92
Gogny-HFB Nuclear Mass Model S. Goriely (ULB), S. Hilaire (CEA-DAM-DIF) et. al. J.-P. Ebran (CEA-DAM-DIF) ECT* 8-12/07/2013

Gogny-HFB Nuclear Mass Model

  • Upload
    kory

  • View
    86

  • Download
    1

Embed Size (px)

DESCRIPTION

Gogny-HFB Nuclear Mass Model. S. Goriely (ULB), S. Hilaire (CEA-DAM-DIF) et. al. J.-P. Ebran (CEA-DAM-DIF) ECT* 8-12/07/2013 . Outline.  Gogny -HFB Nuclear Mass Model Energy Density Functional The Gogny Force Results. - PowerPoint PPT Presentation

Citation preview

Page 1: Gogny-HFB Nuclear Mass Model

Gogny-HFB Nuclear Mass ModelS. Goriely (ULB), S. Hilaire (CEA-DAM-DIF) et. al.

J.-P. Ebran (CEA-DAM-DIF) ECT* 8-12/07/2013

Page 2: Gogny-HFB Nuclear Mass Model

Outline

Gogny-HFB Nuclear Mass ModelI. Energy Density FunctionalII. The Gogny ForceIII. Results

Relativistic Hartree-Fock-Bogoliubov in Axial Symmetry

Page 3: Gogny-HFB Nuclear Mass Model

Microscopic Mass Model : as good as possible description of all the properties of all nuclei for both ground and excited states

Gogny-HFB Mass Model : Motivation

Feed Reaction model with Structure ingredients

Astrophysical applications : involve nuclei not experimentally accessible Need for predictive approach

Page 4: Gogny-HFB Nuclear Mass Model

I. Energy Density Functional

Page 5: Gogny-HFB Nuclear Mass Model

Designed to compute average value of few-body operators Independent particle picture

I. Energy Density Functional

Page 6: Gogny-HFB Nuclear Mass Model

Crystal-like G.S.

I. Energy Density Functional

Quantum Liquid-like G.S.

Page 7: Gogny-HFB Nuclear Mass Model

Particle-Hole and Particle-Particle fields involved in HFB-like equation

I. Energy Density Functional

Page 8: Gogny-HFB Nuclear Mass Model

1 particule – 1 holeexcitations

2 particules – 2 holesexcitations

3 particules – 3 holesexcitations

1d5/2

2s1/21d3/2

8

20

8

20

8

20

8

20

8

20

8

20

8

20

8

20

8

20

968877665544332211

1s1/2

1p3/21p1/2

2 2 2 2 2 2 2 2 2

1+[000]

3-[101]1-[101]

1+[220]

1+[211]1+[200]

2

8

1-[110]

3+[211]5+[202]

3+[202]

Symmetry breaking : take into account additional correlations keeping a single particle picture

I. EDF: Symmetry Breaking

Page 9: Gogny-HFB Nuclear Mass Model

Symmetry breaking : take into account additional correlations keeping a single particle picture

I. EDF: Symmetry Breaking

Page 10: Gogny-HFB Nuclear Mass Model

Restoration of broken symmetries : MR-level

Configuration mixing method : GCM

I. EDF: Symmetry Restoration

Page 11: Gogny-HFB Nuclear Mass Model

I. EDF: Symmetry Restoration

Page 12: Gogny-HFB Nuclear Mass Model

Gogny strategy : parametrize both p-h and p-p channels with the same phenomenological finite-range 2-body interaction

II. Gogny Interaction

Page 13: Gogny-HFB Nuclear Mass Model

D1 : J. Dechargé & D. Gogny, Phys. Rev. C21 1568 (1980) D1S : J.F. Berger, M. Girod & D. Gogny, Comput. Phys. Commun. 63 365 (1991) D1N : F. Chappert, M. Girod & S. Hilaire, Phys. Lett. B668 420 (2008) D1M : S. Goriely, S. Hilaire, M. Girod & S. Péru, Phys. Rev. Lett. 102 242501 (2009).

