25
Global Scenarios for Fast Reactor Deployment 7 October 2008 Hotel Lake View Mito, Mito, Japan Kiyoshi ONO, Atsushi Kato, Akira OHTAKI Japan Atomic Energy Agency The Tenth OECD Nuclear Energy Agency Information Exchange Meeting on Actinide and Fission Product Partitioning and Transmutation

Global Scenarios for Fast Reactor Deployment · 2008-10-17 · Global Scenarios for Fast Reactor Deployment 7 October 2008 Hotel Lake View Mito, Mito, Japan Kiyoshi ONO, Atsushi Kato,

  • Upload
    others

  • View
    10

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Global Scenarios for Fast Reactor Deployment · 2008-10-17 · Global Scenarios for Fast Reactor Deployment 7 October 2008 Hotel Lake View Mito, Mito, Japan Kiyoshi ONO, Atsushi Kato,

Global Scenarios for Fast Reactor Deployment

7 October 2008

Hotel Lake View Mito, Mito, Japan

Kiyoshi ONO, Atsushi Kato, Akira OHTAKI

Japan Atomic Energy Agency

The Tenth OECD Nuclear Energy Agency

Information Exchange Meeting on

Actinide and Fission Product Partitioning and Transmutation

Page 2: Global Scenarios for Fast Reactor Deployment · 2008-10-17 · Global Scenarios for Fast Reactor Deployment 7 October 2008 Hotel Lake View Mito, Mito, Japan Kiyoshi ONO, Atsushi Kato,

1

1. Purpose

Based on homogeneous scenario concept, we grasp the maximum scale of FBR

deployment, natural uranium saving benefit and so on if JSFR (main concept selected in

the Japanese Feasibility Studies on Commercialized FBR Cycle System; sodium-cooled

FBR with MOX fuel) is deployed in the world.

Main assumptions are as follows,

(1) Perspective of world nuclear generating electricity;

IPCC SRES-B2 scenario, IIASA/WEC C2 scenario

- about 2,000GWe at 2050, about 5,000GWe constant after 2100 in SRES-B2 scenario

- about 1,000GWe at 2050, about 2,200GWe constant after 2100 in IIASA-C2 scenario

(2) Timing of FBR deployment in world key countries;

- India: 2020

- Russia: 2020-2025

- France: about 2040

- China: 2030-2035

- Japan: about 2050

FBRs are assumed to be deployed

at 2020 - 2070

Page 3: Global Scenarios for Fast Reactor Deployment · 2008-10-17 · Global Scenarios for Fast Reactor Deployment 7 October 2008 Hotel Lake View Mito, Mito, Japan Kiyoshi ONO, Atsushi Kato,

2

0

1,000

2,000

3,000

4,000

5,000

6,000

1950 2000 2050 2100 2150 2200

0

20,000

40,000

60,000

80,000

100,000

120,000

1990 2000 2010 2020 2030 2040 2050 2060 2070 2080 2090 2100

IPCC-A1C

IPCC-A2

IPCC-B1

IPCC-B2

IIASA-A1

IIASA-A2

IIASA-A3

IIASA-B

IIASA-C1

IIASA-C2

IEA-AlternativeScenarioIEA-ReferenceScenarioIAEA-Low

IAEA-High

2.1 Assumption of nuclear power generation and

capacity in the world (IPCC SRES-B2)

World nuclear power capacity in SRES-B2

(No FBR deployment)

Nuclear capacity after 2100 is constant

BWR

PWR

ABWR(20%)

APWR(70%)

HWR-U(10%)

Nu

clea

r p

ow

er g

ener

ati

on

(T

Wh

)

Year

*1

Typical perspectives for nuclear power

generation

IPCC SRES-B2

Note IPCC :The Intergovernmental Panel on Climate Change, IIASA :International Institute for Applied System Analysis, WEC: World Energy Council*1: By MESSAGE Code

Nu

clea

r C

ap

aci

ty (

GW

e)

Year

Load Factor 90%

IIASA/WEC-C2

Page 4: Global Scenarios for Fast Reactor Deployment · 2008-10-17 · Global Scenarios for Fast Reactor Deployment 7 October 2008 Hotel Lake View Mito, Mito, Japan Kiyoshi ONO, Atsushi Kato,

3

Ref.)Mi Xu, Status and Prospects of Sustainable Nuclear Power Supply in

China, GLOBAL2005, No.511, Tsukuba, JAPAN (2005).

