16
Global existence for fully nonlinear reaction-diffusion systems describing multicomponent reactive flow Martine MARION, Ecole Centrale de Lyon Dynamics and Differential Equations, IMA, June 2016 Dedicated to the memory of George Sell

Global existence for fully nonlinear reaction-diffusion ... · Global existence for fully nonlinear reaction-diffusion systems describing multicomponent reactive flow Martine MARION,

  • Upload
    others

  • View
    5

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Global existence for fully nonlinear reaction-diffusion ... · Global existence for fully nonlinear reaction-diffusion systems describing multicomponent reactive flow Martine MARION,

Global existence for fully nonlinearreaction-diffusion systems describing

multicomponent reactive flow

Martine MARION, Ecole Centrale de Lyon

Dynamics and Differential Equations, IMA, June 2016

Dedicated to the memory of George Sell

Page 2: Global existence for fully nonlinear reaction-diffusion ... · Global existence for fully nonlinear reaction-diffusion systems describing multicomponent reactive flow Martine MARION,

1 - The governing equations

2 - The diffusive fluxes : mathematical study

3 - The fundamental energy estimate

4 - Existence of weak solutions

Joint work with R. Temam

Page 3: Global existence for fully nonlinear reaction-diffusion ... · Global existence for fully nonlinear reaction-diffusion systems describing multicomponent reactive flow Martine MARION,

1 - The governing equations

• Unknowns

v ,p : velocity and pressure

θ : (reduced) temperature

Y = (Y1, . . . ,YN) : mass fractions of the N species.

• Equations for hydrodynamics and combustion

∂v∂t

+ (v ·∇)v − Pr ∆v + ∇p = edσθ

div v = 0

∂θ

∂t+ (v ·∇)θ −∆θ = −

N∑i=1

hiωi(θ,Y1, . . . ,YN)

∂Yi

∂t+ (v ·∇)Yi + ∇ · Fi = ωi(θ,Y1, . . . ,YN), 1 ≤ i ≤ N

Page 4: Global existence for fully nonlinear reaction-diffusion ... · Global existence for fully nonlinear reaction-diffusion systems describing multicomponent reactive flow Martine MARION,

1 - The governing equations

• Chemical rates : Arrhenius law

R reversible reactions :∑N

i=1 νji Si ↔

∑Ni=1 λ

jiSi , 1 ≤ j ≤ R

Production rate of species i : ωi =∑R

j=1(λji − ν

ji )rj

Reaction rate of reaction j : rj = K dj∏N

i=1( YiMi

)νji − K r

j∏N

i=1( YiMi

)λji

• Mathematical properties

N∑i=1

ωi(θ,Y ) = 0 for θ ≥ 0, 0 ≤ Yk ≤ 1

ωi(θ,Y ) = αi(θ,Y )− Yiβi(θ,Y ), αi ≥ 0, βi ≥ 0, boundedN∑

i=1

hiωi(0,Y ) ≤ 0

Page 5: Global existence for fully nonlinear reaction-diffusion ... · Global existence for fully nonlinear reaction-diffusion systems describing multicomponent reactive flow Martine MARION,

1 - The governing equations

Diffusion in gaseous mixtures

∂Yi∂t + (v ·∇)Yi + ∇ · Fi = ωi(θ,Y1, . . . ,YN), 1 ≤ i ≤ N

Fi = YiVi Vi = diffusion velocity of species i = v i − v

•∑N

i=1 YiVi = 0

•∇Xi =∑N

j=1,j 6=iκDij

XiXj(Vj − Vi) i = 1, . . . ,N

Stefan-Maxwell equations

Xi = mole fraction

Dij = Dji > 0 binary diffusion coefficient for species i and j

If Dij = D for all i, j :

∇Xi = − κD Fi i = 1, . . . ,N Fick’s Law

Page 6: Global existence for fully nonlinear reaction-diffusion ... · Global existence for fully nonlinear reaction-diffusion systems describing multicomponent reactive flow Martine MARION,

1 - The governing equations

• Mathematical studies

Local in time solutions or simplified models :

Giovangigli-Massot (1998)Bothe (2011), Boudin-Grec-Salvarani (2012), Juengel-Stelzer (2013),Herberg-Meyries-Prüss-Wilke (2014)

Chen-Juengel (2015)

Page 7: Global existence for fully nonlinear reaction-diffusion ... · Global existence for fully nonlinear reaction-diffusion systems describing multicomponent reactive flow Martine MARION,