II. Gogny Interaction

Page 14: Gogny-HFB Nuclear Mass Model

Finite range : avoid pathologies “beyond HF” due to unrealistic behavior of 0-range forces at high relative momenta

II. Gogny Interaction

Page 15: Gogny-HFB Nuclear Mass Model

II. Gogny: Two Fitting Philosophies

14 parameters : (W,B,H,M)1 ; (W,B,H,M)2 ; t3 ; x3 ; a ; WLS ; m1 ; m2

Page 16: Gogny-HFB Nuclear Mass Model

Inversion

4x4 equations system

4x4 equations system

W1 B1 H1 M1W2 B2 H2 M2

Test in Nuclear matter:

(r, E/A)sat m*/m K

B.E., Rc

(16O, 90Zr)

Pairing consideration

s

Symmetry energy

Initial Data

t3 ; x3 ; ; WLS ; m1 ; m2

Reject Validation

« Theoretical » data at SR-

level

D1 D1S D1N

“Traditional” method involving small set of magic nuclei (!!!) at SR-level

II. Gogny: Two Fitting Philosophies

Page 17: Gogny-HFB Nuclear Mass Model

D1M

Make use of the huge data on masses and incorporate a maximum of physics in the functional MR-level

Parameters kept constant: 4 (can be included in the fit)m1=0.7-0.8 ; m2=1.2 ; x3=1 ; =1/3 (0.2-0.5 investigated)

Parameters constrained: 3 • J ~ 29 - 32 MeV to reproduce at best neutron matter EoS• K ~ 230 - 240 MeV as expected from exp. breathing mode data• kF kept constant to reproduce charge radii at best (manually adjusted)

(av, J, m*, K, kF) (B1, H1, W2, M2, t3)

Parameters directly fitted to nuclear masses at MR-level: 7 (av , m*, W1, M1, B2, H2, Wso)

II. Gogny: Two Fitting Philosophies

Page 18: Gogny-HFB Nuclear Mass Model

D1M

Infinite base correction

II. Gogny: Two Fitting Philosophies

Page 19: Gogny-HFB Nuclear Mass Model

D1M

60Ni

II. Gogny: Two Fitting Philosophies

Page 20: Gogny-HFB Nuclear Mass Model

D1M

120Sn

II. Gogny: Two Fitting Philosophies

Page 21: Gogny-HFB Nuclear Mass Model

D1M

M. Girod and B. Grammaticos, Nucl. Phys. A330 40 (1979) J. Libert, M. Girod and J.-P. Delaroche, Phys. Rev. C60 054301 (1999)

GCM + GOA

II. Gogny: Two Fitting Philosophies

Page 22: Gogny-HFB Nuclear Mass Model

automatic fit

on masses

D1M

Trial force

New force

For 1/3 of 2149 exp masses (Audi et al 2003) – N=Z,N=Z±1, N=Z±2

II. Gogny: Two Fitting Philosophies

Page 23: Gogny-HFB Nuclear Mass Model

automatic fit

on masses

D1M

Trial force

New force

Check

properties

Acceptable rms, J, K

II. Gogny: Two Fitting Philosophies

Page 24: Gogny-HFB Nuclear Mass Model

automatic fit

on masses

D1M

Trial force

New force

Check

properties

Acceptable rms, J, K

• ~ 200/782 exp. charge radii with dynamical correction Play on kF to adjust globally

II. Gogny: Two Fitting Philosophies

Page 25: Gogny-HFB Nuclear Mass Model

automatic fit

on masses

D1M

Trial force

New force

Check

properties

Acceptable rms, J, K

• ~ 200/782 exp. charge radii with dynamical correction Play on kF to adjust globally

• Nuclear Matter Properties

+ Landau Parameters (stability, sum rules, G0 ~ 0; G0’~ 0.9-1 (Borzov et al. 1981))

II. Gogny: Two Fitting Philosophies

Page 26: Gogny-HFB Nuclear Mass Model

244Puautomatic fit

on masses

D1M

Trial force

New force

Check

properties

Acceptable rms, J, K

• ~ 200/782 exp. charge radii with dynamical correction Play on kF to adjust globally

• Energy of 2+ levels

• Nuclear Matter Properties

+ Landau Parameters (stability, sum rules, G0 ~ 0; G0’~ 0.9-1 (Borzov et al. 1981))

• Moment of inertia

II. Gogny: Two Fitting Philosophies

Page 27: Gogny-HFB Nuclear Mass Model

automatic fit

on masses

Trial force

New force

Check

properties

Acceptable rms, J, K

New Cstr.

Acceptable rms, J, K,prop.

D1M

II. Gogny: Two Fitting Philosophies

Page 28: Gogny-HFB Nuclear Mass Model

automatic fit

on masses

D1M

Trial force

New force

Check

properties

Acceptable rms, J, K

New Cstr.

Acceptable rms, J, K,prop.