237

79400

160

580

270

20

50

2.1 11.7 4060

1650

600

960

72.4327

237

79400

160

580

270

20

50

2.1 11.7 4060

1650

600

960

72.4327

Electric capacity development envisaged in China

250GWe

Projected Installed Power Capacity in India

Ref. )Department of Atomic Energy (DAE), http://www.dae.gov.in/

275GWe

2.2 Perspectives for nuclear power generation and

capacity in China and India

Page 5: Global Scenarios for Fast Reactor Deployment · 2008-10-17 · Global Scenarios for Fast Reactor Deployment 7 October 2008 Hotel Lake View Mito, Mito, Japan Kiyoshi ONO, Atsushi Kato,

4

2.3 Main assumptions of nuclear power reactor system

- characteristic data -

Life time 60 years for all type of reactors

Reactor

type

BWR Burn-up 45GWd/t, for Reactors which will be deployed by 2019

ABWR Burn-up 60GWd/t, for Reactors which will be deployed after 2020

PWR Burn-up 49GWd/t, for Reactors which will be deployed by 2019

APWR Burn-up 60GWd/t, for Reactors which will be deployed after 2020

HWR-U Burn-up 8.3GWd/t, natural uranium fuels for CANDU

FBR

High Breeding ratio type(Sodium-cooled, MOX fuel)

: Breeding ratio 1.20, Average Burn-up 55GWd/t

Low Breeding ratio type(Sodium-cooled, MOX fuel)

: Breeding ratio 1.03, Average Burn-up 115GWd/t

Deploym

ent ratio

BWR&ABWR 20% of all capacity except FBR

PWR&APWR 70% of all capacity except FBR

HWR-U 10% of all capacity except FBR

Page 6: Global Scenarios for Fast Reactor Deployment · 2008-10-17 · Global Scenarios for Fast Reactor Deployment 7 October 2008 Hotel Lake View Mito, Mito, Japan Kiyoshi ONO, Atsushi Kato,

5

2.4 Main assumptions of nuclear fuel cycle system

Ex-core time period

LWR 4 years(Cooling time 3years, Reprocessing 0.5 year, Fab. & trans. 0.5 year)

FBR 5 years (Cooling time 4years, Reprocessing 0.5 year, Fabrication 0.5 year)3 years (Cooling time 2years, Reprocessing 0.5 year, Fabrication 0.5 year)

Enrichment plant Capacity is not limited.

Fuel fabrication plant Capacity is not limited.

Reprocessing Plant

LWR-UO2 -2009: 4,100 ton-HM/year2010-just before FBR development: 4,900 ton HM/yearAfter FBR deployment: The reprocessing plant capacity is gradually increased in accordance with amount of spent fuels discharged from FBR.

LWR-MOX

They will be processed in the FBR reprocessing plant in 20-40 years.

HWR Long-term storage of spent fuels

FBR Reprocessing of all spent fuels

Loss factor LWR, HWR

Enrichment 0%, Conversion0.5%, Fabrication 0.1%, Reprocessing 0.5%

FBR Fabrication 0.1%, Reprocessing 0.1%

U-235 enrichment 0.25%, 0.2%

Other The uranium recovered from spent fuels is re-enriched

Page 7: Global Scenarios for Fast Reactor Deployment · 2008-10-17 · Global Scenarios for Fast Reactor Deployment 7 October 2008 Hotel Lake View Mito, Mito, Japan Kiyoshi ONO, Atsushi Kato,

6

3. Analysis cases for IPCC SRES-B2 scenario

CaseFBR deployment Tails assay

FBR Ex-core time

period

In 2020 In 2030 0.25% 0.20% 5 years*1 3 years*2

Resources free

LWR once-through (A1)

- - X - -

Deployment in 2030 (A2) X X X

Deployment in 2020(A3)

X X X

Uranium saving(A4) X X X

Resources restriction

*3

LWR once-through (B1) X X

Base case (B2) X X X

Ex-core Time 3 years (B3) X X X

Uranium saving(B4) X X X

Note

*1: 5 years (Cooling time 4years, Reprocessing 0.5 year, Fabrication 0.5 year)