2 - The diffusive fluxes : mathematical study

• Diffusion equations

∂Yi∂t + (v ·∇)Yi + ∇ · Fi = ωi(θ,Y1, . . . ,YN), 1 ≤ i ≤ N

Fi = YiVi where

∑Ni=1 YiVi = 0∑Nj=1,j 6=i

κDij

XiXj(Vj − Vi) = ∇Xi i = 1, . . . ,N

• Determination of the diffusion velocities when Yi > 0, ∀i

Y − X relations : Xi = YiMi

1YM

where YM =∑N

j=1YjMj

(N + 1) equations :

∑Ni=1 YiVi = 0

B(Y )V = −Y 2M∇X

Bij(Y ) =

−d′ijYiYj for j 6= i,

N∑k=1;k 6=i

d′ikYiYk for j = i,d′ij = κ

Dij Mi Mj

Page 8: Global existence for fully nonlinear reaction-diffusion ... · Global existence for fully nonlinear reaction-diffusion systems describing multicomponent reactive flow Martine MARION,

2 - The diffusive fluxes : mathematical study ∑Ni=1 YiVi = 0

B(Y )V = −Y 2M∇X

• The matrix B(Y ) is symmetric semi-definite positive

• For an appropriate value of γ > 0 the matrix

Cij(Y ) = Bij(Y ) + γYiYj , 1 ≤ i, j ≤ N

is symmetric positive definite∑Ni,j=1 Cij(Y )Vj · Vi ≥ γ

(∑Nj=1 Yj

)(∑Ni=1 Yi |Vi |2

)• The N + 1 equations are equivalent to

C(Y )V = −Y 2M∇X

Page 9: Global existence for fully nonlinear reaction-diffusion ... · Global existence for fully nonlinear reaction-diffusion systems describing multicomponent reactive flow Martine MARION,

2 - The diffusive fluxes : mathematical study

• Determination of the fluxes when Yi ≥ 0 ∀i,∑N

i=1 Yi > 0Fi = YiVi if Yi > 0Fi = 0 if Yi = 0

Fi = −∑N

j=1 aij(Y1, . . . ,YN)∇Yj , aij = rational functions of Y1, . . . ,YN

• Diffusion equations

∂Yi∂t + (v ·∇)Yi + ∇ · Fi = ωi(θ,Y1, . . . ,YN), 1 ≤ i ≤ N

Boundary conditions :

x ∈ Ω = (0, `)× (0,h) or (0, `)× (0, L)× (0,h)

Yi = Y ui > 0 at xd = 0, ν · Fi = 0 otherwise

Initial conditions : Yi(x , 0) = Yi,0(x) ≥ 0

Page 10: Global existence for fully nonlinear reaction-diffusion ... · Global existence for fully nonlinear reaction-diffusion systems describing multicomponent reactive flow Martine MARION,

3 - The fundamental energy estimate

∂Yi∂t + (v ·∇)Yi + ∇ · Fi = ωi(θ,Y1, . . . ,YN), 1 ≤ i ≤ N

We suppose Yi > 0 ∀i and∑N

i=1 Yi = 1. Then µi = 1Mi

log Xi is defined.

µi − µui = ∂g

∂Yi, g(Y ) =

∑Nj=1

YjMj

[log Xj − log Xu

j

]entropy of the mixture

g is convex

• ddt

∫Ω

g(Y ) +∫

Γhg(Y )−

∑Ni=1

∫Ω

F i ·∇µi =∑N

i=1

∫Ωωi(θ,Y )(µi − µu

i )

• Thanks to ωi(θ,Y ) = αi(θ,Y )− Yiβi(θ,Y )

ωi(θ,Y )(µi − µui ) ≤ c

• −∑N

i=1

∫Ω

F i ·∇µi ≥ c1∫

Ω|∇Y |2

• ddt

∫Ω

g(Y ) + c1∫

Ω|∇Y |2 ≤ c

Page 11: Global existence for fully nonlinear reaction-diffusion ... · Global existence for fully nonlinear reaction-diffusion systems describing multicomponent reactive flow Martine MARION,

3 - The fundamental energy estimate

• −∑N

i=1

∫Ω

F i ·∇µi ≥ c1∫

Ω|∇Y |2

Fi = YiVi , C(Y )V = −Y 2M∇X , Yi

Mi Xi= YM

−∑N

i=1 Fi ·∇µi = −∑N

i=1 YiVi · ∇XiMi Xi

= 1YM

∑Ni,j=1 Cij(Y )Vj · Vi

−∑N

i=1 Fi ·∇µi ≥ γ(∑N

i=1 Yi |Vi |2)

