clasts oriented normal to outcrop surface. The bias increases in severity forthose rod-like clasts which are the best suited to field analysis. This sampling bias is afunction of the orientation of the outcrop surface with respect to the true fabric direction. Ihave shown, through simple calculation and randomly generated clast populations, the degreeto which the surface sampling bias effects the true fabric. Such a bias can affect the perceivedfabric strength enough to distort interpretation dramatically. Fortunately, the effect uponfabric orientation for strong fabrics is generally smaller than random field measurementerrors and therefore can often be ignored. Orientation preferences of strong fabrics arereproducible despite the effect of the surface sampling, but interpretation of glacial settingsor the discrimination of genetic till-type using any set of surface observed eigenvalues shouldbe avoided. The robust long-axis eigenvector orientation found for the recorded clastswithin the stratified diamict unit of Ditch Plains is suggestive of well-developed shear fromthe NNW, but the mode of emplacement for the diamict still remains speculative. Under thebest of circumstance, distinguishing genetic till types by glacial diamict fabric ‘domains’should only be done under limited, local conditions (e.g., Kjaer and Krüger, 1998; Bennettet al., 1999). My results restrict the utility of such analyses even further. The effects of thesurface sampling bias are averted with careful sampling and interpretation.

70

Page 81: Glaciotectonic Shear Zones: Surface Sample Bias and Clast ... · Daniel M. Davis, Advisor, Professor ... Long Island surface geology is diverse in glacial settings and glaciotectonic

References

Alley, R.B., Cuffey, K.M., Evenson, E.B., Strasser, J.C., Lawson, D.E., and Larson, G.J.,How glaciers entrain and transport basal sediment: physical constraints, Journal ofQuaternary Science, 16, 1017-1038, 1997.

Benn, D.I., Fabric shape and the interpretation of sedimentary fabric data, Journal ofSedimentary Petrology, A64, 910-915, 1994.

Benn, D.I., Fabric signature of subglacial till deformation, Breidamerkurjökull, Iceland,Sedimentology, 42, 735-747, 1995.

Benn, D.I., and D.J. A. Evans, The interpretation and classification of subglacially-deformedmaterials, Quaternary Science Reviews, 15, 23-52, 1996.

Benn, D.I., and Evans D.J.A., Glaciers & Glaciation, 734 p., Arnold Publishers, New York,1998.

Benn, D.I., and Ringrose, T.J., Random variation of fabric eigenvalues: implications for theuse of A-axis fabric data to differentiate till facies, Earth Surface Processes andLandforms, 26, 295-306, 2001.

Bennett, M.R., Waller, R.I., Glasser, N.F., Hambrey, M.J., and Huddart, D., Glacigenicclast fabrics: genetic fingerprint or wishful thinking? Journal of Quaternary Science,14, 125-135, 1999.

Boulton, G.S., Boulder shapes and grain-size distributions of debris as indicators of transportpaths through a glacier and till genesis, Sedimentology, 6, 773-799, 1978.

Boulton, G.S., Theory of glacial erosion, transport and deposition as a consequence ofsubglacial sediment deformation, Journal of Glaciology, 42, 43-62, 1996.

Dowdeswell, J.A., Hambrey, M.J., and Wu R., A comparison of clast fabric and shape inlate Precambrian and modern glacigenic sediments, Journal of Sedimentary Petrology,55, 691-704, 1985.

Dowdeswell, J.A., and Sharp, M.J. Characterization of pebble fabrics in modern terrestrialglacigenic sediments, Sedimentology, 33, 699-710, 1986.

Dreimanis, A., Need for three-dimensional analysis of structural elements in glacial depositsfor determination of direction of glacier movement, Geological Society of America,Special Paper 337, 59-67, 1999.

Ham, N.R., and Mickelson, D.M., Basal till fabric and deposition at Burroughs Glacier,Glacier Bay, Alaska, Geological Society of America Bulletin, 106, 1552-1559, 1994.

Hart, J.K., Till fabric associated with deformable beds, Earth Surface Processes andLandforms, 19, 15-32, 1994.

Hart, J.K., The deforming bed/debris-rich basal ice continuum and its implications for theformation of glacial landforms (flutes) and sediments (melt-out till), Quaternary ScienceReviews, 17, 737-754, 1998.

Hicock, S.R., Genetic till prism, Geology, 18, 517-519, 1990.Hicock, S.R., and Dreimanis, A., Deformation till in the Great-Lakes region - implications

for rapid flow along the south-central margin of the Laurentide Ice Sheet, CanadianJournal of Earth Sciences, 29, 1565-1579, 1992.

Hicock, S.R., Goff, J.R., Lian, O.B., and Little, E.C., On the interpretation of subglacial tillfabric, Journal of Sedimentary Research, 66, 928-934, 1996.

Hooyer T.S., and Iverson, N.R., Clast-fabric development in a shearing granular material:

71

Page 82: Glaciotectonic Shear Zones: Surface Sample Bias and Clast ... · Daniel M. Davis, Advisor, Professor ... Long Island surface geology is diverse in glacial settings and glaciotectonic

Implications for subglacial till and fault gouge, Geological Society of America Bulletin,112, 683-692, 2000.

Jeffery, G.B., The motion of ellipsoidal particles immersed in a viscous fluid, Royal Societyof London Proceedings, Ser. A, 102, 161-179, 1922.

Karlstrom, E.T., Fabric and origin of multiple diamictons within the pre-Illinoian KennedyDrift east of Waterton-Glacier International Peace Park, Alberta Canada, and Montana,USA, Geological Society of America Bulletin, 112, 1496-1506, 2000.

Kjær, K.H., Demidov, I., Houmark-Nielsen, M., and Larsen, E., Distinguishing betweentills from Valdaian ice sheets in the Arkhangelsk region, Northwest Russia, Globaland Planetary Change, 31, 201-214, 2001.

Kjær, K.H., and Krüger, J., Does clast size influence fabric strength?, Journal of SedimentaryPetrology, 68, 746-749, 1998.

Klein, E., and Davis, D.M., 2001, Long Island clast orientations and what they till us: p.35-40., In “Geology of Long Island and Metropolitan New York”, April 21, 2001, LongIsland Geologists, State University of New York, p.128.

Klein, E.C., Meyers, W.J., and Davis, D.M., 1998, Deciphering the origin of diamict depositsat Ditch Plains, Long Island: p.54-63., In “Geology of Long Island and MetropolitanNew York”, April 18, 1998, Long Island Geologists, State University of New York,p.161.

Krüger, J., Till fabric in relation to direction of ice movement, a study from the FakseBanke, Denmark, Geografisk Tidsskrift, 69, 133-170, 1970.

Krüger, J., and Kjær, K.H., A data chart for field description and genetic interpretation ofglacial diamicts and associated sediments – with examples from Greenland, Iceland,and Denmark, Boreas, 28, 386-402, 1999.

Larsen, E., Lyså, A., Demidov, I., Funder, S., Houmark-Nielsen, M., Kjær, K.H., and Murray,A.S., Age and extent of the Scandinavian ice sheet in northwest Russia, Boreas, 28,115-132, 1999.

Lawson, D.E., A comparison of the pebble orientations in and deposits of the MatanuskaGlacier, Alaska, Journal of Geology, 87, 629-645, 1979.

Lindsay, J.F., The development of clast fabric in mudflows, Journal of Sedimentary Petrology,38, 1242-1253, 1968.

Mark, D.A., Analysis of axial orientation data, including till fabrics, Geological Society ofAmerica Bulletin, 84, 1369-1374, 1973.

Mark, D.A., On the interpretation of till fabrics, Geology, 2, 101-104, 1974.Millar, S.W.S., and Nelson, F.E., Sampling-surface orientation and clast macrofabric in

periglacial colluvium, Earth Surface Processes and Landforms, 26, 523-529, 2001a.Millar, S.W.S., and Nelson, F.E., Clast fabric in relict periglacial colluvium, Salamanca re-

entrant, southwestern New York, USA, Geografiska Annaler, 83A, 145-156, 2001b.Rappol, M., Clast-fabric strength in tills and debris flows compared for different

environments, Geologie en Mijnbouw, 64, 327-332, 1985.Rijsdijk, K.F., Density-driven deformation structures in glacigenic consolidated diamicts:

examples from Traeth Y Mwnt, Cardiganshire, Wales, U.K., Journal of SedimentaryResearch, 71, 122-135, 2001.

Ringrose, T.J., and Benn, D.I., Confidence regions for fabric shape diagrams, Journal ofStructural Geology, 12, 1527-1536, 1997.

72

Page 83: Glaciotectonic Shear Zones: Surface Sample Bias and Clast ... · Daniel M. Davis, Advisor, Professor ... Long Island surface geology is diverse in glacial settings and glaciotectonic

Sneed, E.D., and Folk, R.L., Pebbles in the lower Colorado River, Texas a study in particlemorphogenesis, Journal of Geology, 66, 114-150, 1958.

Woodcock, N.H., Specification of fabric shapes using eigenvalue method, Geological Societyof America Bulletin, 88, 1231-1236, 1977.

Zingg, T.H., 1935 in Pettijohn, F.J., Sedimentary Rocks. 628 p., Harper and Row, New York, 1975.

73

Page 84: Glaciotectonic Shear Zones: Surface Sample Bias and Clast ... · Daniel M. Davis, Advisor, Professor ... Long Island surface geology is diverse in glacial settings and glaciotectonic

74

App

endi

x A

. C

ompi

latio

n of

all

com

pute

r ge

nera

ted

rand

om c

last

fab

ric

data

set

s fo

r vo

lum

e m

easu

red

fabr

ics

(eig

enva

lues

and

eig

enve

ctor

s)

alon

g w

ith

obse

rvat

iona

l er

rors

(an

gula

r di

spla

cem

ents

fro

m v

olum

e pr

efer

red

eige

nvec

tor

orie

ntat

ions

), s

tand

ard

devi

atio

ns,

max

imum

ob

serv

atio

n er

rors

, oth

er r

elat

ed p

aram

eter

s du

e to

the

sur

face

sam

plin

g bi

as.