*2: 3 years (Cooling time 2years, Reprocessing 0.5 year, Fabrication 0.5 year)

*3: Limitation of natural uranium 14.8 million ton U after 2005

Page 8: Global Scenarios for Fast Reactor Deployment · 2008-10-17 · Global Scenarios for Fast Reactor Deployment 7 October 2008 Hotel Lake View Mito, Mito, Japan Kiyoshi ONO, Atsushi Kato,

7

39

8

0

10

20

30

40

50

2000 2020 2040 2060 2080 2100

0

1,000

2,000

3,000

4,000

5,000

6,000

7,000

2000 2020 2040 2060 2080 2100

4.1 Nuclear capacity and Cumulative U demands of LWR once-through in the world

Year

LWR

ALWR

HWR

Total

Total Conventional Uranium

Resources(14.8 million tonU)*1

Case-A1

*1 OECD/NEA-IAEA. Uranium 2005:Resources, Production and Demand (2006)

Pu recyclingin LWR

Year

World nuclear capacity(Case-A1:LWR once-through)

Nu

clea

r C

ap

aci

ty (

GW

e)

Acc

um

ula

tiv

e u

ran

ium

dem

an

ds

(mil

lio

n t

on

U)

World cumulative natural uranium demands after 2005 (Case-A1:LWR once-through)

Page 9: Global Scenarios for Fast Reactor Deployment · 2008-10-17 · Global Scenarios for Fast Reactor Deployment 7 October 2008 Hotel Lake View Mito, Mito, Japan Kiyoshi ONO, Atsushi Kato,

8

0

1,000

2,000

3,000

4,000

5,000

6,000

7,000

2000 2050 2100 2150 2200

Year

LWRAdv. LWR

HWR

Total

Case-A3

Pu recyclingin LWR

World nuclear capacity(Case-A3:FBR deployment in 2020)

Nu

clea

r C

ap

aci

ty (

GW

e)

FBR(B.R.1.2)

FBR(B.R.1.03)

0

1,000

2,000

3,000

4,000

5,000

6,000

7,000

2000 2050 2100 2150 2200

4.2 Nuclear capacity of CaseA2-A4

Year

LWRAdv. LWR

HWR

Total

Case-A2&A4

Pu recyclingin LWR

World nuclear capacity(Case-A2&A4:FBR deployment in 2030)

Nu

clea

r C

ap

aci

ty (

GW

e)

FBR(B.R.1.2)

FBR(B.R.1.03)

Page 10: Global Scenarios for Fast Reactor Deployment · 2008-10-17 · Global Scenarios for Fast Reactor Deployment 7 October 2008 Hotel Lake View Mito, Mito, Japan Kiyoshi ONO, Atsushi Kato,

9

26.625.424.4

0

5

10

15

20

25

30

2000 2050 2100 2150 2200

4.3 Cumulative Natural Uranium demands of Case A2-A4

Total Conventional Uranium Resources after 2005(14.8 million tonU)

Year

Acc

um

ula

tive

ura

niu

m d

ema

nd

s (m

illi

on

to

nU

)

World cumulative natural uranium demands after 2005

Case-A2: FBR introduction in 2030(Tails assay 0.25%)

Case-A3: FBR introduction in 2020(Tails assay 0.25%)

Case-A4: FBR deployment in 2030(Tails assay 0.20%)

Page 11: Global Scenarios for Fast Reactor Deployment · 2008-10-17 · Global Scenarios for Fast Reactor Deployment 7 October 2008 Hotel Lake View Mito, Mito, Japan Kiyoshi ONO, Atsushi Kato,

10

0

10,000

20,000

30,000

40,000

50,000

2000 2050 2100 2150 2200

0

10,000

20,000

30,000

40,000

50,000

2000 2050 2100 2150 2200

Year

Case-A2

LWR(MOX) SF

FBR reprocessing plants capacity in the world(Case-A2: FBR deployment in 2030)

Rep

roce

ssin

g C

ap

aci

ty (

ton

/yea

r)Year

Amount of processed

LWR(UO2) SF

LWR reprocessing plants capacity

Case-A2

LWR reprocessing plants capacity in the world(Case-A2: FBR deployment in 2030)