New D

II. Gogny: Two Fitting Philosophies

Page 29: Gogny-HFB Nuclear Mass Model

automatic fit

on masses

D1M

Trial force

New force

Check

properties

Acceptable rms, J, K

New Cstr.

Acceptable rms, J, K,prop.

New DNew Dquad

II. Gogny: Two Fitting Philosophies

Page 30: Gogny-HFB Nuclear Mass Model

automatic fit

on masses

D1M

Trial force

New force

Check

properties

Acceptable rms, J, K

New Cstr.

Acceptable rms, J, K,prop.

New DNew Dquad

II. Gogny: Two Fitting Philosophies

Page 31: Gogny-HFB Nuclear Mass Model

Quadrupole correction to the binding energy

0

1

2

3

4

5

6

0 40 80 120 160 200 240

DE qu

ad [M

eV]

N

Page 32: Gogny-HFB Nuclear Mass Model

automatic fit

on masses

D1M

Trial force

New force

Check

properties

Acceptable rms, J, K

New Cstr.

Acceptable rms, J, K,prop.

New DNew Dquad

II. Gogny: Two Fitting Philosophies

Page 33: Gogny-HFB Nuclear Mass Model

III. Results: MassesComparison with 2149 Exp. Masses

D1S

r.m.s ~ 4.4 MeV

• Eth = EHFB

r.m.s ~ 2.6 MeV

• Eth = EHFB - D

r.m.s ~ 2.9 MeV

• Eth = EHFB - D - Dquad

Page 34: Gogny-HFB Nuclear Mass Model

III. Results: D1N and the Neutron Matter EOS

F. Chappert, M. Girod & S. Hilaire, Phys. Lett. B668 (2008) 420.

Page 35: Gogny-HFB Nuclear Mass Model

III. Results: MassesComparison with 2149 Exp. Masses

D1N

r.m.s ~ 2.5 MeV

r.m.s ~ 0.95 MeV

• Eth = EHFB

• Eth = EHFB - D

• Eth = EHFB - D - Dquad

Page 36: Gogny-HFB Nuclear Mass Model

III. Results: MassesComparison with 2149 Exp. Masses

r.m.s ~ 2.5 MeV

e = 0.126 MeVr.m.s = 0.798 MeV

r.m.s ~ 0.95 MeV

Page 37: Gogny-HFB Nuclear Mass Model

Results: MassesComparison with 2149 Exp. Masses

e = 0.126 MeVr.m.s = 0.798 MeV

Page 38: Gogny-HFB Nuclear Mass Model

III. Results: RadiiComparison with 707 Exp. Charge Radii

Rch RHFB2 DRcorr

2

DRcorr Rdyn2 RHFB

2

r.m.s = 0.031 fm

Page 39: Gogny-HFB Nuclear Mass Model

III. Results: Pairing

Sn

Page 40: Gogny-HFB Nuclear Mass Model

III. Results: Pairing

Sn

Page 41: Gogny-HFB Nuclear Mass Model

III. Results: Nuclear MatterkF=1.346 fm-1 J=28.6 MeV m*/m=0.746 Kinf =225 MeV

Pure Neutron Matter

Page 42: Gogny-HFB Nuclear Mass Model

III. Results: Nuclear MatterkF=1.346 fm-1 J=28.6 MeV m*/m=0.746 Kinf =225 MeV

Page 43: Gogny-HFB Nuclear Mass Model

III. Results: Nuclear Matter

Page 44: Gogny-HFB Nuclear Mass Model

III. Results: Comparison with other Mass Formula

0 40 80 120 160 200 240N

-15

-10

-5

0

5

10

15

0 40 80 120 160 200

DM

[MeV

]

N

D1M – HFB17 D1M – FRDM

Page 45: Gogny-HFB Nuclear Mass Model

Conclusion & Perspectives

First Gogny Mass Model : r.m.s. = 0.798 MeV

With Audi et al 2013, r.m.s.(D1M) better and r.m.s.(D1S) gets worse

Implementation of exact coulomb exchange and (anti-)pairing

Development of generalized Gogny interactions (D2, …)

Octupole correlations

Page 46: Gogny-HFB Nuclear Mass Model

Relativistic Hartree-Fock-Bogoliubov in Axial Symmetry

J.-P. Ebran (CEA-DAM-DIF), E. Khan (IPN), D. Peña Arteaga (CEA-DAM-DIF), D. Vretenar (Zagreb University)

J.-P. Ebran ECT* 8-12/07/2013

Page 47: Gogny-HFB Nuclear Mass Model

Why a Relativstic Approach? p

pEpv

)()(eff

F

Mpv

43

Kine

mati

cs

%102111 2

2

cv

•Relevance of covariant approach : not imposed by the need for a relativistic nuclear kinematics, but rather linked to the use of Lorentz symmetry

• Relativistic potentials :S ~ -400 MeV : Scalar attractive potentialV ~ +350 MeV : 4-vector (time-like component) repulsive potential

• Microscopic structure model = low-energy effective model of QCD Many possible formulations but all not as efficient

Page 48: Gogny-HFB Nuclear Mass Model

Why a Relativstic Approach?