Surf

ace

mea

sure

d ei

genv

alue

com

bina

tions

and

obs

erva

tion

erro

rs

are

base

d on

cla

st a

spec

t ra

tio,

a/c,

(a.

r. =

2.5

and

a.r.

= 5

.0)

and

the

angu

lar

sepa

ratio

n, θ

, (0

°, 30

°, 45

°, 60

°, an

d 9

0°)

betw

een

the

volu

me

mea

sure

d pr

efer

red

eige

nvec

tor

dire

ctio

n an

d th

e or

ient

atio

n of

the

outc

rop

surf

ace

resp

onsi

ble

for

crea

ting

the

sam

ple

bias

.

aspe

ctvo

lsu

r su

r(s1

/s3)

/ol

d K

ang.

dis.

AV

G +

ang.

dis.

ang.

dis.

ratio

( a

/c)

θ (°

) s1

s2s3

s1s2

s3 (

s1/s

3)(s

1/s3

)vo

l(s1

/s3)

s2/

s2+s

3M

AX

(˚)

ST D

EV

(˚)

AV

G (

˚)ST

DE

V (

˚)2.

50

0.38

10.

314

0.30

50.

470

0.26

80.

262

1.25

1.80

1.44

0.50

75

2.4

1.2

1.2

2.5

300.

382

0.31

30.

304

0.45

80.

276

0.26

61.

261.

731.

370.

507

2321

.018

.72.

42.

545

0.38

20.

313

0.30

50.

443

0.28

90.

269

1.26

1.65

1.31

0.50

735

32.5

29.9

2.6

2.5

600.

382

0.31

30.

304

0.42

50.

306

0.27

01.

261.

581.

250.

507

4845

.342

.42.

92.

590

0.38

30.

313

0.30

40.

395

0.33

30.

272

1.26

1.46

1.16

0.50

790

88.5

85.1

3.5

2.5

00.

379

0.37

00.

251

0.46

30.

319

0.21

81.

512.

121.

400.

596

8772

.451

.221

.22.

530

0.38

00.

369

0.25

10.

465

0.31

70.

219

1.52

2.13

1.40

0.59

590

66.3

36.4

29.9

2.5

450.

379

0.36

90.

252

0.46

30.

317

0.21

91.

502.

111.

400.

594

8773

.246

.726

.52.

560

0.37

70.

370

0.25

30.

463

0.31

70.

220

1.49

2.10

1.41

0.59

488

70.7

43.0

27.7

2.5

900.

379

0.37

00.

250

0.46

50.

317

0.21

81.

522.

131.

410.

597

7959

.934

.125

.82.

50

0.40

10.

358

0.24

10.

490

0.30

20.

208

1.66

2.35

1.41

0.59

88

5.8

3.9

2.0

2.5

300.

400

0.35

80.

242

0.48

10.

309

0.21

01.

652.

291.

390.

597

3629

.224

.15.

12.

545

0.40

00.

360

0.24

00.

472

0.31

80.

209

1.67

2.26

1.35

0.60

047

41.4

36.7

4.8

2.5

600.

399

0.35

80.

243

0.46

00.

328

0.21

21.

652.

171.

320.

596

6658

.052

.45.

62.

590

0.40

00.

358

0.24

20.

447

0.34

00.

213

1.65

2.10

1.27

0.59

790

88.7

84.0

4.8

2.5

00.

405

0.39

30.

203

0.49

00.

333

0.17

72.

002.

771.

380.

660

103.

31.

12.

22.

530

0.40

30.

393

0.20

40.

473

0.33

70.

190

1.98

2.50

1.26

0.65

910

9.8

8.1

1.7

2.5

450.

404

0.39

50.

202

0.45

10.

345

0.20

32.

002.

221.

110.

662

3819

.413

.55.

92.

560

0.40

30.

393

0.20

40.

418

0.35

40.

228

1.98

1.83

0.93

0.65

925

19.3

15.1

4.3

2.5

900.

403

0.39

30.

203

0.36

90.

360

0.27

21.

981.

360.

680.

659

9027

.17.

219

.92.

50

0.44

00.

284

0.27

60.

529

0.23

80.

232

1.60

2.28

1.43

0.50

81

0.8

0.3

0.5

2.5

300.

441

0.28

40.

275

0.51

20.

250

0.23

81.

602.

151.

340.

508

1413

.112

.11.

02.

545

0.44

10.

284

0.27

50.

489

0.27

00.

241

1.61

2.03

1.26

0.50

822

19.9

18.8

1.1

2.5

600.

441

0.28

40.

275

0.45

80.

296

0.24

71.

611.

851.

160.

508

2825

.924

.61.

32.

590

0.44

10.

283

0.27

60.

386

0.36

10.

253

1.60

1.53

0.95

0.50

725

15.4

7.9

7.5

2.5

00.

450

0.43

90.

111

0.53

90.

363

0.09

84.

055.

491.

350.

798

7765

.839

.726

.12.

530

0.45

00.

440

0.11

10.

538

0.36

40.

098

4.06

5.49

1.35

0.79

990

74.6

46.3

28.3

2.5

450.

449

0.43

80.

113

0.53

70.

364

0.09

93.

995.

401.

350.

796

8376

.450

.825

.62.

560

0.44

90.

438

0.11

20.

539

0.36

10.

099

4.00

5.44

1.36

0.79

689

64.3

37.7

26.6

2.5

900.

449

0.43

80.

114

0.53

60.

364

0.10

03.

965.

341.

350.

794

8875

.251

.923

.42.

50

0.45

10.

441

0.10

80.

541

0.36

40.

095

4.18

5.67

1.36

0.80

483

84.4

37.6

26.8

2.5

300.

450

0.44

10.

109

0.54

00.

363

0.09

64.

135.

611.

360.

802

9067

.640

.826

.82.

545

0.45

20.

441

0.10

70.

541

0.36

40.

095

4.22

5.70

1.35

0.80

582

67.9

44.6

23.4

2.5

600.

450

0.44

10.

109

0.53

90.

365

0.09

64.

155.

611.

350.

802

8578

.453

.225

.22.

590

0.45

10.

441

0.10

80.

539

0.36

50.

096

4.19

5.64

1.35

0.80

388

76.3

50.7

25.7

volu

me

surf

ace

Page 85: Glaciotectonic Shear Zones: Surface Sample Bias and Clast ... · Daniel M. Davis, Advisor, Professor ... Long Island surface geology is diverse in glacial settings and glaciotectonic

aspe

ctvo

lsu

r su

r(s1

/s3)

/ol

d K

ang.

dis.

AV

G +

ang.

dis.

ang.

dis.

ratio

( a

/c)

θ (°

) s1

s2s3

s1s2

s3 (

s1/s

3)(s

1/s3

)vo

l(s1

/s3)

s2/

s2+s

3M

AX

(˚)

ST D

EV

(˚)

AV

G (

˚)ST

DE

V (

˚)2.

50

0.46

50.

302

0.23

30.

554

0.21

30.

233

1.99

2.83

1.42

0.56

51

0.5

0.2

0.4

2.5

300.

465

0.30

10.

234

0.53

50.

232

0.23

41.

992.

541.

280.

563

109.

48.

80.

62.

545

0.46

40.

302

0.23

40.

509

0.25

70.

234

1.99

2.23

1.12

0.56

414

13.4

12.8

0.6

2.5

600.

465

0.30

10.

234

0.47

50.

291

0.23

41.

981.

850.

930.

562

1716

.616

.20.

52.

590

0.46

50.

300

0.23

50.

414

0.35

10.

235

1.98

1.51

0.76

0.56

03

2.1

1.3

0.8

2.5

00.

483

0.26

20.

255

0.57

10.

217

0.21

21.

902.

701.

420.

507

10.

80.

40.

52.

530

0.48

10.

263

0.25

60.

550

0.23

00.

220

1.88

2.50

1.33

0.50

611

10.2

9.6

0.6

2.5

450.

481

0.26

30.

256

0.52

40.

251

0.22

41.

882.

341.

240.

507

1515

.014

.40.

62.

560

0.48

20.

262

0.25

60.

491

0.28

00.

229

1.89

2.14

1.14

0.50

619

18.8

18.1

0.7

2.5

900.

482

0.26

30.

255

0.42

40.

339

0.23

71.

891.

790.

940.

508

42.

31.

41.

02.

50

0.50

10.

300

0.19

80.

589

0.24

60.

166

2.53

3.56

1.41

0.60

21

0.8

0.3

0.5

2.5

300.

501

0.30

10.

198

0.56

90.

262

0.16

92.

533.

371.

330.

603

1211

.911

.40.

52.

545

0.50

10.

299

0.20

00.

543

0.28

30.

174

2.50

3.12

1.25

0.59

919

17.9

17.2

0.7

2.5

600.

500

0.30

00.

200

0.50

80.

313

0.17

92.

502.

851.

140.

600

2523

.422

.41.

02.

590

0.50

00.

298

0.20

20.

431

0.38

30.

185

2.48

2.33

0.94

0.59

611

7.0

4.4

2.7

2.5

00.

499

0.34

90.

152

0.58

80.

260

0.15

23.

284.

571.

390.

696

10.

50.

20.

42.

530

0.49

80.

350

0.15

10.

570

0.27

80.

151

3.29

4.12

1.25

0.69

85

5.0

4.5

0.5

2.5

450.

497

0.35

20.

151

0.54

60.

303

0.15

13.

303.

621.

100.

700

77.

16.

70.

52.

560

0.49

90.

351

0.15

10.

515

0.33

40.

151

3.31

3.02

0.91

0.69

99

8.2

7.6

0.6

2.5

900.

499

0.35

00.

151

0.46

10.

388

0.15

13.

302.

230.

680.

698

11.

10.

60.

52.

50

0.50

30.

399

0.09

80.

594

0.32

10.

085

5.12

6.98

1.36

0.80

24

2.3

1.2

1.1

2.5

300.