≥ c|∇X |2

≥ c1|∇Y |2

Page 12: Global existence for fully nonlinear reaction-diffusion ... · Global existence for fully nonlinear reaction-diffusion systems describing multicomponent reactive flow Martine MARION,

4 - Existence of solutions

Introduction of normal unknowns

Kawashima-Shizuta (1988), Giovangigli-Massot (1996),Degond-Genieys-Juengel (1997)

Ei : ∂Yi∂t + (v ·∇)Yi + ∇ · Fi = ωi(θ,Y ) ; E1 + ....+ EN = 0

∑Ni=1 Ei

log XiMi

=∑N−1

i=1 Ei ( log XiMi−

log(1−∑N−1

j=1 Xj )

MN)

ξi = log XiMi−

log(1−∑N−1

j=1 Xj )

MN, i = 1, ...,N − 1 (∗)

• For ξ ∈ RN−1 the relations (∗) determine uniquely X = (X1, . . . ,XN)

with 0 < Xi < 1 ∀i and∑N

i=1 Xi = 1

• Y ∈ RN can be expressed as C∞ function of ξ ∈ RN−1 with 0 < Yi < 1

and∑N

i=1 Yi = 1 ; we set : Y = Y(ξ)

Page 13: Global existence for fully nonlinear reaction-diffusion ... · Global existence for fully nonlinear reaction-diffusion systems describing multicomponent reactive flow Martine MARION,

4 - Existence of solutions

• Equations for the unknown ξ = (ξ1, ξ2, ..., ξN−1) :

∂Yi∂t + (v ·∇)Yi + ∇ · Fi = ωi(θ,Y ), 1 ≤ i ≤ N − 1

• Time discretization with time step k > 0 :

1k (Y m

i − Y m−1i ) + (vm ·∇)Y m

i +∇ · Fmi −k∆ξm

i = ωi(θm,Y m), 1 ≤ i ≤ N − 1

The ξm are defined recursively and Y m = Y(ξm). Also

vm(x) = 1k

∫ mk(m−1)k v(x , t)dt , θm(x) = 1

k

∫ mk(m−1)k θ(x , t)dt

• Boundary conditions :

ξmi = ξu

i at xd = 0

Page 14: Global existence for fully nonlinear reaction-diffusion ... · Global existence for fully nonlinear reaction-diffusion systems describing multicomponent reactive flow Martine MARION,

4 - Existence of solutions

1k (Y m

i −Y m−1i ) + (vm ·∇)Y m

i +∇ · Fmi − k∆ξm

i = ωi(θm,Y m), 1 ≤ i ≤ N− 1

ξmi = ξu

i at xd = 0

• Existence of solution by the Galerkin method

A priori estimates = discrete analogs of the fundamental energyestimate∫

Ωg(Y m)−

∫Ω

g(Y m−1) + c1k∫

Ω|∇Y m|2 + k2 ∫

Ω|∇ξm|2 ≤ ck

• Passage to the limit k → 0 : add equation for Y mN = 1−

∑N−1i=1 Y m

i

1k (Y m

i − Y m−1i ) + (vm ·∇)Y m

i + ∇ · Fmi −k∆ξm

i = ωi(θm,Y m), 1 ≤ i ≤ N

ξNi = −

∑N−1i=1 ξi

Page 15: Global existence for fully nonlinear reaction-diffusion ... · Global existence for fully nonlinear reaction-diffusion systems describing multicomponent reactive flow Martine MARION,

4 - The full system

Add equations for the velocity, pressure and temperature :

1k (Y m

i −Y m−1i ) + (vm ·∇)Y m

i +∇ · Fmi − k∆ξm

i = ωi(θm,Y m), 1 ≤ i ≤ N− 1

1k (vm − vm−1) + (vm ·∇)vm − Pr ∆vm + ∇pm = edσθ

m, divvm = 0,

1k (θm − θm−1) + (vm ·∇)θm −∆θm = −

∑Ni=1 hiωi(θ

m+,Y m)

Existence of weak solutions for the equations coupled with thehydrodynamics and temperature equations

Page 16: Global existence for fully nonlinear reaction-diffusion ... · Global existence for fully nonlinear reaction-diffusion systems describing multicomponent reactive flow Martine MARION,