• Modification of the vacuum structure in presence of baryonic matter at the origin of the S and V self energies felt by nucleons

In medium Chiral Perturbation theory, D. Vretenar et. al.

Page 49: Gogny-HFB Nuclear Mass Model

Why a Relativstic Approach?

• QCD sum rules Large scalar and time-like self energies with opposite sign

Page 50: Gogny-HFB Nuclear Mass Model

Spin-orbit potential emerges naturally with the empirical strenght Time-odd fields = space-like component of 4-potential Empirical pseudospin symmetry in nuclear spectroscopy Saturation mechanism of nuclear matter

Why a Relativstic Approach?

Figure from C. Fuchs (LNP 641: 119-146 ,

2004)

Page 51: Gogny-HFB Nuclear Mass Model

• Relativistic mean field models (RMF) treat implicitly Fock terms through fit of model parameters to data• Relativistic Hartree-Fock models (RHF): more involved approaches which take explicitly into account the Fock contributions

Description of nuclear matter in better agreement with DBHF calculations Tensor contribution to the NN force (pion + r) : better description of shell

structure Fully self-consistent beyond mean-field models

RHB in axial symmetry

D. Vretenar et al Phys.Rep. 409:101-

259,2005

RHFB in spherical symmetry

W. Long et al Phys. Rev. C 81, 024308 (2010)

N

N

N

N

RHFB in axial symmetry

J.-P. Ebran et al Phys. Rev. C 83, 064323 (2011)

Why Fock Term?

Page 52: Gogny-HFB Nuclear Mass Model

Hamiltonian

Observables

• Resolution in a deformed harmonic oscillator basis

EDF

• Mean-field approximation : expectation value in the HFB ground state

N NN

N

RHFB equations

• Minimization

N N

Lagrangian • 8 free parameters

RHFBz Model

Page 53: Gogny-HFB Nuclear Mass Model

Neutron density in the Neon isotopic chain

Results

Page 54: Gogny-HFB Nuclear Mass Model

ResultsN=32 Masses

SLy4 : M.V. Stoitsov et al, Phys. Rev. C68 (2003) 054312

Page 55: Gogny-HFB Nuclear Mass Model

Results

N=32 static quadrupole deformations

Page 56: Gogny-HFB Nuclear Mass Model

ResultsCharge radii

Page 57: Gogny-HFB Nuclear Mass Model

Conclusion & Perspectives

First RHFB model in axial symmetry

Encouraging results but too heavy for triaxial calculations or MR-level

Page 58: Gogny-HFB Nuclear Mass Model

Thank you

Page 59: Gogny-HFB Nuclear Mass Model

III. Results: Pairing

244Pu

Page 60: Gogny-HFB Nuclear Mass Model

III. Results: Pairing

164Er

Page 61: Gogny-HFB Nuclear Mass Model

III. Results: Giant Resonances

14.25 MeV

GMR GDR

208Pb15.85 MeV

Eexp = 14.17 MeV D. H. Youngblood et al., Phys. Rev. Lett. 82, 691 (1999).

Eexp = 13.43 MeV B. L. Berman and S. C. Fultz, Rev. Mod. Phys. 47, 713 (1975).

Page 62: Gogny-HFB Nuclear Mass Model

III. Results: SpectroscopyExcitation energies of the first 2+ for 519 e-e nuclei

J.P. Delaroche et al., Phys. Rev. C81 (2010) 014303.