503

0.39

70.

100

0.57

80.

335

0.08

75.

056.

641.

310.

800

2220

.418

.71.

82.

545

0.50

30.

397

0.10

00.

561

0.35

10.

088

5.04

6.36

1.26

0.79

932

30.1

28.3

1.9

2.5

600.

503

0.39

60.

101

0.53

40.

375

0.09

14.

995.

901.

180.

797

4844

.241

.23.

12.

590

0.50

30.

398

0.09

90.

494

0.41

60.

090

5.09

5.47

1.08

0.80

190

87.2

84.2

3.1

2.5

00.

507

0.49

30.

000

0.60

10.

399

0.00

01.

7E+

162.

5E+

161.

461.

000

8666

.039

.526

.52.

530

0.50

60.

494

0.00

00.

601

0.39

90.

000

1.7E

+16

2.5E

+16

1.47

1.00

080

61.1

35.3

25.8

2.5

450.

508

0.49

20.

000

0.59

80.

402

0.00

01.

7E+

162.

4E+

161.

451.

000

9078

.253

.424

.82.

560

0.50

70.

493

0.00

00.

599

0.40

10.

000

1.7E

+16

2.4E

+16

1.46

1.00

087

71.6

46.1

25.5

2.5

900.

506

0.49

40.

000

0.60

00.

400

0.00

01.

7E+

162.

5E+

161.

471.

000

8972

.143

.928

.22.

50

0.55

00.

318

0.13

20.

636

0.25

40.

110

4.16

5.77

1.39

0.70

61

0.8

0.4

0.5

2.5

300.

548

0.31

80.

134

0.61

40.

273

0.11

44.

115.

391.

310.

704

1211

.511

.00.

52.

545

0.54

80.

318

0.13

40.

587

0.29

60.

117

4.09

5.00

1.22

0.70

317

17.0

16.4

0.6

2.5

600.

548

0.31

80.

134

0.54

80.

332

0.12

14.

114.

541.

110.

704

2322

.521

.70.

82.

590

0.55

00.

316

0.13

40.

468

0.40

70.

125

4.12

3.74

0.91

0.70

37

4.2

2.4

1.9

volu

me

surf

ace

75

Page 86: Glaciotectonic Shear Zones: Surface Sample Bias and Clast ... · Daniel M. Davis, Advisor, Professor ... Long Island surface geology is diverse in glacial settings and glaciotectonic

aspe

ctvo

lsu

r su

r(s1

/s3)

/ol

d K

ang.

dis.

AV

G +

ang.

dis.

ang.

dis.

ratio

( a

/c)

θ (°

) s1

s2s3

s1s2

s3 (

s1/s

3)(s

1/s3

)vo

l(s1

/s3)

s2/

s2+s

3M

AX

(˚)

ST D

EV

(˚)

AV

G (

˚)ST

DE

V (

˚)2.

50

0.55

10.

398

0.05

10.

641

0.31

50.

044

10.8

214

.52

1.34

0.88

63

1.7

0.9

0.9

2.5

300.

552

0.39

70.

051

0.62

30.

332

0.04

510

.77

13.8

11.

280.

885

1716

.615

.61.

02.

545

0.55

30.

396

0.05

10.

599

0.35

50.

046

10.9

713

.18

1.20

0.88

728

26.2

24.5

1.7

2.5

600.

554

0.39

50.

051

0.56

70.

386

0.04

610

.98

12.2

11.

110.

887

3936

.033

.92.

12.

590

0.55

10.

398

0.05

10.

499

0.45

30.

048

10.7

810

.36

0.96

0.88

690

89.1

83.1

6.1

2.5

00.

557

0.22

50.

218

0.64

00.

183

0.17

72.

563.

621.

410.

508

10.

50.

20.

42.

530

0.55

90.

224

0.21

70.

622

0.19

40.

184

2.57

3.39

1.32

0.50

77

6.9

6.4

0.5

2.5

450.

559

0.22

40.

217

0.59

70.

213

0.19

02.

583.

131.

220.

508

109.

99.

40.

52.

560

0.55

80.

224

0.21

80.

559

0.24

10.

200

2.57

2.80

1.09

0.50

712

11.7

11.1

0.6

2.5

900.

557

0.22

40.

219

0.49

40.

296

0.21

02.

542.

350.

920.

506

21.

30.

60.

72.

50

0.56

80.

344

0.08

80.

653

0.27

30.

074

6.44

8.79

1.37

0.79

61

0.7

0.3

0.4

2.5

300.

567

0.34

40.

088

0.63

20.

292

0.07

66.

448.

321.

290.

796

1312

.311

.70.

62.

545

0.56

70.

343

0.08

90.

605

0.31

60.

079

6.35

7.65

1.20

0.79

320

18.6

17.9

0.7

2.5

600.

568

0.34

50.

088

0.56

50.

355

0.08

06.

497.

071.

090.

797

2725

.624

.21.

42.

590

0.56

80.

344

0.08

80.

477

0.43

90.

083

6.46

5.75

0.89

0.79

617

11.1

6.1

5.1

2.5

00.

597

0.20

50.

198

0.67

70.

164

0.15

93.

014.

251.

410.

508

00.

00.

00.

02.

530

0.60

00.

203

0.19

70.

660

0.17

40.

166

3.05

3.99

1.31

0.50

86

5.8

5.4

0.5

2.5

450.

599

0.20

40.

197

0.63

50.

193

0.17

23.

053.

691.

210.

509

88.

17.

70.

52.

560

0.60

00.

203

0.19

70.

599

0.22

00.

181

3.05

3.30

1.09

0.50

810

9.4

9.1

0.3

2.5

900.

601

0.20

20.

197

0.53

60.

272

0.19

33.

052.

780.

910.

507

10.

90.

40.

52.

50

0.59

80.

250

0.15

10.

678

0.17

10.

151

3.95

5.51

1.39

0.62

30

0.0

0.0

0.0

2.5

300.

597

0.25

20.

151

0.66

00.

189

0.15

13.

964.

971.

260.

625

44.

23.

80.

42.

545

0.59

70.

251

0.15

20.

638

0.21

00.

152

3.93

4.30

1.10

0.62

26

6.1

5.6

0.5

2.5

600.

598

0.25

00.

152

0.60

50.

243

0.15

23.

923.

550.

910.

621

77.

26.

70.

52.

590

0.59

60.

252

0.15

20.

545

0.30

30.

152

3.92

2.60

0.66

0.62

31

0.6

0.2

0.4

2.5

00.

599

0.30

00.

101

0.68

00.

237

0.08

35.

938.

161.

380.

748

10.

60.

20.

42.

530

0.60

00.

300

0.10

10.

659

0.25

50.

086

5.95

7.69

1.29

0.74

810

9.4

9.1

0.4

2.5

450.

599

0.30

10.

100

0.63

00.

282

0.08

85.

977.

141.

200.

750

1413

.913

.40.

52.

560

0.60

10.

299

0.10

10.

591

0.31

60.

092

5.97

6.40

1.07

0.74

818

17.6

16.7

0.9

2.5

900.

602

0.29

90.

099

0.51

30.

392

0.09

56.

095.

380.

880.

752

42.

41.

41.

02.

50

0.59

90.

327

0.07

40.

681

0.25

80.

062

8.14

11.0

81.

360.

816

10.

50.

20.

42.

530

0.60

00.

326

0.07

40.

660

0.27

60.

064

8.10

10.3

51.

280.

814

1110

.710

.10.

62.

545

0.59

70.

329

0.07

50.

628

0.30

50.

066

7.98

9.47

1.19

0.81

517

16.5

15.7

0.9

2.5

600.

598

0.32

80.

074

0.59

00.

342

0.06

88.

118.

681.

070.

816

2120

.720

.00.

72.

590

0.59

70.

329

0.07

50.

503

0.42

50.

072

8.01

6.99

0.87

0.81

55

3.5

2.0

1.6

volu

me

surf

ace

76

Page 87: Glaciotectonic Shear Zones: Surface Sample Bias and Clast ... · Daniel M. Davis, Advisor, Professor ... Long Island surface geology is diverse in glacial settings and glaciotectonic

aspe

ctvo

lsu

r su

r(s1

/s3)

/ol

d K

ang.

dis.

AV

G +

ang.

dis.

ang.

dis.

ratio

( a

/c)

θ (°

) s1

s2s3

s1s2

s3 (

s1/s

3)(s

1/s3

)vo

l(s1

/s3)

s2/

s2+s

3M

AX

(˚)

ST D

EV

(˚)

AV

G (

˚)ST

DE

V (

˚)2.

50

0.65

30.

195

0.15

20.

725

0.12

30.

152

4.29

5.98

1.39

0.56

21

0.7

0.3

0.4

2.5

300.

651

0.19

60.

152

0.70

60.

141

0.15

24.

275.

621.

320.

563

55.

24.

80.

42.

545

0.65

20.

197

0.15

10.

682

0.16

70.

151

4.33

5.25

1.21

0.56

67

7.2

6.9

0.3

2.5

600.

649

0.19

70.

154

0.64

20.

203

0.15

44.

214.

561.

080.

561

98.

68.

20.

42.

590

0.65

10.

196

0.15

20.

580

0.26

80.

152

4.28

3.84

0.90

0.56

31

0.8

0.4

0.5

2.5

00.

651

0.29

90.

051

0.72

60.

223

0.05

112

.87

17.4

11.

350.

855

00.

00.

00.

02.

530

0.65

20.

298

0.05

10.

717

0.23

30.

051

12.8

816

.02

1.24

0.85

51

1.0

1.0

0.0

2.5

450.

651

0.29

90.

051

0.70

10.

248

0.05

112

.86

14.1

61.

100.

855

22.

21.

80.

42.

560

0.65

00.

299

0.05

10.

677

0.27

20.

051

12.8

111

.94

0.93

0.85

52

2.0

2.0

0.0

2.5

900.

650

0.29

90.

050

0.62

90.