Rep

roce

ssin

g C

ap

aci

ty (

ton

/yea

r)4.4 Capacity for each type of reprocessing plants of Case-A2

FBR reprocessing plants capacity

Amount of processed

FBR SF

Page 12: Global Scenarios for Fast Reactor Deployment · 2008-10-17 · Global Scenarios for Fast Reactor Deployment 7 October 2008 Hotel Lake View Mito, Mito, Japan Kiyoshi ONO, Atsushi Kato,

11

0

1,000

2,000

3,000

4,000

5,000

6,000

7,000

2000 2050 2100 2150 2200

0

1,000

2,000

3,000

4,000

5,000

6,000

7,000

2000 2050 2100 2150 2200

Year

LWR

Adv. LWR

HWR

Case-B2

Pu recyclingin LWR

World nuclear capacity(Case-B2:Base case)

Nu

clea

r C

ap

aci

ty (

GW

e)

FBR(B.R.1.2)

FBR(B.R.1.03)

4.5 Nuclear capacity of Case-B1&B2

Year

LWR

Adv. LWR

HWR

IPCC SRES-B2

Case-B1

Pu recyclingin LWR

World nuclear capacity(Case-B1: LWR once-through )

Nu

clea

r C

ap

aci

ty (

GW

e)

IPCC SRES-B2 Shortage of 1,630GWe

Page 13: Global Scenarios for Fast Reactor Deployment · 2008-10-17 · Global Scenarios for Fast Reactor Deployment 7 October 2008 Hotel Lake View Mito, Mito, Japan Kiyoshi ONO, Atsushi Kato,

12

0

1,000

2,000

3,000

4,000

5,000

6,000

7,000

2000 2050 2100 2150 2200

0

1,000

2,000

3,000

4,000

5,000

6,000

7,000

2000 2050 2100 2150 2200

Year

Case-B4

Pu recyclingin LWR

World nuclear capacity(Case-B4:Tails assay 0.2%)

Nu

clea

r C

ap

aci

ty (

GW

e)

4.6 Nuclear capacity for each type reactor of Case-B3&B4

IPCC SRES-B2

Year

LWR

ALWR

HWR

Case-B3

Pu recyclingin LWR

World nuclear capacity(Case-B3:Ex-core time period 3years)

Nu

clea

r C

ap

aci

ty (

GW

e)

FBR(B.R.1.2)

FBR(B.R.1.03)

IPCC SRES-B2

LWR

ALWR

HWR

FBR(B.R.1.2)

FBR(B.R.1.03)

Maximum shortage of

1,360GWe

Maximum shortage of

360GWe

Page 14: Global Scenarios for Fast Reactor Deployment · 2008-10-17 · Global Scenarios for Fast Reactor Deployment 7 October 2008 Hotel Lake View Mito, Mito, Japan Kiyoshi ONO, Atsushi Kato,

13

14.314.7

0

5

10

15

20

25

30

2000 2050 2100 2150 2200

4.7 Cumulative Natural Uranium demands of Case B1-B4

Total Conventional Uranium Resources(14.8 million tonU)

Limit of natural uranium 14.8 million ton-U after 2005

Year

Acc

um

ula

tive

ura

niu

m d

eman

ds

(mil

lion

ton

U)

World cumulative natural uranium demand after 2005(Case B1-B4 )

FBR deployment(B2-B4)

Once-through(B1)

Page 15: Global Scenarios for Fast Reactor Deployment · 2008-10-17 · Global Scenarios for Fast Reactor Deployment 7 October 2008 Hotel Lake View Mito, Mito, Japan Kiyoshi ONO, Atsushi Kato,

14

4.8 Summary of scenario study in IPCC SRES-B2 scenario

Case

Cumulative natural uranium

demand (million ton U)Nuclear

capacity in

2100 (GWe)

The year whenshift to FBR will finish *

(year)

The year whennuclear

generation will reach SRES-B2

caseat 2100 maximum

Resource

free

LWR once-

through (A1)39.1 - 5,000 - -

Introduction in

2030 (A2)19.1 26.6 5,000 2160 -

Introduction in

2020 (A3)18.2 25.4 5,000 2160 -

Uranium

saving(A4)17.4 24.4 5,000 2160 -

Resource

restriction

LWR once-

through (B1)14.3 - 290 - -

Base case (B2) 13.7 14.4 3,371 2121 2132

Ex-core Time

3years(B3)13.5 14.7 4,641 2128 2106

Uranium

saving(B4)13.6 14.7 3,642 2125 2129

*) At the year when all LWRs will be replaced by FBR

Page 16: Global Scenarios for Fast Reactor Deployment · 2008-10-17 · Global Scenarios for Fast Reactor Deployment 7 October 2008 Hotel Lake View Mito, Mito, Japan Kiyoshi ONO, Atsushi Kato,