S. Hilaire & M. Girod, Eur. Phys. J A33 237(2007)

Page 63: Gogny-HFB Nuclear Mass Model

III. Results: Nuclear MatterkF=1.346 fm-1 J=28.6 MeV m*/m=0.746 Kinf =225 MeV

Pure Neutron Matter

Page 64: Gogny-HFB Nuclear Mass Model

III. Results: Shell Gaps

Page 65: Gogny-HFB Nuclear Mass Model

III. Results: Shell Gaps

Page 66: Gogny-HFB Nuclear Mass Model

Structure properties of ~7000 nuclei + Spectroscopic properties of low energy collective levels for ~1700 even-even nuclei

D1S Properties

S. Hilaire & M. Girod, Eur. Phys. J A33 237(2007)

Page 67: Gogny-HFB Nuclear Mass Model

D1S Properties

Page 68: Gogny-HFB Nuclear Mass Model

Results: MassesComparison with 2149 Exp. Masses

e = 0.126 MeVr.m.s = 0.798 MeV

Page 69: Gogny-HFB Nuclear Mass Model

Quadrupole correction to the binding energy

0

1

2

3

4

5

6

0 40 80 120 160 200 240

DE qu

ad [M

eV]

N

Page 70: Gogny-HFB Nuclear Mass Model

• Relativistic potentials :S ~ -400 MeV : Scalar attractive potentialV ~ +350 MeV : 4-vector (time-like component) repulsive potential

•Relevance of covariant approach : not imposed by the need of a relativistic nuclear kinematics, but rather linked to the use of Lorentz symmetry

Spin-orbit potential emerges naturally with the empirical strenght

Time-odd fields = space-like component of 4-potential

Empirical pseudospin symmetry in nuclear spectroscopy

Saturation mechanism of nuclear matter

Why a Relativstic Approach?

Page 71: Gogny-HFB Nuclear Mass Model

• Relativistic mean field models (RMF) treat implicitly Fock terms through fit of model parameters to data• Relativistic Hartree-Fock models (RHF): more involved approaches which take explicitly into account the Fock contributions

Description of nuclear matter in better agreement with DBHF calculations Tensor contribution to the NN force (pion + r) : better description of shell

structure Fully self-consistent beyond mean-field models

RHB in axial symmetry

D. Vretenar et al Phys.Rep. 409:101-

259,2005

RHFB in spherical symmetry

W. Long et al Phys. Rev. C 81, 024308 (2010)

N

N

N

N

RHFB in axial symmetry

J.-P. Ebran et al Phys. Rev. C 83, 064323 (2011)

Why a Relativstic Approach?

Page 72: Gogny-HFB Nuclear Mass Model

Why a Relativstic Approach?

S and V potentials characterize the essential properties of nuclear systems :

• Central Potential : quasi cancellation of potentials

• Spin-orbit : constructive combination of potentialsSpin

-orb

it

• Nuclear systems breaking the time reversal symmetry characterized by currents

which are accounted for through space-like component of the 4-potentiel :

Mag

netis

m

Page 73: Gogny-HFB Nuclear Mass Model

Why a Relativstic Approach?

• Pseudo-spin symmetry

21,, ljlnr

23,2,1 ljlnr

Page 74: Gogny-HFB Nuclear Mass Model

Why a Relativstic Approach?

• Pseudo-spin symmetry

21,, ljlnr

23,2,1 ljlnr

• Relativistic interpretation : comes from the fact that |V+S|«|S|≈|V| ( J. Ginoccho PR 414(2005) 165-261 )

Page 75: Gogny-HFB Nuclear Mass Model

Why a Relativstic Approach?

• Saturation mechanism of nuclear matter

0

2

0

2

01

0 21

21

rr

rrr

bss

pot

mg

mg

AE

Page 76: Gogny-HFB Nuclear Mass Model

Why a Relativstic Approach?

• pF >> 1 : Scalar density becomes constant Vector density diverge Saturation of nuclear matter

Page 77: Gogny-HFB Nuclear Mass Model

Why a Relativstic Approach?

• First contribution to the expansion:

Page 78: Gogny-HFB Nuclear Mass Model

Why a Relativstic Approach?

Figure from C. Fuchs (LNP 641: 119-146 ,

2004)

Page 79: Gogny-HFB Nuclear Mass Model

Why Fock terms? • Relativistic mean field models (RMF) treat implicitly Fock terms through fit of model parameters to data• Relativistic Hartree-Fock models (RHF): more involved approaches which take explicitly into account the Fock contributions

RHB in axial symmetry

D. Vretenar et al (Phys.Rep. 409:101-

259,2005)

RHFB in spherical symmetry

W. Long et al (Phys. Rev. C

81:024308, 2010)

N

N

N

N

RHFB in axial symmetry

J.-P. Ebran et al Phys. Rev. C 83, 064323 (2011)

Page 80: Gogny-HFB Nuclear Mass Model

Why Fock terms? Effective Mass

Figure from W. Long et al

(Phys.Lett.B 640:150, 2006)

Effective mass in symmetric nuclear matter obtained with the PKO1 interaction

Page 81: Gogny-HFB Nuclear Mass Model

Why Fock terms?