321

0.05

012

.92

8.80

0.68

0.85

61

0.4

0.1

0.3

2.5

00.

664

0.17

10.

165

0.73

40.

135

0.13

14.

015.

611.

400.

509

10.

80.

30.

52.

530

0.66

30.

172

0.16

50.

717

0.14

50.

138

4.01

5.21

1.30

0.51

04

4.2

4.0

0.2

2.5

450.

662

0.17

20.

166

0.69

30.

162

0.14

43.

984.

801.

210.

509

66.

15.

60.

52.

560

0.66

20.

172

0.16

60.

659

0.18

60.

155

3.98

4.25

1.07

0.50

87

7.1

6.6

0.5

2.5

900.

663

0.17

20.

165

0.59

70.

235

0.16

84.

013.

570.

890.

509

10.

80.

40.

52.

50

0.70

30.

151

0.14

60.

767

0.11

80.

115

4.80

6.69

1.39

0.50

80

0.0

0.0

0.0

2.5

300.

704

0.15

10.

146

0.75

30.

128

0.11

94.

836.

321.

310.

509

43.

73.

30.

42.

545

0.70

00.

153

0.14

70.

729

0.14

30.

128

4.75

5.69

1.20

0.50

95

5.2

4.7

0.5

2.5

600.

703

0.15

10.

146

0.69

90.

165

0.13

64.

825.

151.

070.

509

66.

15.

70.

52.

590

0.70

20.

152

0.14

60.

638

0.21

00.

152

4.81

4.20

0.87

0.50

91

0.4

0.1

0.3

2.5

00.

700

0.20

20.

098

0.76

60.

156

0.07

87.

149.

841.

380.

673

10.

50.

20.

42.

530

0.70

00.

201

0.09

90.

748

0.17

00.

082

7.04

9.11

1.29

0.66

95

4.8

4.3

0.5

2.5

450.

702

0.20

10.

097

0.72

50.

190

0.08

47.

258.

601.

190.

674

77.

26.

80.

42.

560

0.70

10.

201

0.09

90.

687

0.22

10.

092

7.10

7.50

1.06

0.67

09

8.3

8.0

0.4

2.5

900.

700

0.20

10.

098

0.61

90.

280

0.10

17.

126.

150.

860.

672

10.

60.

20.

42.

50

0.70

10.

239

0.06

00.

768

0.18

40.

048

11.6

415

.87

1.36

0.79

81

0.6

0.2

0.4

2.5

300.

698

0.24

00.

062

0.74

60.

202

0.05

211

.33

14.4

71.

280.

796

66.

15.

70.

52.

545

0.70

10.

238

0.06

10.

722

0.22

40.

054

11.5

513

.47

1.17

0.79

79

8.5

8.2

0.4

2.5

600.

700

0.23

90.

061

0.68

20.

261

0.05

811

.45

11.8

01.

030.

796

1110

.49.

80.

62.

590

0.70

10.

238

0.06

10.

610

0.32

70.

063

11.5

99.

750.

840.

798

10.

80.

30.

52.

50

0.70

00.

300

0.00

00.

770

0.23

00.

000

3.8E

+16

5.5E

+16

1.43

1.00

01

0.6

0.2

0.4

2.5

300.

700

0.30

00.

000

0.74

80.

252

0.00

03.

8E+

164.

9E+

161.

281.

000

88.

27.

70.

52.

545

0.70

10.

299

0.00

00.

720

0.28

00.

000

3.8E

+16

4.2E

+16

1.10

1.00

012

11.4

11.1

0.3

2.5

600.

700

0.30

00.

000

0.67

80.

322

0.00

03.

8E+

163.

4E+

160.

901.

000

1514

.413

.80.

62.

590

0.70

00.

300

0.00

00.

595

0.40

50.

000

3.8E

+16

2.4E

+16

0.63

1.00

03

1.6

0.8

0.8

volu

me

surf

ace

77

Page 88: Glaciotectonic Shear Zones: Surface Sample Bias and Clast ... · Daniel M. Davis, Advisor, Professor ... Long Island surface geology is diverse in glacial settings and glaciotectonic

aspe

ctvo

lsu

r su

r(s1

/s3)

/ol

d K

ang.

dis.

AV

G +

ang.

dis.

ang.

dis.

ratio

( a

/c)

θ (°

) s1

s2s3

s1s2

s3 (

s1/s

3)(s

1/s3

)vo

l(s1

/s3)

s2/

s2+s

3M

AX

(˚)

ST D

EV

(˚)

AV

G (

˚)ST

DE

V (

˚)2.

50

0.75

00.

199

0.05

10.

808

0.15

20.

040

14.8

020

.24

1.37

0.79

70

0.0

0.0

0.0

2.5

300.

749

0.20

10.

050

0.79

90.

158

0.04

315

.00

18.7

71.

250.

800

11.

01.

00.

02.

545

0.75

10.

199

0.05

10.

788

0.16

40.

048

14.8

216

.43

1.11

0.79

72

1.8

1.4

0.5

2.5

600.

751

0.19

90.

050

0.76

70.

178

0.05

515

.08

13.9

80.

930.

800

22.

21.

90.

42.

590

0.74

90.

200

0.05

10.

721

0.20

60.

073

14.7

69.

850.

670.

797

00.

00.

00.

02.

50

0.76

20.

121

0.11

70.

816

0.09

30.

090

6.54

9.05

1.38

0.51

01

0.3

0.1

0.2

2.5

300.

762

0.12

10.

116

0.80

40.

101

0.09

56.

558.

451.

290.

511

32.

52.

20.

42.

545

0.76

00.

122

0.11

70.

785

0.11

40.

101

6.47

7.74

1.20

0.51

04

4.0

3.5

0.5

2.5

600.

760

0.12

20.

118

0.75

60.

132

0.11

16.

466.

811.

060.

509

54.

34.

10.

22.

590

0.76

20.

122

0.11

70.

702

0.17

30.

125

6.53

5.60

0.86

0.51

01

0.6

0.2

0.4

2.5

00.

793

0.15

10.

057

0.84

10.

114

0.04

413

.96

19.1

21.

370.

726

10.

50.

20.

42.

530

0.79

30.

150

0.05

80.

828

0.12

50.

047

13.7

417

.62

1.28

0.72

23

3.2

2.9

0.3

2.5

450.

793

0.15

00.

057

0.80

90.

141

0.05

013

.96

16.3

51.

170.

724

54.

44.

10.

32.

560

0.79

20.

150

0.05

70.

777

0.16

80.

055

13.8

514

.27

1.03

0.72

46

5.3

5.0

0.3

2.5

900.

793

0.15

00.

057

0.71

80.

220

0.06

214

.03

11.5

20.

820.

727

10.

50.

20.

42.

50

0.80

10.

102

0.09

70.

847

0.07

80.

075

8.22

11.3

41.

380.

511

10.

30.

10.

22.

530

0.80

00.

102

0.09

80.

836

0.08

40.

080

8.15

10.5

21.

290.

510

22.

22.

00.

22.

545

0.80

00.

102

0.09

80.

821

0.09

40.

085

8.18

9.69

1.18

0.51

13

3.2

2.9

0.4

2.5

600.

800

0.10

20.

098

0.79

50.

113

0.09

28.

158.

621.

060.

510

43.

33.

10.

22.

590

0.80

20.

101

0.09

70.

747

0.14

60.

106

8.31

7.03

0.85

0.51

11

0.3

0.1

0.2

2.5

00.

802

0.16

40.

034

0.84

90.

124

0.02

623

.61

32.1

51.

360.

828

00.

00.

00.

02.

530

0.80

20.

165

0.03

40.

835

0.13

70.

028

23.8

330

.15

1.27

0.83

04

3.4

3.1

0.3

2.5

450.

802

0.16

40.

034

0.81

50.

155

0.03

023

.39

26.8

81.

150.

827

55.

14.

60.

52.

560

0.80

20.

164

0.03

30.

783

0.18

40.

032

24.1

324

.18

1.00

0.83

16

6.2

5.7

0.5

2.5

900.

803

0.16

40.

034

0.72

20.

240

0.03

823

.90

19.0

10.

800.

830

10.

80.

30.

52.

50

0.79

90.

168

0.03

30.

847

0.12

00.

033

23.9

832

.54

1.36

0.83

40

0.0

0.0

0.0

2.5

300.

799

0.16

70.

034

0.84

10.

125

0.03

423

.88

29.4

91.

240.

833

11.

20.

80.

42.

545

0.79

80.

169

0.03

40.

830

0.13

60.

034

23.6

426

.33

1.11

0.83

31

1.0

1.0

0.0

2.5

600.

799

0.16

80.

033

0.81

50.

152

0.03

324

.03

22.6

50.

940.

835

11.

01.

00.

02.

590

0.79

90.

168

0.03

40.

777

0.18

90.

034

23.8

616

.08

0.67

0.83

30

0.0

0.0

0.0

2.5

00.

833

0.13

50.

032

0.87

40.

102

0.02

525

.73

35.1

31.

370.

806

10.

30.

10.

22.

530

0.83

40.

134

0.03

20.

862

0.11

20.

026

26.1

833

.18

1.27

0.80

83

3.0

2.5

0.5

2.5

450.

834

0.13

50.

031

0.84

50.

128

0.02

826

.56

30.6

71.

150.

811

44.

13.

60.

52.

560

0.83

40.

134

0.03

20.

817

0.15

20.

031

26.0

326

.26

1.01

0.80

75

4.5

4.2

0.4

2.5

900.

832

0.13

50.

032

0.75

90.

203

0.03

725

.85

20.3

60.

790.

808

10.

70.

30.

4

volu

me

surf

ace

78

Page 89: Glaciotectonic Shear Zones: Surface Sample Bias and Clast ... · Daniel M. Davis, Advisor, Professor ... Long Island surface geology is diverse in glacial settings and glaciotectonic

aspe

ctvo

lsu

r su

r(s1

/s3)

/ol

d K

ang.

dis.