15

0

10,000

20,000

30,000

40,000

50,000

60,000

70,000

1990 2000 2010 2020 2030 2040 2050 2060 2070 2080 2090 2100

IPCC/SRES-A1(AIM)IPCC/SRES-A2(ASF)IPCC/SRES-B1(IMAGE)IPCC/SRES-B2(MESSAGE)IIASA/WEC-A1

IIASA/WEC-A2

IIASA/WEC-A3

IIASA/WEC-B

IIASA/WEC-C1

IIASA/WEC-C2

IEA-AlternativeScenarioIEA-ReferenceScenarioIAEA-Low

IAEA-High

Typical perspectives for nuclear power generation

Nu

clea

r p

ow

er g

ener

ati

on

(T

Wh

)

Year

IIASA/WEC-C2

Note IPCC :The Intergovernmental Panel on Climate Change), SRES: Special Report Emission ScenariosIIASA : International Institute for Applied System Analysis, WEC: World Energy Council

IPCC SRES-B2

5.1 Assumption of nuclear power generation and capacity in the

world (IIASA/WEC-C2)

Page 17: Global Scenarios for Fast Reactor Deployment · 2008-10-17 · Global Scenarios for Fast Reactor Deployment 7 October 2008 Hotel Lake View Mito, Mito, Japan Kiyoshi ONO, Atsushi Kato,

16

0

500

1,000

1,500

2,000

2,500

3,000

1950 2000 2050 2100 2150 2200

BWR PWR ABWR

APWR HWR-U BWR⇒BWRプルサーマル

PWR⇒PWRプルサーマル 合計

Nu

clea

r ca

pa

city

(G

We)

Year

IIASA/WEC-C2 scenario(Nuclear capacity after 2100 is constant)

BWRPWR

ABWR (20%)

APWR (70%)

HWR-U (10%)

World nuclear power capacity (IIASA/WEC-C2)

0

500

1,000

1,500

2,000

2,500

2000 2050 2100 2150 2200

Nu

clea

r ca

pa

city

(G

We)

Year

FBR deploymentin 2030

IIASA/WEC-C2 scenario(Nuclear capacity after 2100 is constant)

FBR deployment in 2050

FBR deployment in 2070

FBR deployment capacity

BWR ⇒BWR-MOX

PWR ⇒PWR-MOX TOTAL

5.2 Nuclear capacity in IIASA/WEC-C2 scenario

Page 18: Global Scenarios for Fast Reactor Deployment · 2008-10-17 · Global Scenarios for Fast Reactor Deployment 7 October 2008 Hotel Lake View Mito, Mito, Japan Kiyoshi ONO, Atsushi Kato,

17

World cumulative natural uranium demands after 2005

0

500

1,000

1,500

2,000

2000 2050 2100 2150 2200

FBR deployment in 2050

Na

tura

l u

ran

ium

dem

an

ds

(ten

th

ou

san

d to

nU

)

Year

Total Conventional UraniumResources (14.8 million tonU)

Identified Resources

(4.74million tU)

FBR deploymentin 2030

LWR once-through FBR deployment

in 2070

0

5,000

10,000

15,000

20,000

25,000

2000 2050 2100 2150 2200R

epro

cess

ing

Ca

pa

city

(to

n/y

ear)

Year

Amount of processed LWR (UO2) SF

LWR(MOX) SF

Amount of processed FBR SF

FBR reprocessing

plants capacity

FBR reprocessing plants capacity

(FBR deployment in 2050)

5.3 Cumulative U demands and Capacity for reprocessing plants

of IIASA/WEC-C2 scenario

Page 19: Global Scenarios for Fast Reactor Deployment · 2008-10-17 · Global Scenarios for Fast Reactor Deployment 7 October 2008 Hotel Lake View Mito, Mito, Japan Kiyoshi ONO, Atsushi Kato,

18

6. Conclusions

- In IPCC SRES-B2 scenario, cumulative natural uranium demands will

exceed the total conventional uranium resources of 14.8 million ton

(OECD/NEA-IAEA, Uranium 2005), even if FBRs are deployed at 2020.