Shell Structure

Figure from N. van Giai (International Conference Nuclear Structure and Related Topics, Dubna, 2009)

• Explicit treatment of the Fock term introduction of pion + rN tensor coupling• rN tensor coupling (accounted for in PKA1 interaction) leads to a better description of the shell structure of nuclei: artificial shell closure are cured (N,Z=92 for example)

Page 82: Gogny-HFB Nuclear Mass Model

Why Fock terms?

RPA : Charge exchange excitation

Figure from H. Liang et al. (Phys.Rev.Lett. 101:122502, 2008)

• RHF+RPA model fully self-consistent contrary to RH+RPA model

Page 83: Gogny-HFB Nuclear Mass Model

Rôle des corrections relativistes dans le mécanisme de saturation

• Distinction between scalar and vector densities lost :

rs r rb r

0

22

21

rr

bpot

mg

mg

AE

2) Approches relativistes C. Pourquoi une approche relativiste ? Corrections relativistes

i) Non-relativistic limit :

Page 84: Gogny-HFB Nuclear Mass Model

Rôle des corrections relativistes dans le mécanisme de saturation

ii) Corrections relativistes cinématiques : Termes d’ordre dans lesquels

pM

2

M* M

• Corrections cinématiques peuvent être rajoutées dans n’importe quel potentiel NN non-relativiste

• Distinction entre densité scalaire et densité vecteur retrouvée, mais brisure de l’auto-cohérence caractérisant l’évaluation de la densité scalaire

2) Approches relativistes C. Pourquoi une approche relativiste ? Corrections relativistes

Page 85: Gogny-HFB Nuclear Mass Model

Rôle des corrections relativistes dans le mécanisme de saturation

• Saturation de la matière nucléaire retrouvée à l’échelle du champ moyen!!• Mais à une énergie et à un moment de fermi irréalistes

2) Approches relativistes C. Pourquoi une approche relativiste ? Corrections relativistes

Page 86: Gogny-HFB Nuclear Mass Model

Rôle des corrections relativistes dans le mécanisme de saturation

iii) Corrections relativistes dynamiques : corrections générées par le spineur habillé par rapport au spineur libre

Saturation de la matière nucléaire plus proche du point empirique

2) Approches relativistes C. Pourquoi une approche relativiste ? Corrections relativistes

Page 87: Gogny-HFB Nuclear Mass Model

Contenu physique des corrections relativistes dynamiques

2) Approches relativistes C. Pourquoi une approche relativiste ? Corrections relativistes

• Corrections relativistes dynamiques correspondent à une contribution d’antinucléons. Petit paramètre (~0.1 dans le modèle de Walecka) justifiant développement perturbatif

• On développe le spineur sur la base des spineurs de Dirac dans le vide

Page 88: Gogny-HFB Nuclear Mass Model

2) Approches relativistes C. Pourquoi une approche relativiste ? Corrections relativistes

• Première contribution non-nulle du développement :

• Contribution interprétée comme une contribution à 3 corps, ne pouvant pas être ajoutée comme correction dans un potentiel NN non-relativiste

Contenu physique des corrections relativistes dynamiques

Page 89: Gogny-HFB Nuclear Mass Model

3) Results A. Ground state observables

Two-neutron drip-line

• Two-neutron separation energy E : S2n = Etot(Z,N) – Etot(Z,N-2). Gives global information on the Q-value of an hypothetical simultaneous transfer of 2 neutrons in the ground state of (Z,N-2)

• S2n < 0 (Z,N) Nucleus can spontaneously and simultaneously emit two neutrons it is beyond the two neutrons drip-line

Page 90: Gogny-HFB Nuclear Mass Model

3) Results A. Ground state observables

Axial deformation

For Ne et Mg, PKO2 deformation’s behaviour qualitatively the same than the other interactions

PKO2 β systematically weaker than DDME2 and Gogny D1S one

Page 91: Gogny-HFB Nuclear Mass Model

3) Results A. Ground state observables

Charge radii

DDME2 closer to experimental data Better agreement between PKO2 and DDME2 for

heavier isotopes

Page 92: Gogny-HFB Nuclear Mass Model

Energy Density Functional