AV

G +

ang.

dis.

ang.

dis.

ratio

( a

/c)

θ (°

) s1

s2s3

s1s2

s3 (

s1/s

3)(s

1/s3

)vo

l(s1

/s3)

s2/

s2+s

3M

AX

(˚)

ST D

EV

(˚)

AV

G (

˚)ST

DE

V (

˚)2.

50

0.86

10.

072

0.06

80.

895

0.05

40.

051

12.6

917

.39

1.37

0.51

30

0.0

0.0

0.0

2.5

300.

860

0.07

10.

068

0.88

70.

058

0.05

512

.61

16.2

21.

290.

511

11.

01.

00.

02.

545

0.85

90.

072

0.06

90.

875

0.06

60.

059

12.4

814

.75

1.18

0.51

22

2.0

2.0

0.0

2.5

600.

861

0.07

10.

068

0.85

80.

077

0.06

412

.74

13.3

31.

050.

512

22.

02.

00.

02.

590

0.86

00.

072

0.06

80.

815

0.10

70.

079

12.5

710

.36

0.82

0.51

10

0.0

0.0

0.0

2.5

00.

903

0.05

00.

047

0.92

70.

037

0.03

619

.14

26.1

51.

370.

515

00.

00.

00.

02.

530

0.90

10.

051

0.04

80.

921

0.04

10.

038

18.7

123

.93

1.28

0.51

31

1.0

1.0

0.0

2.5

450.

902

0.05

10.

047

0.91

30.

046

0.04

119

.10

22.5

61.

180.

516

11.

01.

00.

02.

560

0.90

10.

051

0.04

80.

898

0.05

60.

046

18.6

719

.40

1.04

0.51

42

2.0

1.5

0.5

2.5

900.

902

0.05

00.

048

0.86

70.

077

0.05

618

.82

15.4

00.

820.

512

00.

00.

00.

02.

50

0.90

00.

080

0.02

00.

925

0.06

00.

015

44.5

660

.89

1.37

0.79

80

0.0

0.0

0.0

2.5

300.

901

0.07

90.

020

0.91

80.

066

0.01

645

.05

57.3

01.

270.

798

21.

71.

30.

42.

545

0.90

00.

080

0.02

00.

907

0.07

50.

018

44.9

551

.86

1.15

0.79

93

2.3

2.1

0.2

2.5

600.

900

0.08

00.

020

0.88

80.

092

0.02

044

.22

44.2

71.

000.

796

32.

62.

20.

42.

590

0.90

00.

080

0.02

00.

848

0.12

80.

025

45.2

834

.39

0.76

0.80

11

0.3

0.1

0.2

2.5

00.

901

0.08

20.

017

0.92

60.

061

0.01

352

.52

71.4

91.

360.

827

10.

30.

10.

22.

530

0.90

00.

082

0.01

70.

918

0.06

80.

014

52.0

866

.09

1.27

0.82

62

1.6

1.2

0.4

2.5

450.

900

0.08

30.

018

0.90

60.

078

0.01

551

.27

59.1

41.

150.

824

22.

02.

00.

02.

560

0.90

10.

082

0.01

70.

888

0.09

40.

017

51.8

251

.34

0.99

0.82

53

2.8

2.4

0.5

2.5

900.

901

0.08

20.

017

0.84

70.

131

0.02

252

.07

38.9

60.

750.

825

00.

00.

00.

02.

50

0.94

10.

030

0.02

80.

956

0.02

20.

021

33.1

344

.97

1.36

0.51

70

0.0

0.0

0.0

2.5

300.

941

0.03

10.

028

0.95

30.

025

0.02

333

.25

42.2

01.

270.

520

11.

00.

50.

52.

545

0.94

10.

031

0.02

80.

948

0.02

80.

024

33.3

039

.38

1.18

0.51

91

1.2

1.0

0.2

2.5

600.

942

0.03

00.

028

0.94

00.

033

0.02

733

.52

34.7

01.

040.

518

11.

01.

00.

02.

590

0.94

10.

030

0.02

80.

918

0.04

70.

035

33.3

126

.60

0.80

0.51

70

0.0

0.0

0.0

2.5

00.

959

0.03

60.

005

0.97

00.

027

0.00

419

9.66

269.

841.

360.

881

00.

00.

00.

02.

530

0.95

80.

037

0.00

50.

966

0.03

00.

004

198.

6624

8.62

1.25

0.88

31

1.2

0.8

0.4

2.5

450.

959

0.03

60.

005

0.96

10.

035

0.00

419

6.98

222.

151.

130.

881

11.

01.

00.

02.

560

0.95

80.

037

0.00

50.

952

0.04

30.

005

191.

3318

3.89

0.96

0.87

91

1.0

1.0

0.0

2.5

900.

959

0.03

60.

005

0.93

20.

062

0.00

719

8.46

139.

580.

700.

881

10.

40.

10.

32.

50

0.97

90.

011

0.01

00.

985

0.00

80.

007

100.

3013

5.56

1.35

0.53

10

0.0

0.0

0.0

2.5

300.

979

0.01

10.

010

0.98

40.

009

0.00

810

2.00

128.

541.

260.

533

00.

00.

00.

02.

545

0.97

90.

011

0.01

00.

982

0.01

00.

008

101.

7311

6.91

1.15

0.53

30

0.0

0.0

0.0

2.5

600.

979

0.01

10.

010

0.97

80.

012

0.01

098

.79

99.6

61.

010.

531

00.

00.

00.

02.

590

0.97

90.

011

0.01

00.

970

0.01

70.

012

102.

5780

.14

0.78

0.53

30

0.0

0.0

0.0

volu

me

surf

ace

79

Page 90: Glaciotectonic Shear Zones: Surface Sample Bias and Clast ... · Daniel M. Davis, Advisor, Professor ... Long Island surface geology is diverse in glacial settings and glaciotectonic

aspe

ctvo

lsu

r su

r(s1

/s3)

/ol

d K

ang.

dis.

AV

G +

ang.

dis.

ang.

dis.

ratio

( a

/c)

θ (°

) s1

s2s3

s1s2

s3 (

s1/s

3)(s

1/s3

)vo

l(s1

/s3)

s2/

s2+s

3M

AX

(˚)

ST D

EV

(˚)

AV

G (

˚)ST

DE

V (

˚)5.

00

0.38

30.

313

0.30

40.

515

0.24

60.

239

1.26

2.15

1.71

0.50

84

2.2

1.2

1.0

5.0

300.

382

0.31

40.

305

0.50

00.

255

0.24

51.

252.

051.

630.

507

2623

.421

.61.

9

5.0

450.

382

0.31

40.

304

0.48

60.

267

0.24

71.

261.

961.

560.

508

3935

.532

.82.

7

5.0

600.

382

0.31

20.

305

0.46

60.

282

0.25

21.

251.

851.

480.

506

5551

.747

.74.

0

5.0

900.

382

0.31

30.

305

0.44

10.

305

0.25

41.

251.

741.

390.

506

9089

.185

.73.

4

5.0

00.

378

0.36

80.

254

0.50

60.

289

0.20

51.

492.

471.

660.

592

8376

.653

.323

.3

5.0

300.

378

0.36

90.

253

0.50

70.

289

0.20

41.

502.

481.

660.

593

8873

.949

.924

.0

5.0

450.

379

0.36

80.

253

0.50

70.

289

0.20

41.

502.

481.

650.

593

8572

.844

.228

.7

5.0

600.

378

0.36

90.

253

0.50

60.

289

0.20

51.

502.

471.

650.

593

7570

.246

.823

.4

5.0

900.

380

0.37

00.

251

0.50

90.

289

0.20

21.

522.

521.

660.

596

8859

.332

.626

.7

5.0

00.

404

0.39

30.

203

0.53

30.

302

0.16

61.

993.

221.

620.

659

165.

51.

83.

7

5.0

300.

404

0.39

30.

203

0.51

10.

310

0.17

91.

992.

861.

440.

659

3218

.712

.36.

4

5.0

450.

404

0.39

30.

204

0.48

60.

316

0.19

81.

982.

451.

240.

658

3023

.318

.84.

5

5.0

600.

405

0.39

20.

202

0.44

70.

325

0.22

82.

011.

960.

980.

660

3227

.423

.14.

4

5.0

900.

403

0.39

30.

203

0.34

40.

336

0.32

01.

981.

080.

540.

659

3422

.712

.810

.0

5.0

00.

399

0.35

70.

244

0.53

20.

274

0.19

41.

642.

741.

670.

594

117.

54.

13.

5

5.0

300.

401

0.35

80.

242

0.52

30.

282

0.19

51.

662.

691.

620.

597

3631

.625

.85.

8

5.0

450.

399

0.35

80.

243

0.51

30.

289

0.19

71.

642.

601.

580.

596

5445

.540

.55.

0

5.0

600.

398

0.35

90.

243

0.50

40.

299

0.19

71.

642.

551.

560.

597

6562

.155

.76.

4

5.0

900.

400

0.35

90.

241

0.49

40.

309

0.19

71.

662.

501.

510.

599

8988

.584

.73.

8

5.0

00.

441

0.28

40.

275

0.56

90.

218

0.21

21.

602.

681.

670.

508

11.

10.

60.

5

5.0

300.

441

0.28

40.

275

0.55

00.

231

0.21

91.

602.

521.

570.

508

1615

.715

.00.

8

5.0

450.

441

0.28

40.

276

0.52

50.

251

0.22

41.

602.

341.

460.

507

2524

.223

.21.

0

5.0

600.

440

0.28

40.

276

0.48

80.

281

0.23

11.

602.

111.

320.

507

3735

.934

.01.

9

5.0

900.

441

0.28

30.

275

0.41

10.

352

0.23

71.

601.

731.

080.

507

8987

.984

.33.

6

5.0

00.

451

0.43

80.

112

0.57

90.

328

0.09

34.

036.

211.

540.

796

8871

.642

.529

.1

5.0

300.

450

0.43

80.

112

0.57

80.

328

0.09

44.

026.

151.

530.

796

8876

.851

.924

.9

5.0

450.