- Under constrained condition of the total conventional uranium resources,

it is difficult to supply electricity assumed in IPCC SRES-B2 scenario.

- Shortening of the duration of the ex-core time period and decrease of tails

assay concentration have effects on decrease of cumulative natural

uranium demands.

- In IIASA/WEC-C2 scenario, cumulative uranium demands will saturate

within 14.8 million ton, if FBRs with about 1.2 BR are deployed before 2050.

Page 20: Global Scenarios for Fast Reactor Deployment · 2008-10-17 · Global Scenarios for Fast Reactor Deployment 7 October 2008 Hotel Lake View Mito, Mito, Japan Kiyoshi ONO, Atsushi Kato,

19

Page 21: Global Scenarios for Fast Reactor Deployment · 2008-10-17 · Global Scenarios for Fast Reactor Deployment 7 October 2008 Hotel Lake View Mito, Mito, Japan Kiyoshi ONO, Atsushi Kato,

20

Appendix

Page 22: Global Scenarios for Fast Reactor Deployment · 2008-10-17 · Global Scenarios for Fast Reactor Deployment 7 October 2008 Hotel Lake View Mito, Mito, Japan Kiyoshi ONO, Atsushi Kato,

21

Natural Uranium Resources

OECD/NEA-IAEA.Uranium 2005:Resources, Production and Demand(2006)

Cost ranges

Identified Resources

(million ton U)Undiscovered Resources

(million ton U)Total

Conventional

Uranium

Resources

(million ton

U)

Reasonably

Assured

Resources

Inferred

Resources

Prognosticated

Resources

Speculative

Resources

Cost range

unassigned― ― ― 2.98

14.80

<US$130/kgU4.74

2.52

4.56

3.30 1.45

<US$80/kgU3.80

1.702.64 1.16

<US$40/kgU2.75

1.95 0.80

Page 23: Global Scenarios for Fast Reactor Deployment · 2008-10-17 · Global Scenarios for Fast Reactor Deployment 7 October 2008 Hotel Lake View Mito, Mito, Japan Kiyoshi ONO, Atsushi Kato,

22

17.1

0

5

10

15

20

25

30

2000 2050 2100 2150 2200

0

1,000

2,000

3,000

4,000

5,000

6,000

7,000

2000 2050 2100 2150 2200

Sample results of sodium cooled type reactor with metallic fuel

Year

LWR

ALWR

HWR

Total

Total Conventional Uranium Resources

(14.8 million tonU)

Pu recyclingin LWR

Year

World nuclear capacity(FBR with metal fuel deployment in 2020)

Nu

clea

r C

apac

ity (

GW

e)

Acc

um

ula

tiv

e u

ran

ium

dem

and

s (m

illi

on

to

nU

)

World cumulative natural uranium demand after 2005

FBR(B.R.1.26)

FBR(B.R.1.03)

FBR: Sodium cooled type reactor with metal fuelTails assay 0.2%,

The uranium recovered from LWR SF is re-enriched

Page 24: Global Scenarios for Fast Reactor Deployment · 2008-10-17 · Global Scenarios for Fast Reactor Deployment 7 October 2008 Hotel Lake View Mito, Mito, Japan Kiyoshi ONO, Atsushi Kato,

23

10.3

0

5

10

15

20

25

30

2000 2050 2100 2150 22000

1,000

2,000

3,000

4,000

5,000

6,000

7,000

2000 2050 2100 2150 2200

Sample results of IIASA/WEC-C2 scenario analysis

Year

LWR

ALWR

HWR

IIASA/WEC-C2 scenario

(Nuclear capacity after 2100 will be constant)

Total Conventional Uranium Resources

(14.8 million tonU)

Pu recyclingin LWR

Year

World nuclear capacity for IIASA/WEC-C2 case(FBR deployment in 2030)

Nu

clea

r C

apac

ity (

GW

e)

Acc

um

ula

tiv

e u

ran

ium

dem

and

s (m

illi

on

to

nU

)

World cumulative natural uranium demands after 2005(IIASA/WEC-C2 case)