449

0.43

90.

112

0.58

00.

327

0.09

44.

016.

201.

540.

797

8168

.043

.824

.2

5.0

600.

449

0.43

90.

112

0.57

90.

327

0.09

34.

016.

201.

540.

797

8972

.142

.929

.2

5.0

900.

450

0.43

70.

113

0.58

10.

324

0.09

43.

976.

161.

550.

794

8654

.732

.821

.9

5.0

00.

452

0.44

10.

107

0.58

30.

328

0.09

04.

236.

491.

540.

805

8974

.143

.131

.1

5.0

300.

452

0.44

00.

109

0.58

10.

328

0.09

14.

166.

431.

540.

802

8773

.147

.925

.3

5.0

450.

451

0.44

10.

109

0.58

30.

326

0.09

14.

156.

431.

550.

802

6852

.431

.620

.8

5.0

600.

451

0.43

90.

109

0.58

00.

329

0.09

14.

136.

341.

540.

801

8877

.750

.627

.15.

090

0.45

30.

439

0.10

80.

580

0.33

00.

090

4.20

6.43

1.53

0.80

390

80.6

54.2

26.4

volu

me

surf

ace

80

Page 91: Glaciotectonic Shear Zones: Surface Sample Bias and Clast ... · Daniel M. Davis, Advisor, Professor ... Long Island surface geology is diverse in glacial settings and glaciotectonic

aspe

ctvo

lsu

r su

r(s1

/s3)

/ol

d K

ang.

dis.

AV

G +

ang.

dis.

ang.

dis.

ratio

( a

/c)

θ (°

) s1

s2s3

s1s2

s3 (

s1/s

3)(s

1/s3

)vo

l(s1

/s3)

s2/

s2+s

3M

AX

(˚)

ST D

EV

(˚)

AV

G (

˚)ST

DE

V (

˚)5.

00

0.46

50.

301

0.23

40.

592

0.22

80.

181

1.99

3.27

1.64

0.56

31

0.6

0.2

0.4

5.0

300.

465

0.30

10.

234

0.57

10.

233

0.19

61.

992.

921.

470.

563

1211

.310

.80.

6

5.0

450.

465

0.30

20.

233

0.54

30.

241

0.21

72.

002.

501.

250.

565

1817

.717

.10.

7

5.0

600.

465

0.30

10.

234

0.49

80.

255

0.24

71.

992.

021.

020.

562

2625

.124

.01.

1

5.0

900.

465

0.30

20.

233

0.38

20.

356

0.26

22.

001.

460.

730.

565

3417

.39.

28.

1

5.0

00.

481

0.26

30.

256

0.60

50.

200

0.19

51.

883.

111.

650.

507

10.

80.

40.

5

5.0

300.

480

0.26

30.

257

0.58

40.

214

0.20

11.

872.

901.

550.

506

1313

.012

.30.

7

5.0

450.

482

0.26

20.

255

0.55

80.

236

0.20

61.

892.

711.

430.

506

2019

.418

.70.

7

5.0

600.

481

0.26

40.

255

0.51

30.

271

0.21

61.

882.

381.

260.

508

3027

.626

.61.

0

5.0

900.

479

0.26

40.

257

0.39

30.

380

0.22

71.

861.

730.

930.

507

8976

.456

.320

.1

5.0

00.

500

0.30

00.

200

0.62

30.

223

0.15

42.

504.

051.

620.

600

11.

00.

50.

5

5.0

300.

499

0.30

00.

200

0.60

10.

241

0.15

82.

493.

801.

520.

600

1615

.014

.10.

9

5.0

450.

500

0.30

00.

200

0.57

50.

263

0.16

22.

513.

551.

420.

601

2322

.421

.80.

6

5.0

600.

500

0.30

00.

200

0.53

30.

300

0.16

82.

503.

181.

270.

601

3432

.931

.71.

2

5.0

900.

497

0.30

10.

202

0.43

80.

386

0.17

62.

462.

481.

010.

599

9088

.284

.04.

2

5.0

00.

498

0.35

20.

150

0.62

20.

259

0.11

93.

325.

251.

580.

701

10.

80.

30.

5

5.0

300.

497

0.35

10.

152

0.60

50.

265

0.13

13.

274.

621.

410.

698

76.

56.

20.

4

5.0

450.

499

0.34

90.

152

0.57

90.

273

0.14

83.

283.

931.

200.

697

109.

99.

40.

6

5.0

600.

497

0.35

20.

151

0.53

50.

290

0.17

53.

293.

050.

930.

700

1312

.912

.40.

5

5.0

900.

495

0.35

30.

152

0.42

50.

320

0.25

53.

271.

670.

510.

700

31.

50.

70.

8

5.0

00.

503

0.39

80.

099

0.63

00.

289

0.08

15.

067.

791.

540.

800

32.

31.

50.

8

5.0

300.

502

0.39

80.

100

0.61

40.

304

0.08

25.

047.

481.

480.

800

2523

.221

.41.

8

5.0

450.

501

0.39

90.

100

0.59

60.

320

0.08

45.

027.

141.

420.

800

4035

.132

.62.

5

5.0

600.

501

0.39

90.

100

0.57

20.

342

0.08

55.

006.

711.

340.

799

5249

.947

.42.

6

5.0

900.

501

0.39

90.

100

0.54

10.

372

0.08

75.

026.

221.

240.

800

9089

.186

.32.

8

5.0

00.

505

0.49

50.

000

0.64

00.

360

0.00

01.

7E+

162.

9E+

161.

741.

000

9075

.449

.326

.1

5.0

300.

507

0.49

30.

000

0.64

00.

360

0.00

01.

7E+

162.

9E+

161.

731.

000

8472

.146

.325

.8

5.0

450.

506

0.49

40.

000

0.63

90.

361

0.00

01.

7E+

162.

9E+

161.

731.

000

8983

.454

.928

.5

5.0

600.

506

0.49

40.

000

0.63

80.

362

0.00

01.

7E+

162.

9E+

161.

731.

000

8977

.052

.924

.1

5.0

900.

507

0.49

30.

000

0.64

10.

359

0.00

01.

7E+

162.

9E+

161.

741.

000

8467

.843

.724

.1

5.0

00.

550

0.31

80.

133

0.66

70.

230

0.10

24.

156.

531.

580.

705

10.

80.

30.

5

5.0

300.

552

0.31

60.

132

0.64

70.

248

0.10

54.

186.

171.

480.

705

1413

.913

.10.

9

5.0

450.

550

0.31

70.

133

0.61

60.

275

0.10

94.

155.

641.

360.

705

2322

.321

.11.

2

5.0

600.

550

0.31

80.

133

0.57

20.

314

0.11

44.

145.

021.

210.

705

3130

.830

.10.

75.

090

0.55

00.

318

0.13

30.

460

0.41

90.

120

4.14

3.83

0.92

0.70

590

88.9

83.7

5.2

volu

me

surf

ace

81

Page 92: Glaciotectonic Shear Zones: Surface Sample Bias and Clast ... · Daniel M. Davis, Advisor, Professor ... Long Island surface geology is diverse in glacial settings and glaciotectonic

aspe

ctvo

lsu

r su

r(s1

/s3)

/ol

d K

ang.

dis.

AV

G +

ang.

dis.

ang.

dis.

ratio

( a

/c)

θ (°

) s1

s2s3

s1s2

s3 (

s1/s

3)(s

1/s3

)vo

l(s1

/s3)

s2/

s2+s

3M

AX

(˚)

ST D

EV

(˚)

AV

G (

˚)ST

DE

V (

˚)5.

00

0.55

20.

397

0.05

10.

675

0.28

40.

041

10.9

216

.37

1.50

0.88

72

1.5

0.9

0.7

5.0

300.

551

0.39

80.

051

0.65

50.

302

0.04

310

.77

15.3

71.

430.

886

2119

.318

.21.

1

5.0

450.

552

0.39

70.

052

0.63

20.

324

0.04

410

.72

14.3

11.

330.

885

3130

.128

.81.

3

5.0

600.

551

0.39

80.

051

0.59

90.

355

0.04

510

.80

13.2

51.

230.

886

4644

.542

.22.

3

5.0

900.

552

0.39

70.

051

0.54

40.

408

0.04

710

.80

11.5

31.

070.

886

9089

.387

.22.

1

5.0

00.

557

0.22

50.

218

0.67

10.

167

0.16

22.

554.

131.

620.

508

10.

70.

30.

4

5.0

300.

559

0.22

40.

217

0.65

20.

180

0.16

82.

583.

871.

500.

508

98.

78.

30.

4

5.0

450.

558

0.22

40.

218

0.62

20.

202

0.17

62.

563.

541.

380.

507

1413

.312

.80.

6

5.0

600.

561

0.22

30.

216

0.57

60.

240

0.18

42.

593.

121.

200.

508

1918

.217

.70.

6

5.0

900.

560

0.22

30.

217

0.45

10.

346

0.20

22.

582.

230.

870.

507

42.

71.

80.

9

5.0

00.

567

0.34

50.

088

0.68

40.

247

0.06

96.

479.

921.

530.

797

21.

20.

60.

6

5.0

300.

567

0.34

50.

088

0.66

20.

267

0.07

16.

459.

311.

440.

797

1514

.914

.40.

6

5.0

450.

564

0.34

70.

089

0.63

20.

294

0.07

56.

338.

481.

340.

795

2623

.922

.71.

2

5.0

600.

565

0.34

70.

089

0.58

90.

334

0.07

76.

387.

631.

200.

797

3534

.333

.31.

0

5.0

900.

567

0.34

40.

089

0.49

10.

427

0.08

26.

395.

980.

940.

795

8988

.185

.62.

6

5.0

00.

599

0.20

30.

198

0.70

60.

149

0.14

53.

034.

871.

610.

507

10.

40.

10.

3

5.0

300.

601

0.20

30.

197

0.68

80.

162

0.15

03.

054.

571.

500.

508

77.

26.

70.

5

5.0

450.

599

0.20

40.

198

0.65

70.

183

0.15

93.

034.

121.

360.

507

1111

.010

.50.

5

5.0

600.

598

0.20

40.

198

0.60

90.

221

0.17

13.

023.

571.

180.

508

1615

.114

.50.

6

5.0

900.

599

0.20

40.

198

0.48

50.

325

0.19

03.

032.

550.

840.

507

31.

91.

10.

9

5.0

00.

598

0.24

90.

152

0.70

60.

180

0.11

43.

936.

201.

580.

620

10.

50.

20.

4

5.0

300.

598

0.25

10.

151

0.68

80.

187

0.12

43.

965.

541.

400.

624

55.

25.

00.

2

5.0

450.

598

0.25

00.

152

0.66

30.

195

0.14

23.

934.

671.

190.

621

88.

27.

90.

3

5.0

600.

598

0.25

00.

152

0.61

70.

210

0.17

33.

933.

570.

910.

622

1110

.910

.40.

5

5.0

900.

596

0.25

20.

151

0.50

00.

260

0.23

93.

942.

090.

530.

625

21.

30.

70.

6

5.0

00.

601

0.29

90.

100

0.71

00.

214

0.07

76.

009.

281.

550.

749

10.

70.

30.

4

5.0

300.

600

0.30

00.

100

0.68

70.

233

0.07

95.

988.

651.

450.

749

1111

.210

.80.

4

5.0

450.

601

0.29

80.

101

0.65

60.

261

0.08

45.

957.

851.

320.

747

1817

.917

.40.

6

5.0

600.

602

0.29

90.

100

0.60

60.

307

0.08

76.

056.

941.

150.

750

2725

.724

.71.

0

5.0

900.

601

0.29

90.

100

0.46

30.

442

0.09

56.

014.

880.

810.

749

3926

.715

.211

.6

5.0

00.

597

0.32

80.

074

0.70

90.

233

0.05

88.

0512

.29

1.53

0.81

61

0.4

0.1

0.3

5.0

300.

596

0.32

90.

075

0.68

50.

254

0.06

17.

9011

.29

1.43

0.81

313

13.0

12.4

0.7

5.0

450.

597

0.32

90.

075

0.65

50.

283

0.06

38.

0010

.46

1.31

0.81

522

20.9

20.1

0.8

5.0

600.

600

0.32

60.

074

0.60

80.

326

0.06

68.

069.

191.

140.

814

3028

.927

.91.

15.

090

0.59

70.

328

0.07

50.

478

0.45

10.

071

7.96

6.75

0.85

0.81

490

88.4

81.3

7.2

volu

me

surf

ace

82

Page 93: Glaciotectonic Shear Zones: Surface Sample Bias and Clast ... · Daniel M. Davis, Advisor, Professor ... Long Island surface geology is diverse in glacial settings and glaciotectonic

aspe

ctvo

lsu

r su

r(s1

/s3)

/ol

d K

ang.

dis.

AV

G +

ang.

dis.

ang.

dis.

ratio

( a

/c)

θ (°

) s1

s2s3

s1s2

s3 (

s1/s

3)(s

1/s3

)vo

l(s1

/s3)

s2/

s2+s

3M

AX

(˚)

ST D

EV

(˚)

AV

G (

˚)ST

DE

V (

˚)5.

00

0.65

10.

197

0.15

20.

748

0.14

10.

111

4.28

6.75

1.58

0.56

41

0.5

0.2

0.4

5.0

300.

651

0.19

60.

153

0.72

90.

156

0.11

64.

266.

311.

480.

561

76.

36.

00.

4

5.0

450.

653

0.19

70.

151

0.70

20.

178

0.12

04.

335.

841.

350.

567

1010

.09.

50.

5

5.0

600.

652

0.19

60.

152

0.65

30.

216

0.13

14.

294.

971.

160.

563

1413

.312

.90.

5

5.0

900.

653

0.19

70.

150

0.52

50.

325

0.15

04.

353.

510.

810.

568

21.

61.

00.

6

5.0

00.

652

0.29

80.

050

0.75

10.

210

0.03

813

.06

19.5

81.

500.

857

00.

00.

00.

0

5.0

300.

650

0.29

90.

051

0.74

30.

215

0.04

312

.78

17.4

81.

370.

855

21.

71.

30.

4

5.0

450.

652

0.29

80.

051

0.73

00.

222

0.04

812

.85

15.3

01.

190.

854

32.

62.

20.

4

5.0

600.

649

0.30

10.

051

0.70

00.

241

0.05

912

.80

11.9

70.

930.

856

43.

53.

20.

4

5.0

900.

648

0.30

20.

051

0.59

50.

306

0.10

012

.80

5.98

0.47

0.85

61

0.7

0.3

0.4

5.0

00.

664

0.17

10.

166

0.75

80.

123

0.11

94.

016.

341.

580.

508

10.

30.

10.

2

5.0

300.

661

0.17

20.

167

0.73

90.

135

0.12

63.

975.

841.

470.

508

55.

25.

00.

2

5.0

450.

664

0.17

10.

165

0.71

40.

154

0.13

14.

045.

431.

350.

510

98.

37.

80.

5

5.0

600.

664

0.17

10.

165

0.66

80.

188

0.14

44.

014.

631.

160.

508

1111

.010

.50.

5

5.0

900.

662

0.17

20.

166

0.54

30.

287

0.17

03.

993.

210.

800.

508

11.

10.

60.

5

5.0

00.

703

0.15

10.

145

0.78

80.

108

0.10

44.

847.

571.

560.

510

10.

30.

10.

2

5.0

300.

702

0.15

10.

147

0.77

20.

118

0.11

04.

797.

011.

460.

508

54.

34.

00.

3

5.0

450.

700

0.15

20.

147

0.74

60.

136

0.11

84.

756.

331.

330.

508

77.

16.

60.

5

5.0

600.

702

0.15

10.

146

0.70

50.

167

0.12

84.

815.

501.

140.

509

99.

18.

70.

5

5.0

900.

703

0.15

10.

146

0.58

20.

262

0.15

64.

823.

730.

770.

508

21.

00.

40.

6

5.0

00.

700

0.20

00.

100

0.78

70.

141

0.07

27.

0210

.90

1.55

0.66

71

0.4

0.1

0.3

5.0

300.

701

0.20

10.

098

0.76

90.

156

0.07

57.

1710

.31

1.44

0.67

26

6.2

5.8

0.4

5.0

450.

701

0.20

10.

098

0.74

00.

181

0.08

07.

149.

271.

300.

672

109.

38.

90.

4

5.0

600.

700

0.20

10.

099

0.69

00.

222

0.08

87.

117.

881.

110.

671

1313

.012

.40.

6

5.0

900.

700

0.20

20.

098

0.55

80.

339

0.10

37.

135.

400.

760.

673

11.

20.

90.

4

5.0

00.

702

0.23

70.

060

0.79

00.

166

0.04

511

.63

17.6

41.

520.

797

10.

80.

30.

5

5.0

300.

701

0.23

90.

061

0.76

80.

185

0.04

711

.56

16.2

81.

410.

797

87.

37.

10.

2

5.0

450.

701

0.23

90.

060

0.73

80.

212

0.05

011

.65

14.7

61.

270.

799

1211

.311

.00.

4

5.0

600.

700

0.23

90.

061

0.68

50.

259

0.05

611

.47

12.2

71.

070.

797

1615

.715

.10.

6

5.0

900.

700

0.23

90.

061

0.54

80.

387

0.06

511

.45

8.45

0.74

0.79

63

2.0

1.2

0.8

5.0

00.

701

0.29

90.

000

0.79

30.

207

0.00

03.

8E+

166.

2E+

161.

631.

000

11.

00.

50.

5

5.0

300.

700

0.30

00.

000

0.77

00.

230

0.00

03.

8E+

165.

5E+

161.

431.

000

1010

.09.

40.

6

5.0

450.

700

0.30

00.

000

0.73

70.

263

0.00

03.

8E+

164.

6E+

161.

201.

000

1515

.114

.60.

5

5.0

600.

700

0.30

00.

000

0.68

60.

314

0.00

03.

8E+

163.

6E+

160.

931.

000

2121

.020

.40.

65.

090

0.70

00.

300

0.00

00.

534

0.46

60.

000

3.8E

+16

1.9E

+16

0.49

1.00

012

6.2

3.5

2.7

volu

me

surf

ace

83

Page 94: Glaciotectonic Shear Zones: Surface Sample Bias and Clast ... · Daniel M. Davis, Advisor, Professor ... Long Island surface geology is diverse in glacial settings and glaciotectonic

aspe

ctvo

lsu

r su

r(s1

/s3)

/ol

d K

ang.

dis.

AV

G +

ang.

dis.

ang.

dis.

ratio

( a

/c)

θ (°

) s1

s2s3

s1s2

s3 (

s1/s

3)(s

1/s3

)vo

l(s1

/s3)

s2/

s2+s

3M

AX

(˚)

ST D

EV

(˚)

AV

G (

˚)ST

DE

V (

˚)5.

00

0.75

00.

199

0.05

10.

825

0.13

80.

037

14.7

122

.23

1.51

0.79

60

0.0

0.0

0.0

5.0

300.

747

0.20

20.

051

0.81

60.

143

0.04

114

.65

20.1

01.

370.

798

21.

51.

20.

4

5.0

450.

750

0.20

00.

050

0.80

60.

149

0.04

514

.91

17.7

21.

190.

799

22.

02.

00.

0

5.0

600.

750

0.19

90.

051

0.78

10.

162

0.05

714

.76

13.6

70.

930.

797

33.

03.

00.

0

5.0

900.

749

0.20

00.

050

0.68

00.

217

0.10

314

.85

6.62

0.45

0.79

91

0.3

0.1

0.2

5.0

00.

760

0.12

20.

118

0.83

10.

086

0.08

36.

449.

981.

550.

508

10.

30.

10.

2

5.0

300.

762

0.12

20.

117

0.82

00.

094

0.08

76.