FBR(B.R.1.2) FBR

(B.R.1.03)

FBR: Sodium-cooled type reactor with mixed-oxide fuelEx-core time period; 5 years, Tails assay ;0.25% The uranium recovered from LWR SF is re-enriched

Page 25: Global Scenarios for Fast Reactor Deployment · 2008-10-17 · Global Scenarios for Fast Reactor Deployment 7 October 2008 Hotel Lake View Mito, Mito, Japan Kiyoshi ONO, Atsushi Kato,

24

Fuel mass balance for FBRCoolant

Fuel type/form

Core type Breeding core type Break-even core type Breeding core type Break-even core type

Electricity output (MWe) 1,000 1,000 1,000 1,000Average burn-up (MWd/t) 54,300 114,900 55,400 153,000Breeding ratio (-) 1.20 1.03 1.26 1.03Load factor (%) 90.0 90.0 90.0 90.0Life time (Years) 60 60 60 60

CoreAxial

blanket

Radial

BlanketCore

Axial

blanket

Radial

BlanketCore

Axial

blanket

Radial

BlanketCore

Axial

blanket

Radial

BlanketInitial core loading

Heavy metal (ton) 31.663 39.094 29.656 50.079 19.261 48.753 24.366 15.101 65.176Uranium (ton) 23.850 39.094 29.656 39.753 19.261 42.712 24.366 15.101 57.370Plutonium (ton) 7.461 0.000 0.000 9.861 0.000 5.860 0.000 0.000 7.572Fissile plutonium (ton) 4.563 0.000 0.000 6.031 0.000 4.128 0.000 0.000 5.334Uranium enrichment (%) 0.300 0.300 0.300 0.300 0.300 0.300 0.300 0.300 0.300

Equiribrium fuel chargeHeavy metal (ton/year) 4.749 5.864 4.448 5.141 1.977 8.163 4.080 2.529 5.332Uranium (ton/year) 3.577 5.864 4.448 4.081 1.977 7.152 4.080 2.529 4.694Plutonium (ton/year) 1.119 0.000 0.000 1.012 0.000 0.981 0.000 0.000 0.619Fissile plutonium (ton/year) 0.684 0.000 0.000 0.619 0.000 0.691 0.000 0.000 0.436Uranium enrichment (%) 0.300 0.300 0.300 0.300 0.300 0.300 0.300 0.300 0.300

Initial core dischargeHeavy metal (ton/year) 4.560 5.848 4.445 4.945 1.967 7.886 4.072 2.525 5.191Uranium (ton/year) 3.436 5.788 4.423 3.909 1.939 6.852 4.036 2.506 4.544Plutonium (ton/year) 1.071 0.060 0.022 0.988 0.028 1.002 0.036 0.018 0.627Fissile plutonium (ton/year) 0.645 0.055 0.021 0.599 0.026 0.705 0.035 0.018 0.440Uranium enrichment (%) 0.258 0.278 0.288 0.257 0.269 0.247 0.280 0.282 0.269

Equiribrium fuel dischargeHeavy metal (ton/year) 3.991 5.799 4.433 4.357 1.937 7.330 4.058 2.517 4.482Uranium (ton/year) 3.011 5.560 4.345 3.392 1.823 6.253 3.950 2.462 3.797Plutonium (ton/year) 0.925 0.239 0.088 0.916 0.113 1.044 0.108 0.055 0.663Fissile plutonium (ton/year) 0.527 0.221 0.084 0.537 0.102 0.732 0.104 0.054 0.460Uranium enrichment (%) 0.108 0.207 0.252 0.100 0.168 0.125 0.239 0.245 0.077

Final core dischargeHeavy metal (ton) 28.400 38.856 29.599 45.248 19.054 45.459 24.287 15.061 59.116Uranium (ton) 21.421 37.789 29.215 35.469 18.319 39.095 23.840 14.835 50.782Plutonium (ton) 6.616 1.062 0.383 9.306 0.734 6.171 0.445 0.225 8.082Fissile plutonium (ton) 3.857 1.002 0.371 5.549 0.680 4.355 0.432 0.220 5.691

Uranium enrichment (%) 0.165 0.238 0.269 0.159 0.212 0.172 0.258 0.263 0.146

SodiumMixed-oxide/Pellet

SodiumMetal/Casting