539.

451.

450.

511

43.

33.

00.

3

5.0

450.

762

0.12

10.

116

0.80

00.

108

0.09

26.

558.

661.

320.

511

55.

24.

80.

4

5.0

600.

761

0.12

20.

117

0.76

10.

135

0.10

46.

497.

341.

130.

510

77.

06.

50.

5

5.0

900.

761

0.12

20.

117

0.64

10.

225

0.13

46.

494.

790.

740.

509

11.

10.

60.

5

5.0

00.

794

0.15

00.

057

0.85

60.

103

0.04

014

.06

21.3

01.

520.

726

10.

40.

10.

3

5.0

300.

793

0.15

00.

057

0.84

10.

116

0.04

313

.92

19.6

91.

410.

725

44.

23.

90.

4

5.0

450.

793

0.15

10.

057

0.81

80.

135

0.04

613

.96

17.7

31.

270.

726

66.

25.

80.

4

5.0

600.

793

0.14

90.

058

0.77

80.

168

0.05

313

.69

14.6

11.

070.

720

88.

27.

70.

5

5.0

900.

793

0.15

00.

056

0.65

20.

280

0.06

814

.07

9.54

0.68

0.72

71

1.1

0.6

0.5

5.0

00.

800

0.10

20.

098

0.86

10.

071

0.06

88.

2112

.60

1.53

0.51

21

0.3

0.1

0.2

5.0

300.

798

0.10

30.

099

0.84

80.

078

0.07

38.

0811

.59

1.43

0.51

03

2.8

2.3

0.5

5.0

450.

800

0.10

20.

098

0.83

30.

090

0.07

88.

1810

.75

1.31

0.51

04

4.2

3.8

0.4

5.0

600.

801

0.10

20.

098

0.80

00.

113

0.08

78.

209.

211.

120.

510

65.

35.

10.

2

5.0

900.

800

0.10

20.

098

0.68

50.

197

0.11

98.

175.

770.

710.

511

11.

00.

50.

5

5.0

00.

801

0.16

50.

034

0.86

20.

113

0.02

423

.54

35.4

61.

510.

828

00.

00.

00.

0

5.0

300.

801

0.16

50.

033

0.84

80.

127

0.02

523

.98

33.3

41.

390.

831

54.

34.

00.

3

5.0

450.

801

0.16

50.

034

0.82

30.

149

0.02

823

.76

29.4

51.

240.

830

76.

66.

20.

4

5.0

600.

800

0.16

60.

034

0.78

00.

188

0.03

323

.37

23.9

81.

030.

829

99.

18.

70.

5

5.0

900.

803

0.16

40.

034

0.65

50.

303

0.04

223

.84

15.5

70.

650.

829

11.

20.

80.

4

5.0

00.

799

0.16

70.

034

0.86

10.

115

0.02

423

.65

35.3

91.

500.

831

00.

00.

00.

0

5.0

300.

798

0.16

80.

034

0.85

50.

118

0.02

723

.64

32.3

01.

370.

833

11.

01.

00.

0

5.0

450.

797

0.17

00.

034

0.84

60.

124

0.03

023

.75

28.1

81.

190.

835

21.

31.

10.

2

5.0

600.

798

0.16

80.

034

0.82

90.

134

0.03

723

.84

22.4

30.

940.

834

22.

21.

90.

3

5.0

900.

799

0.16

80.

033

0.74

10.

188

0.07

123

.90

10.4

60.

440.

833

00.

00.

00.

0

5.0

00.

833

0.13

50.

031

0.88

50.

093

0.02

226

.53

39.6

41.

490.

812

10.

40.

10.

3

5.0

300.

833

0.13

40.

032

0.87

20.

104

0.02

425

.83

35.9

21.

390.

806

33.

03.

00.

0

5.0

450.

832

0.13

60.

032

0.85

10.

122

0.02

725

.92

32.1

51.

240.

808

55.

24.

90.

3

5.0

600.

833

0.13

40.

033

0.81

50.

154

0.03

125

.38

26.0

91.

030.

803

77.

26.

70.

55.

090

0.83

30.

135

0.03

20.

692

0.26

60.

042

26.2

116

.44

0.63

0.80

91

1.1

0.6

0.5

volu

me

surf

ace

84

Page 95: Glaciotectonic Shear Zones: Surface Sample Bias and Clast ... · Daniel M. Davis, Advisor, Professor ... Long Island surface geology is diverse in glacial settings and glaciotectonic

aspe

ctvo

lsu

r su

r(s1

/s3)

/ol

d K

ang.

dis.

AV

G +

ang.

dis.

ang.

dis.

ratio

( a

/c)

θ (°

) s1

s2s3

s1s2

s3 (

s1/s

3)(s

1/s3

)vo

l(s1

/s3)

s2/

s2+s

3M

AX

(˚)

ST D

EV

(˚)

AV

G (

˚)ST

DE

V (

˚)5.

00

0.86

10.

071

0.06

80.

905

0.04

90.

047

12.7

319

.34

1.52

0.51

20

0.0

0.0

0.0

5.0

300.

861

0.07

10.

068

0.89

70.

053

0.05

012

.72

18.1

11.

420.

513

22.

11.

60.

5

5.0

450.

860

0.07

10.

068

0.88

40.

062

0.05

412

.65

16.4

81.

300.

512

32.

82.

40.

5

5.0

600.

861

0.07

10.

068

0.86

00.

080

0.06

112

.71

14.1

91.

120.

513

43.

63.

20.

4

5.0

900.

860

0.07

10.

069

0.75

80.

151

0.09

112

.54

8.37

0.67

0.51

01

0.7

0.3

0.4

5.0

00.

903

0.05

00.

047

0.93

30.

034

0.03

319

.07

28.7

01.

510.

513

00.

00.

00.

0

5.0

300.

902

0.05

00.

048

0.92

80.

037

0.03

518

.99

26.6

91.

410.

513

11.

01.

00.

0

5.0

450.

901

0.05

10.

048

0.91

80.

044

0.03

818

.79

24.4

11.

300.

514

22.

21.

90.

4

5.0

600.

902

0.05

00.

048

0.90

10.

056

0.04

418

.68

20.6

11.

100.

510

32.

32.

10.

2

5.0

900.

902

0.05

10.

048

0.81

70.

114

0.06

918

.91

11.8

60.

630.

515

10.

60.

20.

4

5.0

00.

902

0.07

90.

020

0.93

30.

053

0.01

445

.80

68.3

21.

490.

799

00.

00.

00.

0

5.0

300.

901

0.07

90.

020

0.92

50.

061

0.01

545

.17

62.9

91.

400.

798

22.

21.

80.

4

5.0

450.

901

0.08

00.

020

0.91

20.

072

0.01

645

.33

56.6

01.

250.

800

33.

12.

70.

5

5.0

600.

900

0.08

00.

020

0.88

70.

094

0.01

944

.96

45.6

71.

020.

799

44.

23.

80.

4

5.0

900.

900

0.07

90.

020

0.78

90.

179

0.03

244

.51

24.8

90.

560.

797

10.

90.

40.

5

5.0

00.

900

0.08

30.

017

0.93

20.

056

0.01

252

.35

77.5

61.

480.

828

00.

00.

00.

0

5.0

300.

901

0.08

20.

017

0.92

50.

062

0.01

352

.70

72.8

51.

380.

826

22.

21.

90.

3

5.0

450.

901

0.08

20.

017

0.91

20.

074

0.01

451

.85

64.5

21.

240.

824

33.

12.

70.

5

5.0

600.

900

0.08

20.

017

0.88

60.

097

0.01

752

.49

53.1

61.

010.

827

44.

23.

70.

5

5.0

900.

900

0.08

20.

017

0.78

60.

186

0.02

752

.11

28.9

10.

550.

826

10.

80.

40.

5

5.0

00.

942

0.03

00.

028

0.96

10.

020

0.01

933

.78

50.4

01.

490.

518

00.

00.

00.

0

5.0

300.

941

0.03

00.

029

0.95

70.

022

0.02

133

.08

46.3

01.

400.

517

11.

00.

50.

5

5.0

450.

942

0.03

00.

028

0.95

20.

026

0.02

233

.31

43.0

61.

290.

516

11.

01.

00.

0

5.0

600.

941

0.03

10.

029

0.94

00.

034

0.02

632

.80

36.1

31.

100.

517

11.

01.

00.

0

5.0

900.

941

0.03

00.

028

0.88

20.

074

0.04

433

.17

19.8

70.

600.

516

10.

30.

10.

2

5.0

00.

959

0.03

60.

005

0.97

20.

024

0.00

319

4.77

292.

741.

510.

880

00.

00.

00.

0

5.0

300.

958

0.03

70.

005

0.96

80.

028

0.00

419

2.77

267.

451.

390.

880

11.

01.

00.

0

5.0

450.

959

0.03

60.

005

0.96

30.

033

0.00

420

1.26

243.

791.

210.

884

11.

01.

00.

0

5.0

600.

959

0.03

60.

005

0.95

10.

044

0.00

519

5.71

193.

720.

990.

880

22.

11.

60.

5

5.0

900.

958

0.03

70.

005

0.89

00.

100

0.01

019

9.95

94.0

90.

470.

884

10.

40.

10.

3

5.0

00.

979

0.01

10.

010

0.98

60.

007

0.00

710

0.74

149.

811.

490.

529

00.

00.

00.

0

5.0

300.

979

0.01

10.

010

0.98

50.

008

0.00

798

.29

135.

321.

380.

530

00.

00.

00.

0

5.0

450.

979

0.01

10.

010

0.98

30.

009

0.00

810

1.21

128.

091.

270.

531

00.

00.

00.

0

5.0

600.

980

0.01

10.

009

0.98

00.

012

0.00

910

4.31

113.

001.

080.

533

10.

40.

10.

3

5.0

900.

979

0.01

10.

010

0.95

40.

029

0.01

710

0.95

56.3

80.

560.

528

00.

00.

00.

0

volu

me

surf

ace

85